]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: add an ungodly hack to get fast charpolys back.
[sage.d.git] / mjo / eja / eja_algebra.py
index cd39704407deda564f857677a3439bb382f2bcb7..698aa37e2d6698c680ec51d3db1b272e16b6df4d 100644 (file)
@@ -5,70 +5,39 @@ are used in optimization, and have some additional nice methods beyond
 what can be supported in a general Jordan Algebra.
 """
 
-
-
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
-from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis
-from sage.functions.other import sqrt
+from sage.categories.magmatic_algebras import MagmaticAlgebras
+from sage.combinat.free_module import CombinatorialFreeModule
 from sage.matrix.constructor import matrix
+from sage.matrix.matrix_space import MatrixSpace
 from sage.misc.cachefunc import cached_method
 from sage.misc.prandom import choice
-from sage.modules.free_module import VectorSpace
-from sage.modules.free_module_element import vector
+from sage.misc.table import table
+from sage.modules.free_module import FreeModule, VectorSpace
 from sage.rings.integer_ring import ZZ
-from sage.rings.number_field.number_field import QuadraticField
+from sage.rings.number_field.number_field import NumberField, QuadraticField
 from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
 from sage.rings.rational_field import QQ
+from sage.rings.real_lazy import CLF, RLF
 from sage.structure.element import is_Matrix
-from sage.structure.category_object import normalize_names
-
-from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
 
+from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
+from mjo.eja.eja_utils import _mat2vec
 
-class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
-    @staticmethod
-    def __classcall_private__(cls,
-                              field,
-                              mult_table,
-                              rank,
-                              names='e',
-                              assume_associative=False,
-                              category=None,
-                              natural_basis=None):
-        n = len(mult_table)
-        mult_table = [b.base_extend(field) for b in mult_table]
-        for b in mult_table:
-            b.set_immutable()
-            if not (is_Matrix(b) and b.dimensions() == (n, n)):
-                raise ValueError("input is not a multiplication table")
-        mult_table = tuple(mult_table)
-
-        cat = FiniteDimensionalAlgebrasWithBasis(field)
-        cat.or_subcategory(category)
-        if assume_associative:
-            cat = cat.Associative()
-
-        names = normalize_names(n, names)
-
-        fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
-        return fda.__classcall__(cls,
-                                 field,
-                                 mult_table,
-                                 rank=rank,
-                                 assume_associative=assume_associative,
-                                 names=names,
-                                 category=cat,
-                                 natural_basis=natural_basis)
-
+class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
+    # This is an ugly hack needed to prevent the category framework
+    # from implementing a coercion from our base ring (e.g. the
+    # rationals) into the algebra. First of all -- such a coercion is
+    # nonsense to begin with. But more importantly, it tries to do so
+    # in the category of rings, and since our algebras aren't
+    # associative they generally won't be rings.
+    _no_generic_basering_coercion = True
 
     def __init__(self,
                  field,
                  mult_table,
                  rank,
-                 names='e',
-                 assume_associative=False,
+                 prefix='e',
                  category=None,
                  natural_basis=None):
         """
@@ -90,12 +59,100 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         """
         self._rank = rank
         self._natural_basis = natural_basis
-        self._multiplication_table = mult_table
+
+        # TODO: HACK for the charpoly.. needs redesign badly.
+        self._basis_normalizers = None
+
+        if category is None:
+            category = MagmaticAlgebras(field).FiniteDimensional()
+            category = category.WithBasis().Unital()
+
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
-                     mult_table,
-                     names=names,
+                     range(len(mult_table)),
+                     prefix=prefix,
                      category=category)
+        self.print_options(bracket='')
+
+        # The multiplication table we're given is necessarily in terms
+        # of vectors, because we don't have an algebra yet for
+        # anything to be an element of. However, it's faster in the
+        # long run to have the multiplication table be in terms of
+        # algebra elements. We do this after calling the superclass
+        # constructor so that from_vector() knows what to do.
+        self._multiplication_table = [ map(lambda x: self.from_vector(x), ls)
+                                       for ls in mult_table ]
+
+
+    def _element_constructor_(self, elt):
+        """
+        Construct an element of this algebra from its natural
+        representation.
+
+        This gets called only after the parent element _call_ method
+        fails to find a coercion for the argument.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealCartesianProductEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES:
+
+        The identity in `S^n` is converted to the identity in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: I = matrix.identity(QQ,3)
+            sage: J(I) == J.one()
+            True
+
+        This skew-symmetric matrix can't be represented in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: A = matrix(QQ,3, lambda i,j: i-j)
+            sage: J(A)
+            Traceback (most recent call last):
+            ...
+            ArithmeticError: vector is not in free module
+
+        TESTS:
+
+        Ensure that we can convert any element of the two non-matrix
+        simple algebras (whose natural representations are their usual
+        vector representations) back and forth faithfully::
+
+            sage: set_random_seed()
+            sage: J = RealCartesianProductEJA(5)
+            sage: x = J.random_element()
+            sage: J(x.to_vector().column()) == x
+            True
+            sage: J = JordanSpinEJA(5)
+            sage: x = J.random_element()
+            sage: J(x.to_vector().column()) == x
+            True
+
+        """
+        if elt == 0:
+            # The superclass implementation of random_element()
+            # needs to be able to coerce "0" into the algebra.
+            return self.zero()
+
+        natural_basis = self.natural_basis()
+        basis_space = natural_basis[0].matrix_space()
+        if elt not in basis_space:
+            raise ValueError("not a naturally-represented algebra element")
+
+        # Thanks for nothing! Matrix spaces aren't vector spaces in
+        # Sage, so we have to figure out its natural-basis coordinates
+        # ourselves. We use the basis space's ring instead of the
+        # element's ring because the basis space might be an algebraic
+        # closure whereas the base ring of the 3-by-3 identity matrix
+        # could be QQ instead of QQbar.
+        V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
+        W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
+        coords =  W.coordinate_vector(_mat2vec(elt))
+        return self.from_vector(coords)
 
 
     def _repr_(self):
@@ -111,14 +168,16 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         Ensure that it says what we think it says::
 
             sage: JordanSpinEJA(2, field=QQ)
-            Euclidean Jordan algebra of degree 2 over Rational Field
+            Euclidean Jordan algebra of dimension 2 over Rational Field
             sage: JordanSpinEJA(3, field=RDF)
-            Euclidean Jordan algebra of degree 3 over Real Double Field
+            Euclidean Jordan algebra of dimension 3 over Real Double Field
 
         """
-        fmt = "Euclidean Jordan algebra of degree {} over {}"
-        return fmt.format(self.degree(), self.base_ring())
+        fmt = "Euclidean Jordan algebra of dimension {} over {}"
+        return fmt.format(self.dimension(), self.base_ring())
 
+    def product_on_basis(self, i, j):
+        return self._multiplication_table[i][j]
 
     def _a_regular_element(self):
         """
@@ -157,12 +216,18 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         determinant).
         """
         z = self._a_regular_element()
-        V = self.vector_space()
-        V1 = V.span_of_basis( (z**k).vector() for k in range(self.rank()) )
+        # Don't use the parent vector space directly here in case this
+        # happens to be a subalgebra. In that case, we would be e.g.
+        # two-dimensional but span_of_basis() would expect three
+        # coordinates.
+        V = VectorSpace(self.base_ring(), self.vector_space().dimension())
+        basis = [ (z**k).to_vector() for k in range(self.rank()) ]
+        V1 = V.span_of_basis( basis )
         b =  (V1.basis() + V1.complement().basis())
         return V.span_of_basis(b)
 
 
+
     @cached_method
     def _charpoly_coeff(self, i):
         """
@@ -173,6 +238,19 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         store the trace/determinant (a_{r-1} and a_{0} respectively)
         separate from the entire characteristic polynomial.
         """
+        if self._basis_normalizers is not None:
+             # Must be a matrix class?
+             # WARNING/TODO: this whole mess is mis-designed.
+             n = self.natural_basis_space().nrows()
+             field = self.base_ring().base_ring() # yeeeeaaaahhh
+             J = self.__class__(n, field, False)
+             (_,x,_,_) = J._charpoly_matrix_system()
+             p = J._charpoly_coeff(i)
+             # p might be missing some vars, have to substitute "optionally"
+             pairs = zip(x.base_ring().gens(), self._basis_normalizers)
+             substitutions = { v: v*c for (v,c) in pairs }
+             return p.subs(substitutions)
+
         (A_of_x, x, xr, detA) = self._charpoly_matrix_system()
         R = A_of_x.base_ring()
         if i >= self.rank():
@@ -209,14 +287,40 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         r = self.rank()
         n = self.dimension()
 
-        # Construct a new algebra over a multivariate polynomial ring...
-        names = ['X' + str(i) for i in range(1,n+1)]
+        # Turn my vector space into a module so that "vectors" can
+        # have multivatiate polynomial entries.
+        names = tuple('X' + str(i) for i in range(1,n+1))
         R = PolynomialRing(self.base_ring(), names)
-        J = FiniteDimensionalEuclideanJordanAlgebra(R,
-                                                    self._multiplication_table,
-                                                    rank=r)
 
-        idmat = matrix.identity(J.base_ring(), n)
+        # Using change_ring() on the parent's vector space doesn't work
+        # here because, in a subalgebra, that vector space has a basis
+        # and change_ring() tries to bring the basis along with it. And
+        # that doesn't work unless the new ring is a PID, which it usually
+        # won't be.
+        V = FreeModule(R,n)
+
+        # Now let x = (X1,X2,...,Xn) be the vector whose entries are
+        # indeterminates...
+        x = V(names)
+
+        # And figure out the "left multiplication by x" matrix in
+        # that setting.
+        lmbx_cols = []
+        monomial_matrices = [ self.monomial(i).operator().matrix()
+                              for i in range(n) ] # don't recompute these!
+        for k in range(n):
+            ek = self.monomial(k).to_vector()
+            lmbx_cols.append(
+              sum( x[i]*(monomial_matrices[i]*ek)
+                   for i in range(n) ) )
+        Lx = matrix.column(R, lmbx_cols)
+
+        # Now we can compute powers of x "symbolically"
+        x_powers = [self.one().to_vector(), x]
+        for d in range(2, r+1):
+            x_powers.append( Lx*(x_powers[-1]) )
+
+        idmat = matrix.identity(R, n)
 
         W = self._charpoly_basis_space()
         W = W.change_ring(R.fraction_field())
@@ -236,12 +340,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         # We want the middle equivalent thing in our matrix, but use
         # the first equivalent thing instead so that we can pass in
         # standard coordinates.
-        x = J(W(R.gens()))
-        l1 = [matrix.column(W.coordinates((x**k).vector())) for k in range(r)]
-        l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)]
-        A_of_x = matrix.block(R, 1, n, (l1 + l2))
-        xr = W.coordinates((x**r).vector())
-        return (A_of_x, x, xr, A_of_x.det())
+        x_powers = [ W.coordinate_vector(xp) for xp in x_powers ]
+        l2 = [idmat.column(k-1) for k in range(r+1, n+1)]
+        A_of_x = matrix.column(R, n, (x_powers[:r] + l2))
+        return (A_of_x, x, x_powers[r], A_of_x.det())
 
 
     @cached_method
@@ -270,7 +372,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             sage: J = JordanSpinEJA(3)
             sage: p = J.characteristic_polynomial(); p
             X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
-            sage: xvec = J.one().vector()
+            sage: xvec = J.one().to_vector()
             sage: p(*xvec)
             t^2 - 2*t + 1
 
@@ -331,9 +433,66 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             True
 
         """
-        if (not x in self) or (not y in self):
-            raise TypeError("arguments must live in this algebra")
-        return x.trace_inner_product(y)
+        X = x.natural_representation()
+        Y = y.natural_representation()
+        return self.__class__.natural_inner_product(X,Y)
+
+
+    def is_trivial(self):
+        """
+        Return whether or not this algebra is trivial.
+
+        A trivial algebra contains only the zero element.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
+
+        EXAMPLES::
+
+            sage: J = ComplexHermitianEJA(3)
+            sage: J.is_trivial()
+            False
+            sage: A = J.zero().subalgebra_generated_by()
+            sage: A.is_trivial()
+            True
+
+        """
+        return self.dimension() == 0
+
+
+    def multiplication_table(self):
+        """
+        Return a visual representation of this algebra's multiplication
+        table (on basis elements).
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import JordanSpinEJA
+
+        EXAMPLES::
+
+            sage: J = JordanSpinEJA(4)
+            sage: J.multiplication_table()
+            +----++----+----+----+----+
+            | *  || e0 | e1 | e2 | e3 |
+            +====++====+====+====+====+
+            | e0 || e0 | e1 | e2 | e3 |
+            +----++----+----+----+----+
+            | e1 || e1 | e0 | 0  | 0  |
+            +----++----+----+----+----+
+            | e2 || e2 | 0  | e0 | 0  |
+            +----++----+----+----+----+
+            | e3 || e3 | 0  | 0  | e0 |
+            +----++----+----+----+----+
+
+        """
+        M = list(self._multiplication_table) # copy
+        for i in range(len(M)):
+            # M had better be "square"
+            M[i] = [self.monomial(i)] + M[i]
+        M = [["*"] + list(self.gens())] + M
+        return table(M, header_row=True, header_column=True, frame=True)
 
 
     def natural_basis(self):
@@ -358,18 +517,18 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             sage: J = RealSymmetricEJA(2)
             sage: J.basis()
-            Family (e0, e1, e2)
+            Finite family {0: e0, 1: e1, 2: e2}
             sage: J.natural_basis()
             (
-            [1 0]  [0 1]  [0 0]
-            [0 0], [1 0], [0 1]
+            [1 0]  [        0 1/2*sqrt2]  [0 0]
+            [0 0], [1/2*sqrt2         0], [0 1]
             )
 
         ::
 
             sage: J = JordanSpinEJA(2)
             sage: J.basis()
-            Family (e0, e1)
+            Finite family {0: e0, 1: e1}
             sage: J.natural_basis()
             (
             [1]  [0]
@@ -378,11 +537,107 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         """
         if self._natural_basis is None:
-            return tuple( b.vector().column() for b in self.basis() )
+            M = self.natural_basis_space()
+            return tuple( M(b.to_vector()) for b in self.basis() )
         else:
             return self._natural_basis
 
 
+    def natural_basis_space(self):
+        """
+        Return the matrix space in which this algebra's natural basis
+        elements live.
+        """
+        if self._natural_basis is None or len(self._natural_basis) == 0:
+            return MatrixSpace(self.base_ring(), self.dimension(), 1)
+        else:
+            return self._natural_basis[0].matrix_space()
+
+
+    @staticmethod
+    def natural_inner_product(X,Y):
+        """
+        Compute the inner product of two naturally-represented elements.
+
+        For example in the real symmetric matrix EJA, this will compute
+        the trace inner-product of two n-by-n symmetric matrices. The
+        default should work for the real cartesian product EJA, the
+        Jordan spin EJA, and the real symmetric matrices. The others
+        will have to be overridden.
+        """
+        return (X.conjugate_transpose()*Y).trace()
+
+
+    @cached_method
+    def one(self):
+        """
+        Return the unit element of this algebra.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: J = RealCartesianProductEJA(5)
+            sage: J.one()
+            e0 + e1 + e2 + e3 + e4
+
+        TESTS:
+
+        The identity element acts like the identity::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: J.one()*x == x and x*J.one() == x
+            True
+
+        The matrix of the unit element's operator is the identity::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: actual = J.one().operator().matrix()
+            sage: expected = matrix.identity(J.base_ring(), J.dimension())
+            sage: actual == expected
+            True
+
+        """
+        # We can brute-force compute the matrices of the operators
+        # that correspond to the basis elements of this algebra.
+        # If some linear combination of those basis elements is the
+        # algebra identity, then the same linear combination of
+        # their matrices has to be the identity matrix.
+        #
+        # Of course, matrices aren't vectors in sage, so we have to
+        # appeal to the "long vectors" isometry.
+        oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
+
+        # Now we use basis linear algebra to find the coefficients,
+        # of the matrices-as-vectors-linear-combination, which should
+        # work for the original algebra basis too.
+        A = matrix.column(self.base_ring(), oper_vecs)
+
+        # We used the isometry on the left-hand side already, but we
+        # still need to do it for the right-hand side. Recall that we
+        # wanted something that summed to the identity matrix.
+        b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
+
+        # Now if there's an identity element in the algebra, this should work.
+        coeffs = A.solve_right(b)
+        return self.linear_combination(zip(self.gens(), coeffs))
+
+
+    def random_element(self):
+        # Temporary workaround for https://trac.sagemath.org/ticket/28327
+        if self.is_trivial():
+            return self.zero()
+        else:
+            s = super(FiniteDimensionalEuclideanJordanAlgebra, self)
+            return s.random_element()
+
+
     def rank(self):
         """
         Return the rank of this EJA.
@@ -455,1189 +710,13 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             sage: J = RealSymmetricEJA(2)
             sage: J.vector_space()
-            Vector space of dimension 3 over Rational Field
+            Vector space of dimension 3 over...
 
         """
-        return self.zero().vector().parent().ambient_vector_space()
-
-
-    class Element(FiniteDimensionalAlgebraElement):
-        """
-        An element of a Euclidean Jordan algebra.
-        """
-
-        def __dir__(self):
-            """
-            Oh man, I should not be doing this. This hides the "disabled"
-            methods ``left_matrix`` and ``matrix`` from introspection;
-            in particular it removes them from tab-completion.
-            """
-            return filter(lambda s: s not in ['left_matrix', 'matrix'],
-                          dir(self.__class__) )
-
-
-        def __init__(self, A, elt=None):
-            """
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-
-            EXAMPLES:
-
-            The identity in `S^n` is converted to the identity in the EJA::
-
-                sage: J = RealSymmetricEJA(3)
-                sage: I = matrix.identity(QQ,3)
-                sage: J(I) == J.one()
-                True
-
-            This skew-symmetric matrix can't be represented in the EJA::
-
-                sage: J = RealSymmetricEJA(3)
-                sage: A = matrix(QQ,3, lambda i,j: i-j)
-                sage: J(A)
-                Traceback (most recent call last):
-                ...
-                ArithmeticError: vector is not in free module
-
-            """
-            # Goal: if we're given a matrix, and if it lives in our
-            # parent algebra's "natural ambient space," convert it
-            # into an algebra element.
-            #
-            # The catch is, we make a recursive call after converting
-            # the given matrix into a vector that lives in the algebra.
-            # This we need to try the parent class initializer first,
-            # to avoid recursing forever if we're given something that
-            # already fits into the algebra, but also happens to live
-            # in the parent's "natural ambient space" (this happens with
-            # vectors in R^n).
-            try:
-                FiniteDimensionalAlgebraElement.__init__(self, A, elt)
-            except ValueError:
-                natural_basis = A.natural_basis()
-                if elt in natural_basis[0].matrix_space():
-                    # Thanks for nothing! Matrix spaces aren't vector
-                    # spaces in Sage, so we have to figure out its
-                    # natural-basis coordinates ourselves.
-                    V = VectorSpace(elt.base_ring(), elt.nrows()**2)
-                    W = V.span( _mat2vec(s) for s in natural_basis )
-                    coords =  W.coordinates(_mat2vec(elt))
-                    FiniteDimensionalAlgebraElement.__init__(self, A, coords)
-
-        def __pow__(self, n):
-            """
-            Return ``self`` raised to the power ``n``.
-
-            Jordan algebras are always power-associative; see for
-            example Faraut and Koranyi, Proposition II.1.2 (ii).
-
-            .. WARNING:
-
-                We have to override this because our superclass uses row vectors
-                instead of column vectors! We, on the other hand, assume column
-                vectors everywhere.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            EXAMPLES::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.operator()(x) == (x^2)
-                True
-
-            A few examples of power-associativity::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x*(x*x)*(x*x) == x^5
-                True
-                sage: (x*x)*(x*x*x) == x^5
-                True
-
-            We also know that powers operator-commute (Koecher, Chapter
-            III, Corollary 1)::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: m = ZZ.random_element(0,10)
-                sage: n = ZZ.random_element(0,10)
-                sage: Lxm = (x^m).operator()
-                sage: Lxn = (x^n).operator()
-                sage: Lxm*Lxn == Lxn*Lxm
-                True
-
-            """
-            if n == 0:
-                return self.parent().one()
-            elif n == 1:
-                return self
-            else:
-                return (self.operator()**(n-1))(self)
-
-
-        def apply_univariate_polynomial(self, p):
-            """
-            Apply the univariate polynomial ``p`` to this element.
-
-            A priori, SageMath won't allow us to apply a univariate
-            polynomial to an element of an EJA, because we don't know
-            that EJAs are rings (they are usually not associative). Of
-            course, we know that EJAs are power-associative, so the
-            operation is ultimately kosher. This function sidesteps
-            the CAS to get the answer we want and expect.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: R = PolynomialRing(QQ, 't')
-                sage: t = R.gen(0)
-                sage: p = t^4 - t^3 + 5*t - 2
-                sage: J = RealCartesianProductEJA(5)
-                sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
-                True
-
-            TESTS:
-
-            We should always get back an element of the algebra::
-
-                sage: set_random_seed()
-                sage: p = PolynomialRing(QQ, 't').random_element()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: x.apply_univariate_polynomial(p) in J
-                True
-
-            """
-            if len(p.variables()) > 1:
-                raise ValueError("not a univariate polynomial")
-            P = self.parent()
-            R = P.base_ring()
-            # Convert the coeficcients to the parent's base ring,
-            # because a priori they might live in an (unnecessarily)
-            # larger ring for which P.sum() would fail below.
-            cs = [ R(c) for c in p.coefficients(sparse=False) ]
-            return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
-
-
-        def characteristic_polynomial(self):
-            """
-            Return the characteristic polynomial of this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
-
-            EXAMPLES:
-
-            The rank of `R^3` is three, and the minimal polynomial of
-            the identity element is `(t-1)` from which it follows that
-            the characteristic polynomial should be `(t-1)^3`::
-
-                sage: J = RealCartesianProductEJA(3)
-                sage: J.one().characteristic_polynomial()
-                t^3 - 3*t^2 + 3*t - 1
-
-            Likewise, the characteristic of the zero element in the
-            rank-three algebra `R^{n}` should be `t^{3}`::
-
-                sage: J = RealCartesianProductEJA(3)
-                sage: J.zero().characteristic_polynomial()
-                t^3
-
-            The characteristic polynomial of an element should evaluate
-            to zero on that element::
-
-                sage: set_random_seed()
-                sage: x = RealCartesianProductEJA(3).random_element()
-                sage: p = x.characteristic_polynomial()
-                sage: x.apply_univariate_polynomial(p)
-                0
-
-            """
-            p = self.parent().characteristic_polynomial()
-            return p(*self.vector())
-
-
-        def inner_product(self, other):
-            """
-            Return the parent algebra's inner product of myself and ``other``.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (
-                ....:   ComplexHermitianEJA,
-                ....:   JordanSpinEJA,
-                ....:   QuaternionHermitianEJA,
-                ....:   RealSymmetricEJA,
-                ....:   random_eja)
-
-            EXAMPLES:
-
-            The inner product in the Jordan spin algebra is the usual
-            inner product on `R^n` (this example only works because the
-            basis for the Jordan algebra is the standard basis in `R^n`)::
-
-                sage: J = JordanSpinEJA(3)
-                sage: x = vector(QQ,[1,2,3])
-                sage: y = vector(QQ,[4,5,6])
-                sage: x.inner_product(y)
-                32
-                sage: J(x).inner_product(J(y))
-                32
-
-            The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
-            multiplication is the usual matrix multiplication in `S^n`,
-            so the inner product of the identity matrix with itself
-            should be the `n`::
-
-                sage: J = RealSymmetricEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            Likewise, the inner product on `C^n` is `<X,Y> =
-            Re(trace(X*Y))`, where we must necessarily take the real
-            part because the product of Hermitian matrices may not be
-            Hermitian::
-
-                sage: J = ComplexHermitianEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            Ditto for the quaternions::
-
-                sage: J = QuaternionHermitianEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            TESTS:
-
-            Ensure that we can always compute an inner product, and that
-            it gives us back a real number::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: x.inner_product(y) in RR
-                True
-
-            """
-            P = self.parent()
-            if not other in P:
-                raise TypeError("'other' must live in the same algebra")
-
-            return P.inner_product(self, other)
-
-
-        def operator_commutes_with(self, other):
-            """
-            Return whether or not this element operator-commutes
-            with ``other``.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            EXAMPLES:
-
-            The definition of a Jordan algebra says that any element
-            operator-commutes with its square::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.operator_commutes_with(x^2)
-                True
-
-            TESTS:
-
-            Test Lemma 1 from Chapter III of Koecher::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: u = J.random_element()
-                sage: v = J.random_element()
-                sage: lhs = u.operator_commutes_with(u*v)
-                sage: rhs = v.operator_commutes_with(u^2)
-                sage: lhs == rhs
-                True
-
-            Test the first polarization identity from my notes, Koecher Chapter
-            III, or from Baes (2.3)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: Lx = x.operator()
-                sage: Ly = y.operator()
-                sage: Lxx = (x*x).operator()
-                sage: Lxy = (x*y).operator()
-                sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
-                True
-
-            Test the second polarization identity from my notes or from
-            Baes (2.4)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: Lx = x.operator()
-                sage: Ly = y.operator()
-                sage: Lz = z.operator()
-                sage: Lzy = (z*y).operator()
-                sage: Lxy = (x*y).operator()
-                sage: Lxz = (x*z).operator()
-                sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
-                True
-
-            Test the third polarization identity from my notes or from
-            Baes (2.5)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: u = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: Lu = u.operator()
-                sage: Ly = y.operator()
-                sage: Lz = z.operator()
-                sage: Lzy = (z*y).operator()
-                sage: Luy = (u*y).operator()
-                sage: Luz = (u*z).operator()
-                sage: Luyz = (u*(y*z)).operator()
-                sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
-                sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
-                sage: bool(lhs == rhs)
-                True
-
-            """
-            if not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            A = self.operator()
-            B = other.operator()
-            return (A*B == B*A)
-
-
-        def det(self):
-            """
-            Return my determinant, the product of my eigenvalues.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(2)
-                sage: e0,e1 = J.gens()
-                sage: x = sum( J.gens() )
-                sage: x.det()
-                0
-
-            ::
-
-                sage: J = JordanSpinEJA(3)
-                sage: e0,e1,e2 = J.gens()
-                sage: x = sum( J.gens() )
-                sage: x.det()
-                -1
-
-            TESTS:
-
-            An element is invertible if and only if its determinant is
-            non-zero::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.is_invertible() == (x.det() != 0)
-                True
-
-            """
-            P = self.parent()
-            r = P.rank()
-            p = P._charpoly_coeff(0)
-            # The _charpoly_coeff function already adds the factor of
-            # -1 to ensure that _charpoly_coeff(0) is really what
-            # appears in front of t^{0} in the charpoly. However,
-            # we want (-1)^r times THAT for the determinant.
-            return ((-1)**r)*p(*self.vector())
-
-
-        def inverse(self):
-            """
-            Return the Jordan-multiplicative inverse of this element.
-
-            ALGORITHM:
-
-            We appeal to the quadratic representation as in Koecher's
-            Theorem 12 in Chapter III, Section 5.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
-
-            The inverse in the spin factor algebra is given in Alizadeh's
-            Example 11.11::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: while not x.is_invertible():
-                ....:     x = J.random_element()
-                sage: x_vec = x.vector()
-                sage: x0 = x_vec[0]
-                sage: x_bar = x_vec[1:]
-                sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
-                sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
-                sage: x_inverse = coeff*inv_vec
-                sage: x.inverse() == J(x_inverse)
-                True
-
-            TESTS:
-
-            The identity element is its own inverse::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().inverse() == J.one()
-                True
-
-            If an element has an inverse, it acts like one::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
-                True
-
-            The inverse of the inverse is what we started with::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
-                True
-
-            The zero element is never invertible::
-
-                sage: set_random_seed()
-                sage: J = random_eja().zero().inverse()
-                Traceback (most recent call last):
-                ...
-                ValueError: element is not invertible
-
-            """
-            if not self.is_invertible():
-                raise ValueError("element is not invertible")
-
-            return (~self.quadratic_representation())(self)
-
-
-        def is_invertible(self):
-            """
-            Return whether or not this element is invertible.
-
-            We can't use the superclass method because it relies on
-            the algebra being associative.
-
-            ALGORITHM:
-
-            The usual way to do this is to check if the determinant is
-            zero, but we need the characteristic polynomial for the
-            determinant. The minimal polynomial is a lot easier to get,
-            so we use Corollary 2 in Chapter V of Koecher to check
-            whether or not the paren't algebra's zero element is a root
-            of this element's minimal polynomial.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The identity element is always invertible::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().is_invertible()
-                True
-
-            The zero element is never invertible::
+        return self.zero().to_vector().parent().ambient_vector_space()
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.zero().is_invertible()
-                False
 
-            """
-            zero = self.parent().zero()
-            p = self.minimal_polynomial()
-            return not (p(zero) == zero)
-
-
-        def is_nilpotent(self):
-            """
-            Return whether or not some power of this element is zero.
-
-            The superclass method won't work unless we're in an
-            associative algebra, and we aren't. However, we generate
-            an assocoative subalgebra and we're nilpotent there if and
-            only if we're nilpotent here (probably).
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The identity element is never nilpotent::
-
-                sage: set_random_seed()
-                sage: random_eja().one().is_nilpotent()
-                False
-
-            The additive identity is always nilpotent::
-
-                sage: set_random_seed()
-                sage: random_eja().zero().is_nilpotent()
-                True
-
-            """
-            # The element we're going to call "is_nilpotent()" on.
-            # Either myself, interpreted as an element of a finite-
-            # dimensional algebra, or an element of an associative
-            # subalgebra.
-            elt = None
-
-            if self.parent().is_associative():
-                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
-            else:
-                V = self.span_of_powers()
-                assoc_subalg = self.subalgebra_generated_by()
-                # Mis-design warning: the basis used for span_of_powers()
-                # and subalgebra_generated_by() must be the same, and in
-                # the same order!
-                elt = assoc_subalg(V.coordinates(self.vector()))
-
-            # Recursive call, but should work since elt lives in an
-            # associative algebra.
-            return elt.is_nilpotent()
-
-
-        def is_regular(self):
-            """
-            Return whether or not this is a regular element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import JordanSpinEJA
-
-            EXAMPLES:
-
-            The identity element always has degree one, but any element
-            linearly-independent from it is regular::
-
-                sage: J = JordanSpinEJA(5)
-                sage: J.one().is_regular()
-                False
-                sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
-                sage: for x in J.gens():
-                ....:     (J.one() + x).is_regular()
-                False
-                True
-                True
-                True
-                True
-
-            """
-            return self.degree() == self.parent().rank()
-
-
-        def degree(self):
-            """
-            Compute the degree of this element the straightforward way
-            according to the definition; by appending powers to a list
-            and figuring out its dimension (that is, whether or not
-            they're linearly dependent).
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import JordanSpinEJA
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(4)
-                sage: J.one().degree()
-                1
-                sage: e0,e1,e2,e3 = J.gens()
-                sage: (e0 - e1).degree()
-                2
-
-            In the spin factor algebra (of rank two), all elements that
-            aren't multiples of the identity are regular::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: x == x.coefficient(0)*J.one() or x.degree() == 2
-                True
-
-            """
-            return self.span_of_powers().dimension()
-
-
-        def left_matrix(self):
-            """
-            Our parent class defines ``left_matrix`` and ``matrix``
-            methods whose names are misleading. We don't want them.
-            """
-            raise NotImplementedError("use operator().matrix() instead")
-
-        matrix = left_matrix
-
-
-        def minimal_polynomial(self):
-            """
-            Return the minimal polynomial of this element,
-            as a function of the variable `t`.
-
-            ALGORITHM:
-
-            We restrict ourselves to the associative subalgebra
-            generated by this element, and then return the minimal
-            polynomial of this element's operator matrix (in that
-            subalgebra). This works by Baes Proposition 2.3.16.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            TESTS:
-
-            The minimal polynomial of the identity and zero elements are
-            always the same::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().minimal_polynomial()
-                t - 1
-                sage: J.zero().minimal_polynomial()
-                t
-
-            The degree of an element is (by one definition) the degree
-            of its minimal polynomial::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
-                True
-
-            The minimal polynomial and the characteristic polynomial coincide
-            and are known (see Alizadeh, Example 11.11) for all elements of
-            the spin factor algebra that aren't scalar multiples of the
-            identity::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10)
-                sage: J = JordanSpinEJA(n)
-                sage: y = J.random_element()
-                sage: while y == y.coefficient(0)*J.one():
-                ....:     y = J.random_element()
-                sage: y0 = y.vector()[0]
-                sage: y_bar = y.vector()[1:]
-                sage: actual = y.minimal_polynomial()
-                sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
-                sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
-                sage: bool(actual == expected)
-                True
-
-            The minimal polynomial should always kill its element::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: p = x.minimal_polynomial()
-                sage: x.apply_univariate_polynomial(p)
-                0
-
-            """
-            V = self.span_of_powers()
-            assoc_subalg = self.subalgebra_generated_by()
-            # Mis-design warning: the basis used for span_of_powers()
-            # and subalgebra_generated_by() must be the same, and in
-            # the same order!
-            elt = assoc_subalg(V.coordinates(self.vector()))
-            return elt.operator().minimal_polynomial()
-
-
-
-        def natural_representation(self):
-            """
-            Return a more-natural representation of this element.
-
-            Every finite-dimensional Euclidean Jordan Algebra is a
-            direct sum of five simple algebras, four of which comprise
-            Hermitian matrices. This method returns the original
-            "natural" representation of this element as a Hermitian
-            matrix, if it has one. If not, you get the usual representation.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-                ....:                                  QuaternionHermitianEJA)
-
-            EXAMPLES::
-
-                sage: J = ComplexHermitianEJA(3)
-                sage: J.one()
-                e0 + e5 + e8
-                sage: J.one().natural_representation()
-                [1 0 0 0 0 0]
-                [0 1 0 0 0 0]
-                [0 0 1 0 0 0]
-                [0 0 0 1 0 0]
-                [0 0 0 0 1 0]
-                [0 0 0 0 0 1]
-
-            ::
-
-                sage: J = QuaternionHermitianEJA(3)
-                sage: J.one()
-                e0 + e9 + e14
-                sage: J.one().natural_representation()
-                [1 0 0 0 0 0 0 0 0 0 0 0]
-                [0 1 0 0 0 0 0 0 0 0 0 0]
-                [0 0 1 0 0 0 0 0 0 0 0 0]
-                [0 0 0 1 0 0 0 0 0 0 0 0]
-                [0 0 0 0 1 0 0 0 0 0 0 0]
-                [0 0 0 0 0 1 0 0 0 0 0 0]
-                [0 0 0 0 0 0 1 0 0 0 0 0]
-                [0 0 0 0 0 0 0 1 0 0 0 0]
-                [0 0 0 0 0 0 0 0 1 0 0 0]
-                [0 0 0 0 0 0 0 0 0 1 0 0]
-                [0 0 0 0 0 0 0 0 0 0 1 0]
-                [0 0 0 0 0 0 0 0 0 0 0 1]
-
-            """
-            B = self.parent().natural_basis()
-            W = B[0].matrix_space()
-            return W.linear_combination(zip(self.vector(), B))
-
-
-        def operator(self):
-            """
-            Return the left-multiplication-by-this-element
-            operator on the ambient algebra.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: x.operator()(y) == x*y
-                True
-                sage: y.operator()(x) == x*y
-                True
-
-            """
-            P = self.parent()
-            fda_elt = FiniteDimensionalAlgebraElement(P, self)
-            return FiniteDimensionalEuclideanJordanAlgebraOperator(
-                     P,
-                     P,
-                     fda_elt.matrix().transpose() )
-
-
-        def quadratic_representation(self, other=None):
-            """
-            Return the quadratic representation of this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
-
-            The explicit form in the spin factor algebra is given by
-            Alizadeh's Example 11.12::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: x_vec = x.vector()
-                sage: x0 = x_vec[0]
-                sage: x_bar = x_vec[1:]
-                sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
-                sage: B = 2*x0*x_bar.row()
-                sage: C = 2*x0*x_bar.column()
-                sage: D = matrix.identity(QQ, n-1)
-                sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
-                sage: D = D + 2*x_bar.tensor_product(x_bar)
-                sage: Q = matrix.block(2,2,[A,B,C,D])
-                sage: Q == x.quadratic_representation().matrix()
-                True
-
-            Test all of the properties from Theorem 11.2 in Alizadeh::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: Lx = x.operator()
-                sage: Lxx = (x*x).operator()
-                sage: Qx = x.quadratic_representation()
-                sage: Qy = y.quadratic_representation()
-                sage: Qxy = x.quadratic_representation(y)
-                sage: Qex = J.one().quadratic_representation(x)
-                sage: n = ZZ.random_element(10)
-                sage: Qxn = (x^n).quadratic_representation()
-
-            Property 1:
-
-                sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
-                True
-
-            Property 2 (multiply on the right for :trac:`28272`):
-
-                sage: alpha = QQ.random_element()
-                sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
-                True
-
-            Property 3:
-
-                sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
-                True
-
-                sage: not x.is_invertible() or (
-                ....:   ~Qx
-                ....:   ==
-                ....:   x.inverse().quadratic_representation() )
-                True
-
-                sage: Qxy(J.one()) == x*y
-                True
-
-            Property 4:
-
-                sage: not x.is_invertible() or (
-                ....:   x.quadratic_representation(x.inverse())*Qx
-                ....:   == Qx*x.quadratic_representation(x.inverse()) )
-                True
-
-                sage: not x.is_invertible() or (
-                ....:   x.quadratic_representation(x.inverse())*Qx
-                ....:   ==
-                ....:   2*x.operator()*Qex - Qx )
-                True
-
-                sage: 2*x.operator()*Qex - Qx == Lxx
-                True
-
-            Property 5:
-
-                sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
-                True
-
-            Property 6:
-
-                sage: Qxn == (Qx)^n
-                True
-
-            Property 7:
-
-                sage: not x.is_invertible() or (
-                ....:   Qx*x.inverse().operator() == Lx )
-                True
-
-            Property 8:
-
-                sage: not x.operator_commutes_with(y) or (
-                ....:   Qx(y)^n == Qxn(y^n) )
-                True
-
-            """
-            if other is None:
-                other=self
-            elif not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            L = self.operator()
-            M = other.operator()
-            return ( L*M + M*L - (self*other).operator() )
-
-
-        def span_of_powers(self):
-            """
-            Return the vector space spanned by successive powers of
-            this element.
-            """
-            # The dimension of the subalgebra can't be greater than
-            # the big algebra, so just put everything into a list
-            # and let span() get rid of the excess.
-            #
-            # We do the extra ambient_vector_space() in case we're messing
-            # with polynomials and the direct parent is a module.
-            V = self.parent().vector_space()
-            return V.span( (self**d).vector() for d in xrange(V.dimension()) )
-
-
-        def subalgebra_generated_by(self):
-            """
-            Return the associative subalgebra of the parent EJA generated
-            by this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.subalgebra_generated_by().is_associative()
-                True
-
-            Squaring in the subalgebra should work the same as in
-            the superalgebra::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: u = x.subalgebra_generated_by().random_element()
-                sage: u.operator()(u) == u^2
-                True
-
-            """
-            # First get the subspace spanned by the powers of myself...
-            V = self.span_of_powers()
-            F = self.base_ring()
-
-            # Now figure out the entries of the right-multiplication
-            # matrix for the successive basis elements b0, b1,... of
-            # that subspace.
-            mats = []
-            for b_right in V.basis():
-                eja_b_right = self.parent()(b_right)
-                b_right_rows = []
-                # The first row of the right-multiplication matrix by
-                # b1 is what we get if we apply that matrix to b1. The
-                # second row of the right multiplication matrix by b1
-                # is what we get when we apply that matrix to b2...
-                #
-                # IMPORTANT: this assumes that all vectors are COLUMN
-                # vectors, unlike our superclass (which uses row vectors).
-                for b_left in V.basis():
-                    eja_b_left = self.parent()(b_left)
-                    # Multiply in the original EJA, but then get the
-                    # coordinates from the subalgebra in terms of its
-                    # basis.
-                    this_row = V.coordinates((eja_b_left*eja_b_right).vector())
-                    b_right_rows.append(this_row)
-                b_right_matrix = matrix(F, b_right_rows)
-                mats.append(b_right_matrix)
-
-            # It's an algebra of polynomials in one element, and EJAs
-            # are power-associative.
-            #
-            # TODO: choose generator names intelligently.
-            #
-            # The rank is the highest possible degree of a minimal polynomial,
-            # and is bounded above by the dimension. We know in this case that
-            # there's an element whose minimal polynomial has the same degree
-            # as the space's dimension, so that must be its rank too.
-            return FiniteDimensionalEuclideanJordanAlgebra(
-                     F,
-                     mats,
-                     V.dimension(),
-                     assume_associative=True,
-                     names='f')
-
-
-        def subalgebra_idempotent(self):
-            """
-            Find an idempotent in the associative subalgebra I generate
-            using Proposition 2.3.5 in Baes.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: while x.is_nilpotent():
-                ....:     x = J.random_element()
-                sage: c = x.subalgebra_idempotent()
-                sage: c^2 == c
-                True
-
-            """
-            if self.is_nilpotent():
-                raise ValueError("this only works with non-nilpotent elements!")
-
-            V = self.span_of_powers()
-            J = self.subalgebra_generated_by()
-            # Mis-design warning: the basis used for span_of_powers()
-            # and subalgebra_generated_by() must be the same, and in
-            # the same order!
-            u = J(V.coordinates(self.vector()))
-
-            # The image of the matrix of left-u^m-multiplication
-            # will be minimal for some natural number s...
-            s = 0
-            minimal_dim = V.dimension()
-            for i in xrange(1, V.dimension()):
-                this_dim = (u**i).operator().matrix().image().dimension()
-                if this_dim < minimal_dim:
-                    minimal_dim = this_dim
-                    s = i
-
-            # Now minimal_matrix should correspond to the smallest
-            # non-zero subspace in Baes's (or really, Koecher's)
-            # proposition.
-            #
-            # However, we need to restrict the matrix to work on the
-            # subspace... or do we? Can't we just solve, knowing that
-            # A(c) = u^(s+1) should have a solution in the big space,
-            # too?
-            #
-            # Beware, solve_right() means that we're using COLUMN vectors.
-            # Our FiniteDimensionalAlgebraElement superclass uses rows.
-            u_next = u**(s+1)
-            A = u_next.operator().matrix()
-            c_coordinates = A.solve_right(u_next.vector())
-
-            # Now c_coordinates is the idempotent we want, but it's in
-            # the coordinate system of the subalgebra.
-            #
-            # We need the basis for J, but as elements of the parent algebra.
-            #
-            basis = [self.parent(v) for v in V.basis()]
-            return self.parent().linear_combination(zip(c_coordinates, basis))
-
-
-        def trace(self):
-            """
-            Return my trace, the sum of my eigenvalues.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  RealCartesianProductEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(3)
-                sage: x = sum(J.gens())
-                sage: x.trace()
-                2
-
-            ::
-
-                sage: J = RealCartesianProductEJA(5)
-                sage: J.one().trace()
-                5
-
-            TESTS:
-
-            The trace of an element is a real number::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.random_element().trace() in J.base_ring()
-                True
-
-            """
-            P = self.parent()
-            r = P.rank()
-            p = P._charpoly_coeff(r-1)
-            # The _charpoly_coeff function already adds the factor of
-            # -1 to ensure that _charpoly_coeff(r-1) is really what
-            # appears in front of t^{r-1} in the charpoly. However,
-            # we want the negative of THAT for the trace.
-            return -p(*self.vector())
-
-
-        def trace_inner_product(self, other):
-            """
-            Return the trace inner product of myself and ``other``.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The trace inner product is commutative::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element(); y = J.random_element()
-                sage: x.trace_inner_product(y) == y.trace_inner_product(x)
-                True
-
-            The trace inner product is bilinear::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: a = QQ.random_element();
-                sage: actual = (a*(x+z)).trace_inner_product(y)
-                sage: expected = ( a*x.trace_inner_product(y) +
-                ....:              a*z.trace_inner_product(y) )
-                sage: actual == expected
-                True
-                sage: actual = x.trace_inner_product(a*(y+z))
-                sage: expected = ( a*x.trace_inner_product(y) +
-                ....:              a*x.trace_inner_product(z) )
-                sage: actual == expected
-                True
-
-            The trace inner product satisfies the compatibility
-            condition in the definition of a Euclidean Jordan algebra::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
-                True
-
-            """
-            if not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            return (self*other).trace()
+    Element = FiniteDimensionalEuclideanJordanAlgebraElement
 
 
 class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
@@ -1672,22 +751,58 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
         sage: e2*e2
         e2
 
+    TESTS:
+
+    We can change the generator prefix::
+
+        sage: RealCartesianProductEJA(3, prefix='r').gens()
+        (r0, r1, r2)
+
+    Our inner product satisfies the Jordan axiom::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = RealCartesianProductEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: z = J.random_element()
+        sage: (x*y).inner_product(z) == y.inner_product(x*z)
+        True
+
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        # The FiniteDimensionalAlgebra constructor takes a list of
-        # matrices, the ith representing right multiplication by the ith
-        # basis element in the vector space. So if e_1 = (1,0,0), then
-        # right (Hadamard) multiplication of x by e_1 picks out the first
-        # component of x; and likewise for the ith basis element e_i.
-        Qs = [ matrix(field, n, n, lambda k,j: 1*(k == j == i))
-               for i in xrange(n) ]
-
-        fdeja = super(RealCartesianProductEJA, cls)
-        return fdeja.__classcall_private__(cls, field, Qs, rank=n)
+    def __init__(self, n, field=QQ, **kwargs):
+        V = VectorSpace(field, n)
+        mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
+                       for i in range(n) ]
+
+        fdeja = super(RealCartesianProductEJA, self)
+        return fdeja.__init__(field, mult_table, rank=n, **kwargs)
 
     def inner_product(self, x, y):
-        return _usual_ip(x,y)
+        """
+        Faster to reimplement than to use natural representations.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
+
+        TESTS:
+
+        Ensure that this is the usual inner product for the algebras
+        over `R^n`::
+
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(1,5)
+            sage: J = RealCartesianProductEJA(n)
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: X = x.natural_representation()
+            sage: Y = y.natural_representation()
+            sage: x.inner_product(y) == J.__class__.natural_inner_product(X,Y)
+            True
+
+        """
+        return x.to_vector().inner_product(y.to_vector())
 
 
 def random_eja():
@@ -1723,7 +838,7 @@ def random_eja():
     TESTS::
 
         sage: random_eja()
-        Euclidean Jordan algebra of degree...
+        Euclidean Jordan algebra of dimension...
 
     """
 
@@ -1741,9 +856,22 @@ def random_eja():
 
 
 
-def _real_symmetric_basis(n, field=QQ):
+def _real_symmetric_basis(n, field):
     """
     Return a basis for the space of real symmetric n-by-n matrices.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import _real_symmetric_basis
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: B = _real_symmetric_basis(n, QQ)
+        sage: all( M.is_symmetric() for M in  B)
+        True
+
     """
     # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
     # coordinates.
@@ -1754,16 +882,21 @@ def _real_symmetric_basis(n, field=QQ):
             if i == j:
                 Sij = Eij
             else:
-                # Beware, orthogonal but not normalized!
                 Sij = Eij + Eij.transpose()
             S.append(Sij)
     return tuple(S)
 
 
-def _complex_hermitian_basis(n, field=QQ):
+def _complex_hermitian_basis(n, field):
     """
     Returns a basis for the space of complex Hermitian n-by-n matrices.
 
+    Why do we embed these? Basically, because all of numerical linear
+    algebra assumes that you're working with vectors consisting of `n`
+    entries from a field and scalars from the same field. There's no way
+    to tell SageMath that (for example) the vectors contain complex
+    numbers, while the scalar field is real.
+
     SETUP::
 
         sage: from mjo.eja.eja_algebra import _complex_hermitian_basis
@@ -1772,11 +905,15 @@ def _complex_hermitian_basis(n, field=QQ):
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
-        sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
+        sage: field = QuadraticField(2, 'sqrt2')
+        sage: B = _complex_hermitian_basis(n, field)
+        sage: all( M.is_symmetric() for M in  B)
         True
 
     """
-    F = QuadraticField(-1, 'I')
+    R = PolynomialRing(field, 'z')
+    z = R.gen()
+    F = NumberField(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
     I = F.gen()
 
     # This is like the symmetric case, but we need to be careful:
@@ -1787,24 +924,33 @@ def _complex_hermitian_basis(n, field=QQ):
     S = []
     for i in xrange(n):
         for j in xrange(i+1):
-            Eij = matrix(field, n, lambda k,l: k==i and l==j)
+            Eij = matrix(F, n, lambda k,l: k==i and l==j)
             if i == j:
                 Sij = _embed_complex_matrix(Eij)
                 S.append(Sij)
             else:
-                # Beware, orthogonal but not normalized! The second one
-                # has a minus because it's conjugated.
+                # The second one has a minus because it's conjugated.
                 Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
                 S.append(Sij_real)
                 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
                 S.append(Sij_imag)
-    return tuple(S)
 
+    # Since we embedded these, we can drop back to the "field" that we
+    # started with instead of the complex extension "F".
+    return tuple( s.change_ring(field) for s in S )
 
-def _quaternion_hermitian_basis(n, field=QQ):
+
+
+def _quaternion_hermitian_basis(n, field, normalize):
     """
     Returns a basis for the space of quaternion Hermitian n-by-n matrices.
 
+    Why do we embed these? Basically, because all of numerical linear
+    algebra assumes that you're working with vectors consisting of `n`
+    entries from a field and scalars from the same field. There's no way
+    to tell SageMath that (for example) the vectors contain complex
+    numbers, while the scalar field is real.
+
     SETUP::
 
         sage: from mjo.eja.eja_algebra import _quaternion_hermitian_basis
@@ -1813,7 +959,8 @@ def _quaternion_hermitian_basis(n, field=QQ):
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
-        sage: all( M.is_symmetric() for M in _quaternion_hermitian_basis(n) )
+        sage: B = _quaternion_hermitian_basis(n, QQ, False)
+        sage: all( M.is_symmetric() for M in B )
         True
 
     """
@@ -1847,11 +994,6 @@ def _quaternion_hermitian_basis(n, field=QQ):
     return tuple(S)
 
 
-def _mat2vec(m):
-        return vector(m.base_ring(), m.list())
-
-def _vec2mat(v):
-        return matrix(v.base_ring(), sqrt(v.degree()), v.list())
 
 def _multiplication_table_from_matrix_basis(basis):
     """
@@ -1860,10 +1002,7 @@ def _multiplication_table_from_matrix_basis(basis):
     multiplication on the right is matrix multiplication. Given a basis
     for the underlying matrix space, this function returns a
     multiplication table (obtained by looping through the basis
-    elements) for an algebra of those matrices. A reordered copy
-    of the basis is also returned to work around the fact that
-    the ``span()`` in this function will change the order of the basis
-    from what we think it is, to... something else.
+    elements) for an algebra of those matrices.
     """
     # In S^2, for example, we nominally have four coordinates even
     # though the space is of dimension three only. The vector space V
@@ -1874,30 +1013,15 @@ def _multiplication_table_from_matrix_basis(basis):
     dimension = basis[0].nrows()
 
     V = VectorSpace(field, dimension**2)
-    W = V.span( _mat2vec(s) for s in basis )
-
-    # Taking the span above reorders our basis (thanks, jerk!) so we
-    # need to put our "matrix basis" in the same order as the
-    # (reordered) vector basis.
-    S = tuple( _vec2mat(b) for b in W.basis() )
-
-    Qs = []
-    for s in S:
-        # Brute force the multiplication-by-s matrix by looping
-        # through all elements of the basis and doing the computation
-        # to find out what the corresponding row should be. BEWARE:
-        # these multiplication tables won't be symmetric! It therefore
-        # becomes REALLY IMPORTANT that the underlying algebra
-        # constructor uses ROW vectors and not COLUMN vectors. That's
-        # why we're computing rows here and not columns.
-        Q_rows = []
-        for t in S:
-            this_row = _mat2vec((s*t + t*s)/2)
-            Q_rows.append(W.coordinates(this_row))
-        Q = matrix(field, W.dimension(), Q_rows)
-        Qs.append(Q)
-
-    return (Qs, S)
+    W = V.span_of_basis( _mat2vec(s) for s in basis )
+    n = len(basis)
+    mult_table = [[W.zero() for j in range(n)] for i in range(n)]
+    for i in range(n):
+        for j in range(n):
+            mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
+            mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
+
+    return mult_table
 
 
 def _embed_complex_matrix(M):
@@ -1912,7 +1036,7 @@ def _embed_complex_matrix(M):
 
     EXAMPLES::
 
-        sage: F = QuadraticField(-1,'i')
+        sage: F = QuadraticField(-1, 'i')
         sage: x1 = F(4 - 2*i)
         sage: x2 = F(1 + 2*i)
         sage: x3 = F(-i)
@@ -1946,8 +1070,8 @@ def _embed_complex_matrix(M):
     field = M.base_ring()
     blocks = []
     for z in M.list():
-        a = z.real()
-        b = z.imag()
+        a = z.vector()[0] # real part, I guess
+        b = z.vector()[1] # imag part, I guess
         blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
 
     # We can drop the imaginaries here.
@@ -1990,7 +1114,10 @@ def _unembed_complex_matrix(M):
     if not n.mod(2).is_zero():
         raise ValueError("the matrix 'M' must be a complex embedding")
 
-    F = QuadraticField(-1, 'i')
+    field = M.base_ring() # This should already have sqrt2
+    R = PolynomialRing(field, 'z')
+    z = R.gen()
+    F = NumberField(z**2 + 1,'i', embedding=CLF(-1).sqrt())
     i = F.gen()
 
     # Go top-left to bottom-right (reading order), converting every
@@ -2126,10 +1253,6 @@ def _unembed_quaternion_matrix(M):
     return matrix(Q, n/4, elements)
 
 
-# The usual inner product on R^n.
-def _usual_ip(x,y):
-    return x.vector().inner_product(y.vector())
-
 # The inner product used for the real symmetric simple EJA.
 # We keep it as a separate function because e.g. the complex
 # algebra uses the same inner product, except divided by 2.
@@ -2156,18 +1279,18 @@ class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
         sage: e0*e0
         e0
         sage: e1*e1
-        e0 + e2
+        1/2*e0 + 1/2*e2
         sage: e2*e2
         e2
 
     TESTS:
 
-    The degree of this algebra is `(n^2 + n) / 2`::
+    The dimension of this algebra is `(n^2 + n) / 2`::
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
         sage: J = RealSymmetricEJA(n)
-        sage: J.degree() == (n^2 + n)/2
+        sage: J.dimension() == (n^2 + n)/2
         True
 
     The Jordan multiplication is what we think it is::
@@ -2186,21 +1309,67 @@ class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
         sage: J(expected) == x*y
         True
 
-    """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        S = _real_symmetric_basis(n, field=field)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    We can change the generator prefix::
 
-        fdeja = super(RealSymmetricEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+        sage: RealSymmetricEJA(3, prefix='q').gens()
+        (q0, q1, q2, q3, q4, q5)
+
+    Our inner product satisfies the Jordan axiom::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = RealSymmetricEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: z = J.random_element()
+        sage: (x*y).inner_product(z) == y.inner_product(x*z)
+        True
+
+    Our basis is normalized with respect to the natural inner product::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = RealSymmetricEJA(n)
+        sage: all( b.norm() == 1 for b in J.gens() )
+        True
+
+    Left-multiplication operators are symmetric because they satisfy
+    the Jordan axiom::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: x = RealSymmetricEJA(n).random_element()
+        sage: x.operator().matrix().is_symmetric()
+        True
+
+    """
+    def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
+        S = _real_symmetric_basis(n, field)
+
+        if n > 1 and normalize_basis:
+            # We'll need sqrt(2) to normalize the basis, and this
+            # winds up in the multiplication table, so the whole
+            # algebra needs to be over the field extension.
+            R = PolynomialRing(field, 'z')
+            z = R.gen()
+            p = z**2 - 2
+            if p.is_irreducible():
+                field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
+            S = [ s.change_ring(field) for s in S ]
+            self._basis_normalizers = tuple(
+                ~(self.__class__.natural_inner_product(s,s).sqrt())
+                for s in S )
+            S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
+
+        Qs = _multiplication_table_from_matrix_basis(S)
+
+        fdeja = super(RealSymmetricEJA, self)
+        return fdeja.__init__(field,
+                              Qs,
+                              rank=n,
+                              natural_basis=S,
+                              **kwargs)
 
-    def inner_product(self, x, y):
-        return _matrix_ip(x,y)
 
 
 class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
@@ -2216,12 +1385,12 @@ class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
 
     TESTS:
 
-    The degree of this algebra is `n^2`::
+    The dimension of this algebra is `n^2`::
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
         sage: J = ComplexHermitianEJA(n)
-        sage: J.degree() == n^2
+        sage: J.dimension() == n^2
         True
 
     The Jordan multiplication is what we think it is::
@@ -2240,29 +1409,74 @@ class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
         sage: J(expected) == x*y
         True
 
-    """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        S = _complex_hermitian_basis(n)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    We can change the generator prefix::
 
-        fdeja = super(ComplexHermitianEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+        sage: ComplexHermitianEJA(2, prefix='z').gens()
+        (z0, z1, z2, z3)
 
-    def inner_product(self, x, y):
-        # Since a+bi on the diagonal is represented as
-        #
-        #   a + bi  = [  a  b  ]
-        #             [ -b  a  ],
-        #
-        # we'll double-count the "a" entries if we take the trace of
-        # the embedding.
-        return _matrix_ip(x,y)/2
+    Our inner product satisfies the Jordan axiom::
 
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = ComplexHermitianEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: z = J.random_element()
+        sage: (x*y).inner_product(z) == y.inner_product(x*z)
+        True
+
+    Our basis is normalized with respect to the natural inner product::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,4)
+        sage: J = ComplexHermitianEJA(n)
+        sage: all( b.norm() == 1 for b in J.gens() )
+        True
+
+    Left-multiplication operators are symmetric because they satisfy
+    the Jordan axiom::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: x = ComplexHermitianEJA(n).random_element()
+        sage: x.operator().matrix().is_symmetric()
+        True
+
+    """
+    def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
+        S = _complex_hermitian_basis(n, field)
+
+        if n > 1 and normalize_basis:
+            # We'll need sqrt(2) to normalize the basis, and this
+            # winds up in the multiplication table, so the whole
+            # algebra needs to be over the field extension.
+            R = PolynomialRing(field, 'z')
+            z = R.gen()
+            p = z**2 - 2
+            if p.is_irreducible():
+                field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
+            S = [ s.change_ring(field) for s in S ]
+            self._basis_normalizers = tuple(
+                ~(self.__class__.natural_inner_product(s,s).sqrt())
+                for s in S )
+            S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
+
+        Qs = _multiplication_table_from_matrix_basis(S)
+
+        fdeja = super(ComplexHermitianEJA, self)
+        return fdeja.__init__(field,
+                              Qs,
+                              rank=n,
+                              natural_basis=S,
+                              **kwargs)
+
+
+    @staticmethod
+    def natural_inner_product(X,Y):
+        Xu = _unembed_complex_matrix(X)
+        Yu = _unembed_complex_matrix(Y)
+        # The trace need not be real; consider Xu = (i*I) and Yu = I.
+        return ((Xu*Yu).trace()).vector()[0] # real part, I guess
 
 class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
@@ -2277,12 +1491,12 @@ class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
 
     TESTS:
 
-    The degree of this algebra is `n^2`::
+    The dimension of this algebra is `n^2`::
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
         sage: J = QuaternionHermitianEJA(n)
-        sage: J.degree() == 2*(n^2) - n
+        sage: J.dimension() == 2*(n^2) - n
         True
 
     The Jordan multiplication is what we think it is::
@@ -2301,18 +1515,33 @@ class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
         sage: J(expected) == x*y
         True
 
+    We can change the generator prefix::
+
+        sage: QuaternionHermitianEJA(2, prefix='a').gens()
+        (a0, a1, a2, a3, a4, a5)
+
+    Our inner product satisfies the Jordan axiom::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = QuaternionHermitianEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: z = J.random_element()
+        sage: (x*y).inner_product(z) == y.inner_product(x*z)
+        True
+
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        S = _quaternion_hermitian_basis(n)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
+        S = _quaternion_hermitian_basis(n, field, normalize_basis)
+        Qs = _multiplication_table_from_matrix_basis(S)
 
-        fdeja = super(QuaternionHermitianEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+        fdeja = super(QuaternionHermitianEJA, self)
+        return fdeja.__init__(field,
+                              Qs,
+                              rank=n,
+                              natural_basis=S,
+                              **kwargs)
 
     def inner_product(self, x, y):
         # Since a+bi+cj+dk on the diagonal is represented as
@@ -2359,27 +1588,68 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
         sage: e2*e3
         0
 
+    We can change the generator prefix::
+
+        sage: JordanSpinEJA(2, prefix='B').gens()
+        (B0, B1)
+
+    Our inner product satisfies the Jordan axiom::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = JordanSpinEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: z = J.random_element()
+        sage: (x*y).inner_product(z) == y.inner_product(x*z)
+        True
+
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        Qs = []
-        id_matrix = matrix.identity(field, n)
-        for i in xrange(n):
-            ei = id_matrix.column(i)
-            Qi = matrix.zero(field, n)
-            Qi.set_row(0, ei)
-            Qi.set_column(0, ei)
-            Qi += matrix.diagonal(n, [ei[0]]*n)
-            # The addition of the diagonal matrix adds an extra ei[0] in the
-            # upper-left corner of the matrix.
-            Qi[0,0] = Qi[0,0] * ~field(2)
-            Qs.append(Qi)
+    def __init__(self, n, field=QQ, **kwargs):
+        V = VectorSpace(field, n)
+        mult_table = [[V.zero() for j in range(n)] for i in range(n)]
+        for i in range(n):
+            for j in range(n):
+                x = V.gen(i)
+                y = V.gen(j)
+                x0 = x[0]
+                xbar = x[1:]
+                y0 = y[0]
+                ybar = y[1:]
+                # z = x*y
+                z0 = x.inner_product(y)
+                zbar = y0*xbar + x0*ybar
+                z = V([z0] + zbar.list())
+                mult_table[i][j] = z
 
         # The rank of the spin algebra is two, unless we're in a
         # one-dimensional ambient space (because the rank is bounded by
         # the ambient dimension).
-        fdeja = super(JordanSpinEJA, cls)
-        return fdeja.__classcall_private__(cls, field, Qs, rank=min(n,2))
+        fdeja = super(JordanSpinEJA, self)
+        return fdeja.__init__(field, mult_table, rank=min(n,2), **kwargs)
 
     def inner_product(self, x, y):
-        return _usual_ip(x,y)
+        """
+        Faster to reimplement than to use natural representations.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import JordanSpinEJA
+
+        TESTS:
+
+        Ensure that this is the usual inner product for the algebras
+        over `R^n`::
+
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(1,5)
+            sage: J = JordanSpinEJA(n)
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: X = x.natural_representation()
+            sage: Y = y.natural_representation()
+            sage: x.inner_product(y) == J.__class__.natural_inner_product(X,Y)
+            True
+
+        """
+        return x.to_vector().inner_product(y.to_vector())