]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: begin rework of Cartesian product EJA.
[sage.d.git] / mjo / eja / eja_algebra.py
index 9e808ae1cb1c6ec41ca59136c8a6787fd589e61c..c7c0df8de0e67aef03b391099ea6a72374dce13a 100644 (file)
@@ -20,7 +20,9 @@ from itertools import repeat
 
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
 from sage.categories.magmatic_algebras import MagmaticAlgebras
-from sage.combinat.free_module import CombinatorialFreeModule
+from sage.categories.sets_cat import cartesian_product
+from sage.combinat.free_module import (CombinatorialFreeModule,
+                                       CombinatorialFreeModule_CartesianProduct)
 from sage.matrix.constructor import matrix
 from sage.matrix.matrix_space import MatrixSpace
 from sage.misc.cachefunc import cached_method
@@ -133,7 +135,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             deortho_vector_basis = tuple( V(b.list()) for b in basis )
 
             from mjo.eja.eja_utils import gram_schmidt
-            basis = gram_schmidt(basis, inner_product)
+            basis = tuple(gram_schmidt(basis, inner_product))
 
         # Save the (possibly orthonormalized) matrix basis for
         # later...
@@ -687,7 +689,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         Why implement this for non-matrix algebras? Avoiding special
         cases for the :class:`BilinearFormEJA` pays with simplicity in
         its own right. But mainly, we would like to be able to assume
-        that elements of a :class:`DirectSumEJA` can be displayed
+        that elements of a :class:`CartesianProductEJA` can be displayed
         nicely, without having to have special classes for direct sums
         one of whose components was a matrix algebra.
 
@@ -737,7 +739,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         if self.is_trivial():
             return MatrixSpace(self.base_ring(), 0)
         else:
-            return self._matrix_basis[0].matrix_space()
+            return self.matrix_basis()[0].parent()
 
 
     @cached_method
@@ -750,23 +752,57 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: from mjo.eja.eja_algebra import (HadamardEJA,
             ....:                                  random_eja)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        We can compute unit element in the Hadamard EJA::
+
+            sage: J = HadamardEJA(5)
+            sage: J.one()
+            e0 + e1 + e2 + e3 + e4
+
+        The unit element in the Hadamard EJA is inherited in the
+        subalgebras generated by its elements::
 
             sage: J = HadamardEJA(5)
             sage: J.one()
             e0 + e1 + e2 + e3 + e4
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A.one()
+            f0
+            sage: A.one().superalgebra_element()
+            e0 + e1 + e2 + e3 + e4
 
         TESTS:
 
-        The identity element acts like the identity::
+        The identity element acts like the identity, regardless of
+        whether or not we orthonormalize::
 
             sage: set_random_seed()
             sage: J = random_eja()
             sage: x = J.random_element()
             sage: J.one()*x == x and x*J.one() == x
             True
+            sage: A = x.subalgebra_generated_by()
+            sage: y = A.random_element()
+            sage: A.one()*y == y and y*A.one() == y
+            True
 
-        The matrix of the unit element's operator is the identity::
+        ::
+
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: x = J.random_element()
+            sage: J.one()*x == x and x*J.one() == x
+            True
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: y = A.random_element()
+            sage: A.one()*y == y and y*A.one() == y
+            True
+
+        The matrix of the unit element's operator is the identity,
+        regardless of the base field and whether or not we
+        orthonormalize::
 
             sage: set_random_seed()
             sage: J = random_eja()
@@ -774,6 +810,27 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: expected = matrix.identity(J.base_ring(), J.dimension())
             sage: actual == expected
             True
+            sage: x = J.random_element()
+            sage: A = x.subalgebra_generated_by()
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
+            sage: actual == expected
+            True
+
+        ::
+
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: actual = J.one().operator().matrix()
+            sage: expected = matrix.identity(J.base_ring(), J.dimension())
+            sage: actual == expected
+            True
+            sage: x = J.random_element()
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
+            sage: actual == expected
+            True
 
         Ensure that the cached unit element (often precomputed by
         hand) agrees with the computed one::
@@ -785,6 +842,15 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: J.one() == cached
             True
 
+        ::
+
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: cached = J.one()
+            sage: J.one.clear_cache()
+            sage: J.one() == cached
+            True
+
         """
         # We can brute-force compute the matrices of the operators
         # that correspond to the basis elements of this algebra.
@@ -1037,6 +1103,21 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         r"""
         The `r` polynomial coefficients of the "characteristic polynomial
         of" function.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS:
+
+        The theory shows that these are all homogeneous polynomials of
+        a known degree::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
+            True
+
         """
         n = self.dimension()
         R = self.coordinate_polynomial_ring()
@@ -1072,10 +1153,17 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         # The theory says that only the first "r" coefficients are
         # nonzero, and they actually live in the original polynomial
-        # ring and not the fraction field. We negate them because
-        # in the actual characteristic polynomial, they get moved
-        # to the other side where x^r lives.
-        return -A_rref.solve_right(E*b).change_ring(R)[:r]
+        # ring and not the fraction field. We negate them because in
+        # the actual characteristic polynomial, they get moved to the
+        # other side where x^r lives. We don't bother to trim A_rref
+        # down to a square matrix and solve the resulting system,
+        # because the upper-left r-by-r portion of A_rref is
+        # guaranteed to be the identity matrix, so e.g.
+        #
+        #   A_rref.solve_right(Y)
+        #
+        # would just be returning Y.
+        return (-E*b)[:r].change_ring(R)
 
     @cached_method
     def rank(self):
@@ -1136,7 +1224,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
             sage: set_random_seed()    # long time
             sage: J = random_eja()     # long time
-            sage: caches = J.rank()    # long time
+            sage: cached = J.rank()    # long time
             sage: J.rank.clear_cache() # long time
             sage: J.rank() == cached   # long time
             True
@@ -1201,6 +1289,7 @@ class RationalBasisEJA(FiniteDimensionalEJA):
             if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
                 raise TypeError("basis not rational")
 
+        self._rational_algebra = None
         if field is not QQ:
             # There's no point in constructing the extra algebra if this
             # one is already rational.
@@ -1261,7 +1350,14 @@ class RationalBasisEJA(FiniteDimensionalEJA):
         a = ( a_i.change_ring(self.base_ring())
               for a_i in self._rational_algebra._charpoly_coefficients() )
 
-        # Now convert the coordinate variables back to the
+        if self._deortho_matrix is None:
+            # This can happen if our base ring was, say, AA and we
+            # chose not to (or didn't need to) orthonormalize. It's
+            # still faster to do the computations over QQ even if
+            # the numbers in the boxes stay the same.
+            return tuple(a)
+
+        # Otherwise, convert the coordinate variables back to the
         # deorthonormalized ones.
         R = self.coordinate_polynomial_ring()
         from sage.modules.free_module_element import vector
@@ -1595,6 +1691,38 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
 
 
 class ComplexMatrixEJA(MatrixEJA):
+    # A manual dictionary-cache for the complex_extension() method,
+    # since apparently @classmethods can't also be @cached_methods.
+    _complex_extension = {}
+
+    @classmethod
+    def complex_extension(cls,field):
+        r"""
+        The complex field that we embed/unembed, as an extension
+        of the given ``field``.
+        """
+        if field in cls._complex_extension:
+            return cls._complex_extension[field]
+
+        # Sage doesn't know how to adjoin the complex "i" (the root of
+        # x^2 + 1) to a field in a general way. Here, we just enumerate
+        # all of the cases that I have cared to support so far.
+        if field is AA:
+            # Sage doesn't know how to embed AA into QQbar, i.e. how
+            # to adjoin sqrt(-1) to AA.
+            F = QQbar
+        elif not field.is_exact():
+            # RDF or RR
+            F = field.complex_field()
+        else:
+            # Works for QQ and... maybe some other fields.
+            R = PolynomialRing(field, 'z')
+            z = R.gen()
+            F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
+
+        cls._complex_extension[field] = F
+        return F
+
     @staticmethod
     def dimension_over_reals():
         return 2
@@ -1649,9 +1777,10 @@ class ComplexMatrixEJA(MatrixEJA):
 
         blocks = []
         for z in M.list():
-            a = z.list()[0] # real part, I guess
-            b = z.list()[1] # imag part, I guess
-            blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
+            a = z.real()
+            b = z.imag()
+            blocks.append(matrix(field, 2, [ [ a, b],
+                                             [-b, a] ]))
 
         return matrix.block(field, n, blocks)
 
@@ -1690,26 +1819,7 @@ class ComplexMatrixEJA(MatrixEJA):
         super(ComplexMatrixEJA,cls).real_unembed(M)
         n = ZZ(M.nrows())
         d = cls.dimension_over_reals()
-
-        # If "M" was normalized, its base ring might have roots
-        # adjoined and they can stick around after unembedding.
-        field = M.base_ring()
-        R = PolynomialRing(field, 'z')
-        z = R.gen()
-
-        # Sage doesn't know how to adjoin the complex "i" (the root of
-        # x^2 + 1) to a field in a general way. Here, we just enumerate
-        # all of the cases that I have cared to support so far.
-        if field is AA:
-            # Sage doesn't know how to embed AA into QQbar, i.e. how
-            # to adjoin sqrt(-1) to AA.
-            F = QQbar
-        elif not field.is_exact():
-            # RDF or RR
-            F = field.complex_field()
-        else:
-            # Works for QQ and... maybe some other fields.
-            F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
+        F = cls.complex_extension(M.base_ring())
         i = F.gen()
 
         # Go top-left to bottom-right (reading order), converting every
@@ -1805,7 +1915,6 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
-            sage: field = QuadraticField(2, 'sqrt2')
             sage: B = ComplexHermitianEJA._denormalized_basis(n)
             sage: all( M.is_symmetric() for M in  B)
             True
@@ -1823,18 +1932,27 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
         #   * The diagonal will (as a result) be real.
         #
         S = []
+        Eij = matrix.zero(F,n)
         for i in range(n):
             for j in range(i+1):
-                Eij = matrix(F, n, lambda k,l: k==i and l==j)
+                # "build" E_ij
+                Eij[i,j] = 1
                 if i == j:
                     Sij = cls.real_embed(Eij)
                     S.append(Sij)
                 else:
                     # The second one has a minus because it's conjugated.
-                    Sij_real = cls.real_embed(Eij + Eij.transpose())
+                    Eij[j,i] = 1 # Eij = Eij + Eij.transpose()
+                    Sij_real = cls.real_embed(Eij)
                     S.append(Sij_real)
-                    Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
+                    # Eij = I*Eij - I*Eij.transpose()
+                    Eij[i,j] = I
+                    Eij[j,i] = -I
+                    Sij_imag = cls.real_embed(Eij)
                     S.append(Sij_imag)
+                    Eij[j,i] = 0
+                # "erase" E_ij
+                Eij[i,j] = 0
 
         # Since we embedded these, we can drop back to the "field" that we
         # started with instead of the complex extension "F".
@@ -1870,6 +1988,25 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
         return cls(n, **kwargs)
 
 class QuaternionMatrixEJA(MatrixEJA):
+
+    # A manual dictionary-cache for the quaternion_extension() method,
+    # since apparently @classmethods can't also be @cached_methods.
+    _quaternion_extension = {}
+
+    @classmethod
+    def quaternion_extension(cls,field):
+        r"""
+        The quaternion field that we embed/unembed, as an extension
+        of the given ``field``.
+        """
+        if field in cls._quaternion_extension:
+            return cls._quaternion_extension[field]
+
+        Q = QuaternionAlgebra(field,-1,-1)
+
+        cls._quaternion_extension[field] = Q
+        return Q
+
     @staticmethod
     def dimension_over_reals():
         return 4
@@ -1974,8 +2111,7 @@ class QuaternionMatrixEJA(MatrixEJA):
 
         # Use the base ring of the matrix to ensure that its entries can be
         # multiplied by elements of the quaternion algebra.
-        field = M.base_ring()
-        Q = QuaternionAlgebra(field,-1,-1)
+        Q = cls.quaternion_extension(M.base_ring())
         i,j,k = Q.gens()
 
         # Go top-left to bottom-right (reading order), converting every
@@ -2090,23 +2226,39 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
         #   * The diagonal will (as a result) be real.
         #
         S = []
+        Eij = matrix.zero(Q,n)
         for i in range(n):
             for j in range(i+1):
-                Eij = matrix(Q, n, lambda k,l: k==i and l==j)
+                # "build" E_ij
+                Eij[i,j] = 1
                 if i == j:
                     Sij = cls.real_embed(Eij)
                     S.append(Sij)
                 else:
                     # The second, third, and fourth ones have a minus
                     # because they're conjugated.
-                    Sij_real = cls.real_embed(Eij + Eij.transpose())
+                    # Eij = Eij + Eij.transpose()
+                    Eij[j,i] = 1
+                    Sij_real = cls.real_embed(Eij)
                     S.append(Sij_real)
-                    Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
+                    # Eij = I*(Eij - Eij.transpose())
+                    Eij[i,j] = I
+                    Eij[j,i] = -I
+                    Sij_I = cls.real_embed(Eij)
                     S.append(Sij_I)
-                    Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
+                    # Eij = J*(Eij - Eij.transpose())
+                    Eij[i,j] = J
+                    Eij[j,i] = -J
+                    Sij_J = cls.real_embed(Eij)
                     S.append(Sij_J)
-                    Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
+                    # Eij = K*(Eij - Eij.transpose())
+                    Eij[i,j] = K
+                    Eij[j,i] = -K
+                    Sij_K = cls.real_embed(Eij)
                     S.append(Sij_K)
+                    Eij[j,i] = 0
+                # "erase" E_ij
+                Eij[i,j] = 0
 
         # Since we embedded these, we can drop back to the "field" that we
         # started with instead of the quaternion algebra "Q".
@@ -2524,100 +2676,218 @@ class TrivialEJA(ConcreteEJA):
         # inappropriate for us.
         return cls(**kwargs)
 
-# class DirectSumEJA(ConcreteEJA):
-#     r"""
-#     The external (orthogonal) direct sum of two other Euclidean Jordan
-#     algebras. Essentially the Cartesian product of its two factors.
-#     Every Euclidean Jordan algebra decomposes into an orthogonal
-#     direct sum of simple Euclidean Jordan algebras, so no generality
-#     is lost by providing only this construction.
-
-#     SETUP::
-
-#         sage: from mjo.eja.eja_algebra import (random_eja,
-#         ....:                                  HadamardEJA,
-#         ....:                                  RealSymmetricEJA,
-#         ....:                                  DirectSumEJA)
-
-#     EXAMPLES::
-
-#         sage: J1 = HadamardEJA(2)
-#         sage: J2 = RealSymmetricEJA(3)
-#         sage: J = DirectSumEJA(J1,J2)
-#         sage: J.dimension()
-#         8
-#         sage: J.rank()
-#         5
-
-#     TESTS:
-
-#     The external direct sum construction is only valid when the two factors
-#     have the same base ring; an error is raised otherwise::
-
-#         sage: set_random_seed()
-#         sage: J1 = random_eja(field=AA)
-#         sage: J2 = random_eja(field=QQ,orthonormalize=False)
-#         sage: J = DirectSumEJA(J1,J2)
-#         Traceback (most recent call last):
-#         ...
-#         ValueError: algebras must share the same base field
-
-#     """
-#     def __init__(self, J1, J2, **kwargs):
-#         if J1.base_ring() != J2.base_ring():
-#             raise ValueError("algebras must share the same base field")
-#         field = J1.base_ring()
-
-#         self._factors = (J1, J2)
-#         n1 = J1.dimension()
-#         n2 = J2.dimension()
-#         n = n1+n2
-#         V = VectorSpace(field, n)
-#         mult_table = [ [ V.zero() for j in range(i+1) ]
-#                        for i in range(n) ]
-#         for i in range(n1):
-#             for j in range(i+1):
-#                 p = (J1.monomial(i)*J1.monomial(j)).to_vector()
-#                 mult_table[i][j] = V(p.list() + [field.zero()]*n2)
-
-#         for i in range(n2):
-#             for j in range(i+1):
-#                 p = (J2.monomial(i)*J2.monomial(j)).to_vector()
-#                 mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
-
-#         # TODO: build the IP table here from the two constituent IP
-#         # matrices (it'll be block diagonal, I think).
-#         ip_table = [ [ field.zero() for j in range(i+1) ]
-#                        for i in range(n) ]
-#         super(DirectSumEJA, self).__init__(field,
-#                                            mult_table,
-#                                            ip_table,
-#                                            check_axioms=False,
-#                                            **kwargs)
-#         self.rank.set_cache(J1.rank() + J2.rank())
-
-
-#     def factors(self):
-#         r"""
-#         Return the pair of this algebra's factors.
 
-#         SETUP::
+class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
+                          FiniteDimensionalEJA):
+    r"""
+    The external (orthogonal) direct sum of two or more Euclidean
+    Jordan algebras. Every Euclidean Jordan algebra decomposes into an
+    orthogonal direct sum of simple Euclidean Jordan algebras which is
+    then isometric to a Cartesian product, so no generality is lost by
+    providing only this construction.
 
-#             sage: from mjo.eja.eja_algebra import (HadamardEJA,
-#             ....:                                  JordanSpinEJA,
-#             ....:                                  DirectSumEJA)
+    SETUP::
 
-#         EXAMPLES::
+        sage: from mjo.eja.eja_algebra import (CartesianProductEJA,
+        ....:                                  HadamardEJA,
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
 
-#             sage: J1 = HadamardEJA(2, field=QQ)
-#             sage: J2 = JordanSpinEJA(3, field=QQ)
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: J.factors()
-#             (Euclidean Jordan algebra of dimension 2 over Rational Field,
-#              Euclidean Jordan algebra of dimension 3 over Rational Field)
+    EXAMPLES:
+
+    The Jordan product is inherited from our factors and implemented by
+    our CombinatorialFreeModule Cartesian product superclass::
+
+        sage: set_random_seed()
+        sage: J1 = HadamardEJA(2)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: J = cartesian_product([J1,J2])
+        sage: x,y = J.random_elements(2)
+        sage: x*y in J
+        True
+
+    The ability to retrieve the original factors is implemented by our
+    CombinatorialFreeModule Cartesian product superclass::
+
+       sage: J1 = HadamardEJA(2, field=QQ)
+       sage: J2 = JordanSpinEJA(3, field=QQ)
+       sage: J = cartesian_product([J1,J2])
+       sage: J.cartesian_factors()
+       (Euclidean Jordan algebra of dimension 2 over Rational Field,
+        Euclidean Jordan algebra of dimension 3 over Rational Field)
+
+    TESTS:
+
+    All factors must share the same base field::
+
+        sage: J1 = HadamardEJA(2, field=QQ)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: CartesianProductEJA((J1,J2))
+        Traceback (most recent call last):
+        ...
+        ValueError: all factors must share the same base field
+    """
+    def __init__(self, modules, **kwargs):
+        CombinatorialFreeModule_CartesianProduct.__init__(self, modules, **kwargs)
+        field = modules[0].base_ring()
+        if not all( J.base_ring() == field for J in modules ):
+            raise ValueError("all factors must share the same base field")
+
+        M = cartesian_product( [J.matrix_space() for J in modules] )
+
+        m = len(modules)
+        W = VectorSpace(field,m)
+        self._matrix_basis = []
+        for k in range(m):
+            for a in modules[k].matrix_basis():
+                v = W.zero().list()
+                v[k] = a
+                self._matrix_basis.append(M(v))
+
+        self._matrix_basis = tuple(self._matrix_basis)
+
+        n = len(self._matrix_basis)
+        # TODO:
+        #
+        # Initialize the FDEJA class, too. Does this override the
+        # initialization that we did for the
+        # CombinatorialFreeModule_CartesianProduct class? If not, we
+        # will probably have to duplicate some of the work (i.e. one
+        # of the constructors).  Since the CartesianProduct one is
+        # smaller, that makes the most sense to copy/paste if it comes
+        # down to that.
+        #
+
+        self.rank.set_cache(sum(J.rank() for J in modules))
+
+    @cached_method
+    def cartesian_projection(self, i):
+        r"""
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(2)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.cartesian_projection(0)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [1 0 0 0 0]
+            [0 1 0 0 0]
+            Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field (+) Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field
+            sage: J.cartesian_projection(1)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [0 0 1 0 0]
+            [0 0 0 1 0]
+            [0 0 0 0 1]
+            Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field (+) Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
+            Real Field
+
+        TESTS:
+
+        The answer never changes::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: P0 = J.cartesian_projection(0)
+            sage: P1 = J.cartesian_projection(0)
+            sage: P0 == P1
+            True
+
+        """
+        Ji = self.cartesian_factors()[i]
+        # We reimplement the CombinatorialFreeModule superclass method
+        # because if we don't, something gets messed up with the caching
+        # and the answer changes the second time you run it. See the TESTS.
+        Pi = self._module_morphism(lambda j_t: Ji.monomial(j_t[1])
+                                   if i == j_t[0] else Ji.zero(),
+                                   codomain=Ji)
+        return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
+
+    @cached_method
+    def cartesian_embedding(self, i):
+        r"""
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(2)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J
+            foo
+            sage: J.cartesian_embedding
+            bar
+            sage: J.cartesian_embedding(0)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [1 0]
+            [0 1]
+            [0 0]
+            [0 0]
+            [0 0]
+            Domain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field (+) Euclidean Jordan algebra of
+            dimension 3 over Algebraic Real Field
+            sage: J.cartesian_embedding(1)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [0 0 0]
+            [0 0 0]
+            [1 0 0]
+            [0 1 0]
+            [0 0 1]
+            Domain: Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field (+) Euclidean Jordan algebra of
+            dimension 3 over Algebraic Real Field
+
+        TESTS:
+
+        The answer never changes::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: E0 = J.cartesian_embedding(0)
+            sage: E1 = J.cartesian_embedding(0)
+            sage: E0 == E1
+            True
+
+        """
+        Ji = self.cartesian_factors()[i]
+        # We reimplement the CombinatorialFreeModule superclass method
+        # because if we don't, something gets messed up with the caching
+        # and the answer changes the second time you run it. See the TESTS.
+        Ei = Ji._module_morphism(lambda t: self.monomial((i, t)), codomain=self)
+        return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
+
+
+FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
 
-#         """
-#         return self._factors
 
 #     def projections(self):
 #         r"""