]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: allow FDEJA constructor to work on a tuple basis.
[sage.d.git] / mjo / eja / eja_algebra.py
index 3390df7545bb41257ee58c68f04154ce7a18d462..a4208519268cf204cfe43b80dddf882f9638fcd1 100644 (file)
@@ -31,7 +31,8 @@ from sage.modules.free_module import FreeModule, VectorSpace
 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
                             PolynomialRing,
                             QuadraticField)
-from mjo.eja.eja_element import FiniteDimensionalEJAElement
+from mjo.eja.eja_element import (CartesianProductEJAElement,
+                                 FiniteDimensionalEJAElement)
 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
 from mjo.eja.eja_utils import _mat2vec
 
@@ -41,7 +42,15 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
     INPUT:
 
-      - basis -- a tuple of basis elements in their matrix form.
+      - basis -- a tuple of basis elements in "matrix form," which
+        must be the same form as the arguments to ``jordan_product``
+        and ``inner_product``. In reality, "matrix form" can be either
+        vectors, matrices, or a Cartesian product (ordered tuple)
+        of vectors or matrices. All of these would ideally be vector
+        spaces in sage with no special-casing needed; but in reality
+        we turn vectors into column-matrices and Cartesian products
+        `(a,b)` into column matrices `(a,b)^{T}` after converting
+        `a` and `b` themselves.
 
       - jordan_product -- function of two elements (in matrix form)
         that returns their jordan product in this algebra; this will
@@ -62,10 +71,10 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                  field=AA,
                  orthonormalize=True,
                  associative=False,
+                 cartesian_product=False,
                  check_field=True,
                  check_axioms=True,
-                 prefix='e',
-                 category=None):
+                 prefix='e'):
 
         if check_field:
             if not field.is_subring(RR):
@@ -76,7 +85,12 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         # If the basis given to us wasn't over the field that it's
         # supposed to be over, fix that. Or, you know, crash.
-        basis = tuple( b.change_ring(field) for b in basis )
+        if not cartesian_product:
+            # The field for a cartesian product algebra comes from one
+            # of its factors and is the same for all factors, so
+            # there's no need to "reapply" it on product algebras.
+            basis = tuple( b.change_ring(field) for b in basis )
+
 
         if check_axioms:
             # Check commutativity of the Jordan and inner-products.
@@ -94,12 +108,13 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 raise ValueError("inner-product is not commutative")
 
 
-        if category is None:
-            category = MagmaticAlgebras(field).FiniteDimensional()
-            category = category.WithBasis().Unital()
-            if associative:
-                # Element subalgebras can take advantage of this.
-                category = category.Associative()
+        category = MagmaticAlgebras(field).FiniteDimensional()
+        category = category.WithBasis().Unital()
+        if associative:
+            # Element subalgebras can take advantage of this.
+            category = category.Associative()
+        if cartesian_product:
+            category = category.CartesianProducts()
 
         # Call the superclass constructor so that we can use its from_vector()
         # method to build our multiplication table.
@@ -117,10 +132,17 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # we see in things like x = 1*e1 + 2*e2.
         vector_basis = basis
 
+        def flatten(b):
+            # flatten a vector, matrix, or cartesian product of those
+            # things into a long list.
+            if cartesian_product:
+                return sum(( b_i.list() for b_i in b ), [])
+            else:
+                return b.list()
+
         degree = 0
         if n > 0:
-            # Works on both column and square matrices...
-            degree = len(basis[0].list())
+            degree = len(flatten(basis[0]))
 
         # Build an ambient space that fits our matrix basis when
         # written out as "long vectors."
@@ -134,7 +156,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             # Save a copy of the un-orthonormalized basis for later.
             # Convert it to ambient V (vector) coordinates while we're
             # at it, because we'd have to do it later anyway.
-            deortho_vector_basis = tuple( V(b.list()) for b in basis )
+            deortho_vector_basis = tuple( V(flatten(b)) for b in basis )
 
             from mjo.eja.eja_utils import gram_schmidt
             basis = tuple(gram_schmidt(basis, inner_product))
@@ -146,7 +168,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # Now create the vector space for the algebra, which will have
         # its own set of non-ambient coordinates (in terms of the
         # supplied basis).
-        vector_basis = tuple( V(b.list()) for b in basis )
+        vector_basis = tuple( V(flatten(b)) for b in basis )
         W = V.span_of_basis( vector_basis, check=check_axioms)
 
         if orthonormalize:
@@ -178,7 +200,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 # The jordan product returns a matrixy answer, so we
                 # have to convert it to the algebra coordinates.
                 elt = jordan_product(q_i, q_j)
-                elt = W.coordinate_vector(V(elt.list()))
+                elt = W.coordinate_vector(V(flatten(elt)))
                 self._multiplication_table[i][j] = self.from_vector(elt)
 
                 if not orthonormalize:
@@ -2780,6 +2802,19 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         True
         sage: x.inner_product(y) == J.cartesian_inner_product(x,y)
         True
+
+    The cached unit element is the same one that would be computed::
+
+        sage: set_random_seed()              # long time
+        sage: J1 = random_eja()              # long time
+        sage: J2 = random_eja()              # long time
+        sage: J = cartesian_product([J1,J2]) # long time
+        sage: actual = J.one()               # long time
+        sage: J.one.clear_cache()            # long time
+        sage: expected = J.one()             # long time
+        sage: actual == expected             # long time
+        True
+
     """
     def __init__(self, modules, **kwargs):
         CombinatorialFreeModule_CartesianProduct.__init__(self,
@@ -2789,23 +2824,32 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         if not all( J.base_ring() == field for J in modules ):
             raise ValueError("all factors must share the same base field")
 
-        basis = tuple( b.to_vector().column() for b in self.basis() )
+        # The definition of matrix_space() and self.basis() relies
+        # only on the stuff in the CFM_CartesianProduct class, which
+        # we've already initialized.
+        Js = self.cartesian_factors()
+        m = len(Js)
+        MS = self.matrix_space()
+        basis = tuple(
+            MS(tuple( self.cartesian_projection(i)(b).to_matrix()
+                      for i in range(m) ))
+            for b in self.basis()
+        )
 
-        # Define jordan/inner products that operate on thbasis.
-        def jordan_product(x_mat,y_mat):
-            x = self.from_vector(_mat2vec(x_mat))
-            y = self.from_vector(_mat2vec(y_mat))
-            return self.cartesian_jordan_product(x,y).to_vector().column()
+        # Define jordan/inner products that operate on that matrix_basis.
+        def jordan_product(x,y):
+            return MS(tuple(
+                (Js[i](x[i])*Js[i](y[i])).to_matrix() for i in range(m)
+            ))
 
-        def inner_product(x_mat, y_mat):
-            x = self.from_vector(_mat2vec(x_mat))
-            y = self.from_vector(_mat2vec(y_mat))
-            return self.cartesian_inner_product(x,y)
+        def inner_product(x, y):
+            return sum(
+                Js[i](x[i]).inner_product(Js[i](y[i])) for i in range(m)
+            )
 
-        # Use whatever category the superclass came up with. Usually
-        # some join of the EJA and Cartesian product
-        # categories. There's no need to check the field since it
-        # already came from an EJA.
+        # There's no need to check the field since it already came
+        # from an EJA. Likewise the axioms are guaranteed to be
+        # satisfied, unless the guy writing this class sucks.
         #
         # If you want the basis to be orthonormalized, orthonormalize
         # the factors.
@@ -2815,12 +2859,39 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
                                       inner_product,
                                       field=field,
                                       orthonormalize=False,
+                                      cartesian_product=True,
                                       check_field=False,
-                                      check_axioms=False,
-                                      category=self.category())
+                                      check_axioms=False)
 
+        ones = tuple(J.one() for J in modules)
+        self.one.set_cache(self._cartesian_product_of_elements(ones))
         self.rank.set_cache(sum(J.rank() for J in modules))
 
+    def matrix_space(self):
+        r"""
+        Return the space that our matrix basis lives in as a Cartesian
+        product.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(1)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.matrix_space()
+            The Cartesian product of (Full MatrixSpace of 1 by 1 dense
+            matrices over Algebraic Real Field, Full MatrixSpace of 2
+            by 2 dense matrices over Algebraic Real Field)
+
+        """
+        from sage.categories.cartesian_product import cartesian_product
+        return cartesian_product( [J.matrix_space()
+                                   for J in self.cartesian_factors()] )
+
     @cached_method
     def cartesian_projection(self, i):
         r"""
@@ -3081,8 +3152,43 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         return sum( P(x).inner_product(P(y)) for P in projections )
 
 
-    Element = FiniteDimensionalEJAElement
+    def _element_constructor_(self, elt):
+        r"""
+        Construct an element of this algebra from an ordered tuple.
+
+        We just apply the element constructor from each of our factors
+        to the corresponding component of the tuple, and package up
+        the result.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
+            e(0, 1) + e(1, 2)
+        """
+        m = len(self.cartesian_factors())
+        try:
+            z = tuple( self.cartesian_factors()[i](elt[i]) for i in range(m) )
+            return self._cartesian_product_of_elements(z)
+        except:
+            raise ValueError("not an element of this algebra")
+
+    Element = CartesianProductEJAElement
 
 
 FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
+
 random_eja = ConcreteEJA.random_instance
+#def random_eja(*args, **kwargs):
+#    from sage.categories.cartesian_product import cartesian_product
+#    J1 = HadamardEJA(1, **kwargs)
+#    J2 = RealSymmetricEJA(2, **kwargs)
+#    J =  cartesian_product([J1,J2])
+#    return J