]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: initialize CartesianProductEJA as an EJA.
[sage.d.git] / mjo / eja / eja_algebra.py
index eca279f68156ef1cd8e407f2f8ad25661af1e517..814f357c140e0e535e73071838ed445e9d5e6b58 100644 (file)
@@ -20,7 +20,9 @@ from itertools import repeat
 
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
 from sage.categories.magmatic_algebras import MagmaticAlgebras
-from sage.combinat.free_module import CombinatorialFreeModule
+from sage.categories.sets_cat import cartesian_product
+from sage.combinat.free_module import (CombinatorialFreeModule,
+                                       CombinatorialFreeModule_CartesianProduct)
 from sage.matrix.constructor import matrix
 from sage.matrix.matrix_space import MatrixSpace
 from sage.misc.cachefunc import cached_method
@@ -62,7 +64,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                  associative=False,
                  check_field=True,
                  check_axioms=True,
-                 prefix='e'):
+                 prefix='e',
+                 category=None):
 
         if check_field:
             if not field.is_subring(RR):
@@ -91,11 +94,12 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 raise ValueError("inner-product is not commutative")
 
 
-        category = MagmaticAlgebras(field).FiniteDimensional()
-        category = category.WithBasis().Unital()
-        if associative:
-            # Element subalgebras can take advantage of this.
-            category = category.Associative()
+        if category is None:
+            category = MagmaticAlgebras(field).FiniteDimensional()
+            category = category.WithBasis().Unital()
+            if associative:
+                # Element subalgebras can take advantage of this.
+                category = category.Associative()
 
         # Call the superclass constructor so that we can use its from_vector()
         # method to build our multiplication table.
@@ -687,7 +691,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         Why implement this for non-matrix algebras? Avoiding special
         cases for the :class:`BilinearFormEJA` pays with simplicity in
         its own right. But mainly, we would like to be able to assume
-        that elements of a :class:`DirectSumEJA` can be displayed
+        that elements of a :class:`CartesianProductEJA` can be displayed
         nicely, without having to have special classes for direct sums
         one of whose components was a matrix algebra.
 
@@ -737,7 +741,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         if self.is_trivial():
             return MatrixSpace(self.base_ring(), 0)
         else:
-            return self._matrix_basis[0].matrix_space()
+            return self.matrix_basis()[0].parent()
 
 
     @cached_method
@@ -750,23 +754,57 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: from mjo.eja.eja_algebra import (HadamardEJA,
             ....:                                  random_eja)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        We can compute unit element in the Hadamard EJA::
+
+            sage: J = HadamardEJA(5)
+            sage: J.one()
+            e0 + e1 + e2 + e3 + e4
+
+        The unit element in the Hadamard EJA is inherited in the
+        subalgebras generated by its elements::
 
             sage: J = HadamardEJA(5)
             sage: J.one()
             e0 + e1 + e2 + e3 + e4
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A.one()
+            f0
+            sage: A.one().superalgebra_element()
+            e0 + e1 + e2 + e3 + e4
 
         TESTS:
 
-        The identity element acts like the identity::
+        The identity element acts like the identity, regardless of
+        whether or not we orthonormalize::
 
             sage: set_random_seed()
             sage: J = random_eja()
             sage: x = J.random_element()
             sage: J.one()*x == x and x*J.one() == x
             True
+            sage: A = x.subalgebra_generated_by()
+            sage: y = A.random_element()
+            sage: A.one()*y == y and y*A.one() == y
+            True
 
-        The matrix of the unit element's operator is the identity::
+        ::
+
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: x = J.random_element()
+            sage: J.one()*x == x and x*J.one() == x
+            True
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: y = A.random_element()
+            sage: A.one()*y == y and y*A.one() == y
+            True
+
+        The matrix of the unit element's operator is the identity,
+        regardless of the base field and whether or not we
+        orthonormalize::
 
             sage: set_random_seed()
             sage: J = random_eja()
@@ -774,6 +812,27 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: expected = matrix.identity(J.base_ring(), J.dimension())
             sage: actual == expected
             True
+            sage: x = J.random_element()
+            sage: A = x.subalgebra_generated_by()
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
+            sage: actual == expected
+            True
+
+        ::
+
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: actual = J.one().operator().matrix()
+            sage: expected = matrix.identity(J.base_ring(), J.dimension())
+            sage: actual == expected
+            True
+            sage: x = J.random_element()
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
+            sage: actual == expected
+            True
 
         Ensure that the cached unit element (often precomputed by
         hand) agrees with the computed one::
@@ -785,6 +844,15 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: J.one() == cached
             True
 
+        ::
+
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: cached = J.one()
+            sage: J.one.clear_cache()
+            sage: J.one() == cached
+            True
+
         """
         # We can brute-force compute the matrices of the operators
         # that correspond to the basis elements of this algebra.
@@ -1037,6 +1105,21 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         r"""
         The `r` polynomial coefficients of the "characteristic polynomial
         of" function.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS:
+
+        The theory shows that these are all homogeneous polynomials of
+        a known degree::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
+            True
+
         """
         n = self.dimension()
         R = self.coordinate_polynomial_ring()
@@ -1072,10 +1155,17 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         # The theory says that only the first "r" coefficients are
         # nonzero, and they actually live in the original polynomial
-        # ring and not the fraction field. We negate them because
-        # in the actual characteristic polynomial, they get moved
-        # to the other side where x^r lives.
-        return -A_rref.solve_right(E*b).change_ring(R)[:r]
+        # ring and not the fraction field. We negate them because in
+        # the actual characteristic polynomial, they get moved to the
+        # other side where x^r lives. We don't bother to trim A_rref
+        # down to a square matrix and solve the resulting system,
+        # because the upper-left r-by-r portion of A_rref is
+        # guaranteed to be the identity matrix, so e.g.
+        #
+        #   A_rref.solve_right(Y)
+        #
+        # would just be returning Y.
+        return (-E*b)[:r].change_ring(R)
 
     @cached_method
     def rank(self):
@@ -1136,7 +1226,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
             sage: set_random_seed()    # long time
             sage: J = random_eja()     # long time
-            sage: caches = J.rank()    # long time
+            sage: cached = J.rank()    # long time
             sage: J.rank.clear_cache() # long time
             sage: J.rank() == cached   # long time
             True
@@ -1201,6 +1291,7 @@ class RationalBasisEJA(FiniteDimensionalEJA):
             if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
                 raise TypeError("basis not rational")
 
+        self._rational_algebra = None
         if field is not QQ:
             # There's no point in constructing the extra algebra if this
             # one is already rational.
@@ -1602,6 +1693,38 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
 
 
 class ComplexMatrixEJA(MatrixEJA):
+    # A manual dictionary-cache for the complex_extension() method,
+    # since apparently @classmethods can't also be @cached_methods.
+    _complex_extension = {}
+
+    @classmethod
+    def complex_extension(cls,field):
+        r"""
+        The complex field that we embed/unembed, as an extension
+        of the given ``field``.
+        """
+        if field in cls._complex_extension:
+            return cls._complex_extension[field]
+
+        # Sage doesn't know how to adjoin the complex "i" (the root of
+        # x^2 + 1) to a field in a general way. Here, we just enumerate
+        # all of the cases that I have cared to support so far.
+        if field is AA:
+            # Sage doesn't know how to embed AA into QQbar, i.e. how
+            # to adjoin sqrt(-1) to AA.
+            F = QQbar
+        elif not field.is_exact():
+            # RDF or RR
+            F = field.complex_field()
+        else:
+            # Works for QQ and... maybe some other fields.
+            R = PolynomialRing(field, 'z')
+            z = R.gen()
+            F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
+
+        cls._complex_extension[field] = F
+        return F
+
     @staticmethod
     def dimension_over_reals():
         return 2
@@ -1656,9 +1779,10 @@ class ComplexMatrixEJA(MatrixEJA):
 
         blocks = []
         for z in M.list():
-            a = z.list()[0] # real part, I guess
-            b = z.list()[1] # imag part, I guess
-            blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
+            a = z.real()
+            b = z.imag()
+            blocks.append(matrix(field, 2, [ [ a, b],
+                                             [-b, a] ]))
 
         return matrix.block(field, n, blocks)
 
@@ -1697,26 +1821,7 @@ class ComplexMatrixEJA(MatrixEJA):
         super(ComplexMatrixEJA,cls).real_unembed(M)
         n = ZZ(M.nrows())
         d = cls.dimension_over_reals()
-
-        # If "M" was normalized, its base ring might have roots
-        # adjoined and they can stick around after unembedding.
-        field = M.base_ring()
-        R = PolynomialRing(field, 'z')
-        z = R.gen()
-
-        # Sage doesn't know how to adjoin the complex "i" (the root of
-        # x^2 + 1) to a field in a general way. Here, we just enumerate
-        # all of the cases that I have cared to support so far.
-        if field is AA:
-            # Sage doesn't know how to embed AA into QQbar, i.e. how
-            # to adjoin sqrt(-1) to AA.
-            F = QQbar
-        elif not field.is_exact():
-            # RDF or RR
-            F = field.complex_field()
-        else:
-            # Works for QQ and... maybe some other fields.
-            F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
+        F = cls.complex_extension(M.base_ring())
         i = F.gen()
 
         # Go top-left to bottom-right (reading order), converting every
@@ -1812,7 +1917,6 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
-            sage: field = QuadraticField(2, 'sqrt2')
             sage: B = ComplexHermitianEJA._denormalized_basis(n)
             sage: all( M.is_symmetric() for M in  B)
             True
@@ -1830,18 +1934,27 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
         #   * The diagonal will (as a result) be real.
         #
         S = []
+        Eij = matrix.zero(F,n)
         for i in range(n):
             for j in range(i+1):
-                Eij = matrix(F, n, lambda k,l: k==i and l==j)
+                # "build" E_ij
+                Eij[i,j] = 1
                 if i == j:
                     Sij = cls.real_embed(Eij)
                     S.append(Sij)
                 else:
                     # The second one has a minus because it's conjugated.
-                    Sij_real = cls.real_embed(Eij + Eij.transpose())
+                    Eij[j,i] = 1 # Eij = Eij + Eij.transpose()
+                    Sij_real = cls.real_embed(Eij)
                     S.append(Sij_real)
-                    Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
+                    # Eij = I*Eij - I*Eij.transpose()
+                    Eij[i,j] = I
+                    Eij[j,i] = -I
+                    Sij_imag = cls.real_embed(Eij)
                     S.append(Sij_imag)
+                    Eij[j,i] = 0
+                # "erase" E_ij
+                Eij[i,j] = 0
 
         # Since we embedded these, we can drop back to the "field" that we
         # started with instead of the complex extension "F".
@@ -1877,6 +1990,25 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
         return cls(n, **kwargs)
 
 class QuaternionMatrixEJA(MatrixEJA):
+
+    # A manual dictionary-cache for the quaternion_extension() method,
+    # since apparently @classmethods can't also be @cached_methods.
+    _quaternion_extension = {}
+
+    @classmethod
+    def quaternion_extension(cls,field):
+        r"""
+        The quaternion field that we embed/unembed, as an extension
+        of the given ``field``.
+        """
+        if field in cls._quaternion_extension:
+            return cls._quaternion_extension[field]
+
+        Q = QuaternionAlgebra(field,-1,-1)
+
+        cls._quaternion_extension[field] = Q
+        return Q
+
     @staticmethod
     def dimension_over_reals():
         return 4
@@ -1981,8 +2113,7 @@ class QuaternionMatrixEJA(MatrixEJA):
 
         # Use the base ring of the matrix to ensure that its entries can be
         # multiplied by elements of the quaternion algebra.
-        field = M.base_ring()
-        Q = QuaternionAlgebra(field,-1,-1)
+        Q = cls.quaternion_extension(M.base_ring())
         i,j,k = Q.gens()
 
         # Go top-left to bottom-right (reading order), converting every
@@ -2097,23 +2228,39 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
         #   * The diagonal will (as a result) be real.
         #
         S = []
+        Eij = matrix.zero(Q,n)
         for i in range(n):
             for j in range(i+1):
-                Eij = matrix(Q, n, lambda k,l: k==i and l==j)
+                # "build" E_ij
+                Eij[i,j] = 1
                 if i == j:
                     Sij = cls.real_embed(Eij)
                     S.append(Sij)
                 else:
                     # The second, third, and fourth ones have a minus
                     # because they're conjugated.
-                    Sij_real = cls.real_embed(Eij + Eij.transpose())
+                    # Eij = Eij + Eij.transpose()
+                    Eij[j,i] = 1
+                    Sij_real = cls.real_embed(Eij)
                     S.append(Sij_real)
-                    Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
+                    # Eij = I*(Eij - Eij.transpose())
+                    Eij[i,j] = I
+                    Eij[j,i] = -I
+                    Sij_I = cls.real_embed(Eij)
                     S.append(Sij_I)
-                    Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
+                    # Eij = J*(Eij - Eij.transpose())
+                    Eij[i,j] = J
+                    Eij[j,i] = -J
+                    Sij_J = cls.real_embed(Eij)
                     S.append(Sij_J)
-                    Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
+                    # Eij = K*(Eij - Eij.transpose())
+                    Eij[i,j] = K
+                    Eij[j,i] = -K
+                    Sij_K = cls.real_embed(Eij)
                     S.append(Sij_K)
+                    Eij[j,i] = 0
+                # "erase" E_ij
+                Eij[i,j] = 0
 
         # Since we embedded these, we can drop back to the "field" that we
         # started with instead of the quaternion algebra "Q".
@@ -2531,100 +2678,312 @@ class TrivialEJA(ConcreteEJA):
         # inappropriate for us.
         return cls(**kwargs)
 
-# class DirectSumEJA(ConcreteEJA):
-#     r"""
-#     The external (orthogonal) direct sum of two other Euclidean Jordan
-#     algebras. Essentially the Cartesian product of its two factors.
-#     Every Euclidean Jordan algebra decomposes into an orthogonal
-#     direct sum of simple Euclidean Jordan algebras, so no generality
-#     is lost by providing only this construction.
-
-#     SETUP::
-
-#         sage: from mjo.eja.eja_algebra import (random_eja,
-#         ....:                                  HadamardEJA,
-#         ....:                                  RealSymmetricEJA,
-#         ....:                                  DirectSumEJA)
-
-#     EXAMPLES::
-
-#         sage: J1 = HadamardEJA(2)
-#         sage: J2 = RealSymmetricEJA(3)
-#         sage: J = DirectSumEJA(J1,J2)
-#         sage: J.dimension()
-#         8
-#         sage: J.rank()
-#         5
-
-#     TESTS:
-
-#     The external direct sum construction is only valid when the two factors
-#     have the same base ring; an error is raised otherwise::
-
-#         sage: set_random_seed()
-#         sage: J1 = random_eja(field=AA)
-#         sage: J2 = random_eja(field=QQ,orthonormalize=False)
-#         sage: J = DirectSumEJA(J1,J2)
-#         Traceback (most recent call last):
-#         ...
-#         ValueError: algebras must share the same base field
-
-#     """
-#     def __init__(self, J1, J2, **kwargs):
-#         if J1.base_ring() != J2.base_ring():
-#             raise ValueError("algebras must share the same base field")
-#         field = J1.base_ring()
-
-#         self._factors = (J1, J2)
-#         n1 = J1.dimension()
-#         n2 = J2.dimension()
-#         n = n1+n2
-#         V = VectorSpace(field, n)
-#         mult_table = [ [ V.zero() for j in range(i+1) ]
-#                        for i in range(n) ]
-#         for i in range(n1):
-#             for j in range(i+1):
-#                 p = (J1.monomial(i)*J1.monomial(j)).to_vector()
-#                 mult_table[i][j] = V(p.list() + [field.zero()]*n2)
-
-#         for i in range(n2):
-#             for j in range(i+1):
-#                 p = (J2.monomial(i)*J2.monomial(j)).to_vector()
-#                 mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
-
-#         # TODO: build the IP table here from the two constituent IP
-#         # matrices (it'll be block diagonal, I think).
-#         ip_table = [ [ field.zero() for j in range(i+1) ]
-#                        for i in range(n) ]
-#         super(DirectSumEJA, self).__init__(field,
-#                                            mult_table,
-#                                            ip_table,
-#                                            check_axioms=False,
-#                                            **kwargs)
-#         self.rank.set_cache(J1.rank() + J2.rank())
-
-
-#     def factors(self):
-#         r"""
-#         Return the pair of this algebra's factors.
 
-#         SETUP::
+class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
+                          FiniteDimensionalEJA):
+    r"""
+    The external (orthogonal) direct sum of two or more Euclidean
+    Jordan algebras. Every Euclidean Jordan algebra decomposes into an
+    orthogonal direct sum of simple Euclidean Jordan algebras which is
+    then isometric to a Cartesian product, so no generality is lost by
+    providing only this construction.
 
-#             sage: from mjo.eja.eja_algebra import (HadamardEJA,
-#             ....:                                  JordanSpinEJA,
-#             ....:                                  DirectSumEJA)
+    SETUP::
 
-#         EXAMPLES::
+        sage: from mjo.eja.eja_algebra import (CartesianProductEJA,
+        ....:                                  HadamardEJA,
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
 
-#             sage: J1 = HadamardEJA(2, field=QQ)
-#             sage: J2 = JordanSpinEJA(3, field=QQ)
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: J.factors()
-#             (Euclidean Jordan algebra of dimension 2 over Rational Field,
-#              Euclidean Jordan algebra of dimension 3 over Rational Field)
+    EXAMPLES:
+
+    The Jordan product is inherited from our factors and implemented by
+    our CombinatorialFreeModule Cartesian product superclass::
+
+        sage: set_random_seed()
+        sage: J1 = HadamardEJA(2)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: J = cartesian_product([J1,J2])
+        sage: x,y = J.random_elements(2)
+        sage: x*y in J
+        True
+
+    The ability to retrieve the original factors is implemented by our
+    CombinatorialFreeModule Cartesian product superclass::
+
+        sage: J1 = HadamardEJA(2, field=QQ)
+        sage: J2 = JordanSpinEJA(3, field=QQ)
+        sage: J = cartesian_product([J1,J2])
+        sage: J.cartesian_factors()
+        (Euclidean Jordan algebra of dimension 2 over Rational Field,
+         Euclidean Jordan algebra of dimension 3 over Rational Field)
+
+    You can provide more than two factors::
+
+        sage: J1 = HadamardEJA(2)
+        sage: J2 = JordanSpinEJA(3)
+        sage: J3 = RealSymmetricEJA(3)
+        sage: cartesian_product([J1,J2,J3])
+        Euclidean Jordan algebra of dimension 2 over Algebraic Real
+        Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
+        Real Field (+) Euclidean Jordan algebra of dimension 6 over
+        Algebraic Real Field
+
+    TESTS:
+
+    All factors must share the same base field::
+
+        sage: J1 = HadamardEJA(2, field=QQ)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: CartesianProductEJA((J1,J2))
+        Traceback (most recent call last):
+        ...
+        ValueError: all factors must share the same base field
+
+    """
+    def __init__(self, modules, **kwargs):
+        CombinatorialFreeModule_CartesianProduct.__init__(self,
+                                                          modules,
+                                                          **kwargs)
+        field = modules[0].base_ring()
+        if not all( J.base_ring() == field for J in modules ):
+            raise ValueError("all factors must share the same base field")
+
+        basis = tuple( b.to_vector().column() for b in self.basis() )
+
+        # Define jordan/inner products that operate on the basis.
+        def jordan_product(x_mat,y_mat):
+            x = self.from_vector(_mat2vec(x_mat))
+            y = self.from_vector(_mat2vec(y_mat))
+            return self.cartesian_jordan_product(x,y).to_vector().column()
+
+        def inner_product(x_mat, y_mat):
+            x = self.from_vector(_mat2vec(x_mat))
+            y = self.from_vector(_mat2vec(y_mat))
+            return self.cartesian_inner_product(x,y)
+
+        FiniteDimensionalEJA.__init__(self,
+                                      basis,
+                                      jordan_product,
+                                      inner_product,
+                                      field=field,
+                                      orthonormalize=False,
+                                      check_field=False,
+                                      check_axioms=False,
+                                      category=self.category())
+        # TODO:
+        #
+        # Initialize the FDEJA class, too. Does this override the
+        # initialization that we did for the
+        # CombinatorialFreeModule_CartesianProduct class? If not, we
+        # will probably have to duplicate some of the work (i.e. one
+        # of the constructors).  Since the CartesianProduct one is
+        # smaller, that makes the most sense to copy/paste if it comes
+        # down to that.
+        #
+
+        self.rank.set_cache(sum(J.rank() for J in modules))
+
+    @cached_method
+    def cartesian_projection(self, i):
+        r"""
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(2)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.cartesian_projection(0)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [1 0 0 0 0]
+            [0 1 0 0 0]
+            Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field (+) Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field
+            sage: J.cartesian_projection(1)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [0 0 1 0 0]
+            [0 0 0 1 0]
+            [0 0 0 0 1]
+            Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field (+) Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
+            Real Field
+
+        TESTS:
+
+        The answer never changes::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: P0 = J.cartesian_projection(0)
+            sage: P1 = J.cartesian_projection(0)
+            sage: P0 == P1
+            True
+
+        """
+        Ji = self.cartesian_factors()[i]
+        # We reimplement the CombinatorialFreeModule superclass method
+        # because if we don't, something gets messed up with the caching
+        # and the answer changes the second time you run it. See the TESTS.
+        Pi = self._module_morphism(lambda j_t: Ji.monomial(j_t[1])
+                                   if i == j_t[0] else Ji.zero(),
+                                   codomain=Ji)
+        return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
+
+    @cached_method
+    def cartesian_embedding(self, i):
+        r"""
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(2)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.cartesian_embedding(0)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [1 0]
+            [0 1]
+            [0 0]
+            [0 0]
+            [0 0]
+            Domain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field (+) Euclidean Jordan algebra of
+            dimension 3 over Algebraic Real Field
+            sage: J.cartesian_embedding(1)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [0 0 0]
+            [0 0 0]
+            [1 0 0]
+            [0 1 0]
+            [0 0 1]
+            Domain: Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field (+) Euclidean Jordan algebra of
+            dimension 3 over Algebraic Real Field
+
+        TESTS:
+
+        The answer never changes::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: E0 = J.cartesian_embedding(0)
+            sage: E1 = J.cartesian_embedding(0)
+            sage: E0 == E1
+            True
+
+        """
+        Ji = self.cartesian_factors()[i]
+        # We reimplement the CombinatorialFreeModule superclass method
+        # because if we don't, something gets messed up with the caching
+        # and the answer changes the second time you run it. See the TESTS.
+        Ei = Ji._module_morphism(lambda t: self.monomial((i, t)), codomain=self)
+        return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
+
+
+    def cartesian_jordan_product(self, x, y):
+        r"""
+        The componentwise Jordan product.
+
+        We project ``x`` and ``y`` onto our factors, and add up the
+        Jordan products from the subalgebras. This may still be useful
+        after (if) the default Jordan product in the Cartesian product
+        algebra is overridden.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  JordanSpinEJA)
+
+        EXAMPLE::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = JordanSpinEJA(3)
+            sage: J = cartesian_product([J1,J2])
+            sage: x1 = J1.from_vector(vector(QQ,(1,2,1)))
+            sage: y1 = J1.from_vector(vector(QQ,(1,0,2)))
+            sage: x2 = J2.from_vector(vector(QQ,(1,2,3)))
+            sage: y2 = J2.from_vector(vector(QQ,(1,1,1)))
+            sage: z1 = J.from_vector(vector(QQ,(1,2,1,1,2,3)))
+            sage: z2 = J.from_vector(vector(QQ,(1,0,2,1,1,1)))
+            sage: (x1*y1).to_vector()
+            (1, 0, 2)
+            sage: (x2*y2).to_vector()
+            (6, 3, 4)
+            sage: J.cartesian_jordan_product(z1,z2).to_vector()
+            (1, 0, 2, 6, 3, 4)
+
+        """
+        m = len(self.cartesian_factors())
+        projections = ( self.cartesian_projection(i) for i in range(m) )
+        products = ( P(x)*P(y) for P in projections )
+        return self._cartesian_product_of_elements(tuple(products))
+
+    def cartesian_inner_product(self, x, y):
+        r"""
+        The standard componentwise Cartesian inner-product.
+
+        We project ``x`` and ``y`` onto our factors, and add up the
+        inner-products from the subalgebras. This may still be useful
+        after (if) the default inner product in the Cartesian product
+        algebra is overridden.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  QuaternionHermitianEJA)
+
+        EXAMPLE::
+
+            sage: J1 = HadamardEJA(3,field=QQ)
+            sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J = cartesian_product([J1,J2])
+            sage: x1 = J1.one()
+            sage: x2 = x1
+            sage: y1 = J2.one()
+            sage: y2 = y1
+            sage: x1.inner_product(x2)
+            3
+            sage: y1.inner_product(y2)
+            2
+            sage: z1 = J._cartesian_product_of_elements((x1,y1))
+            sage: z2 = J._cartesian_product_of_elements((x2,y2))
+            sage: J.cartesian_inner_product(z1,z2)
+            5
+
+        """
+        m = len(self.cartesian_factors())
+        projections = ( self.cartesian_projection(i) for i in range(m) )
+        return sum( P(x).inner_product(P(y)) for P in projections )
+
+
+FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
 
-#         """
-#         return self._factors
 
 #     def projections(self):
 #         r"""
@@ -2730,44 +3089,6 @@ class TrivialEJA(ConcreteEJA):
 #         iota_right = FiniteDimensionalEJAOperator(J2,self,I2)
 #         return (iota_left, iota_right)
 
-#     def inner_product(self, x, y):
-#         r"""
-#         The standard Cartesian inner-product.
-
-#         We project ``x`` and ``y`` onto our factors, and add up the
-#         inner-products from the subalgebras.
-
-#         SETUP::
-
-
-#             sage: from mjo.eja.eja_algebra import (HadamardEJA,
-#             ....:                                  QuaternionHermitianEJA,
-#             ....:                                  DirectSumEJA)
-
-#         EXAMPLE::
-
-#             sage: J1 = HadamardEJA(3,field=QQ)
-#             sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: x1 = J1.one()
-#             sage: x2 = x1
-#             sage: y1 = J2.one()
-#             sage: y2 = y1
-#             sage: x1.inner_product(x2)
-#             3
-#             sage: y1.inner_product(y2)
-#             2
-#             sage: J.one().inner_product(J.one())
-#             5
-
-#         """
-#         (pi_left, pi_right) = self.projections()
-#         x1 = pi_left(x)
-#         x2 = pi_right(x)
-#         y1 = pi_left(y)
-#         y2 = pi_right(y)
-
-#         return (x1.inner_product(y1) + x2.inner_product(y2))