]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: define subalgebra_generated_by() to contain the identity.
[sage.d.git] / mjo / eja / eja_algebra.py
index 02cf32c7d27ff93728ad548a964ff6bee5f277d4..658957556cf382a62d0d252359ce735019996973 100644 (file)
@@ -16,13 +16,9 @@ from sage.misc.cachefunc import cached_method
 from sage.misc.prandom import choice
 from sage.misc.table import table
 from sage.modules.free_module import FreeModule, VectorSpace
-from sage.rings.integer_ring import ZZ
-from sage.rings.number_field.number_field import NumberField, QuadraticField
-from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
-from sage.rings.rational_field import QQ
-from sage.rings.real_lazy import CLF, RLF
-from sage.structure.element import is_Matrix
-
+from sage.rings.all import (ZZ, QQ, RR, RLF, CLF,
+                            PolynomialRing,
+                            QuadraticField)
 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
 from mjo.eja.eja_utils import _mat2vec
 
@@ -41,11 +37,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
                  rank,
                  prefix='e',
                  category=None,
-                 natural_basis=None):
+                 natural_basis=None,
+                 check=True):
         """
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import random_eja
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja)
 
         EXAMPLES:
 
@@ -57,7 +54,23 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             sage: x*y == y*x
             True
 
+        TESTS:
+
+        The ``field`` we're given must be real::
+
+            sage: JordanSpinEJA(2,QQbar)
+            Traceback (most recent call last):
+            ...
+            ValueError: field is not real
+
         """
+        if check:
+            if not field.is_subring(RR):
+                # Note: this does return true for the real algebraic
+                # field, and any quadratic field where we've specified
+                # a real embedding.
+                raise ValueError('field is not real')
+
         self._rank = rank
         self._natural_basis = natural_basis
 
@@ -153,26 +166,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         return self.from_vector(coords)
 
 
-    @staticmethod
-    def _max_test_case_size():
-        """
-        Return an integer "size" that is an upper bound on the size of
-        this algebra when it is used in a random test
-        case. Unfortunately, the term "size" is quite vague -- when
-        dealing with `R^n` under either the Hadamard or Jordan spin
-        product, the "size" refers to the dimension `n`. When dealing
-        with a matrix algebra (real symmetric or complex/quaternion
-        Hermitian), it refers to the size of the matrix, which is
-        far less than the dimension of the underlying vector space.
-
-        We default to five in this class, which is safe in `R^n`. The
-        matrix algebra subclasses (or any class where the "size" is
-        interpreted to be far less than the dimension) should override
-        with a smaller number.
-        """
-        return 5
-
-
     def _repr_(self):
         """
         Return a string representation of ``self``.
@@ -426,8 +419,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
         EXAMPLES:
 
-        Our inner product satisfies the Jordan axiom, which is also
-        referred to as "associativity" for a symmetric bilinear form::
+        Our inner product is "associative," which means the following for
+        a symmetric bilinear form::
 
             sage: set_random_seed()
             sage: J = random_eja()
@@ -456,9 +449,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             sage: J = ComplexHermitianEJA(3)
             sage: J.is_trivial()
             False
-            sage: A = J.zero().subalgebra_generated_by()
-            sage: A.is_trivial()
-            True
 
         """
         return self.dimension() == 0
@@ -632,14 +622,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         return self.linear_combination(zip(self.gens(), coeffs))
 
 
-    def random_element(self):
-        # Temporary workaround for https://trac.sagemath.org/ticket/28327
-        if self.is_trivial():
-            return self.zero()
-        else:
-            s = super(FiniteDimensionalEuclideanJordanAlgebra, self)
-            return s.random_element()
-
     def random_elements(self, count):
         """
         Return ``count`` random elements as a tuple.
@@ -660,27 +642,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         """
         return  tuple( self.random_element() for idx in xrange(count) )
 
-    @classmethod
-    def random_instance(cls, field=QQ, **kwargs):
-        """
-        Return a random instance of this type of algebra.
-
-        In subclasses for algebras that we know how to construct, this
-        is a shortcut for constructing test cases and examples.
-        """
-        if cls is FiniteDimensionalEuclideanJordanAlgebra:
-            # Red flag! But in theory we could do this I guess. The
-            # only finite-dimensional exceptional EJA is the
-            # octononions. So, we could just create an EJA from an
-            # associative matrix algebra (generated by a subset of
-            # elements) with the symmetric product. Or, we could punt
-            # to random_eja() here, override it in our subclasses, and
-            # not worry about it.
-            raise NotImplementedError
-
-        n = ZZ.random_element(cls._max_test_case_size()) + 1
-        return cls(n, field, **kwargs)
-
 
     def rank(self):
         """
@@ -757,7 +718,57 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
     Element = FiniteDimensionalEuclideanJordanAlgebraElement
 
 
-class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
+class KnownRankEJA(object):
+    """
+    A class for algebras that we actually know we can construct.  The
+    main issue is that, for most of our methods to make sense, we need
+    to know the rank of our algebra. Thus we can't simply generate a
+    "random" algebra, or even check that a given basis and product
+    satisfy the axioms; because even if everything looks OK, we wouldn't
+    know the rank we need to actuallty build the thing.
+
+    Not really a subclass of FDEJA because doing that causes method
+    resolution errors, e.g.
+
+      TypeError: Error when calling the metaclass bases
+      Cannot create a consistent method resolution
+      order (MRO) for bases FiniteDimensionalEuclideanJordanAlgebra,
+      KnownRankEJA
+
+    """
+    @staticmethod
+    def _max_test_case_size():
+        """
+        Return an integer "size" that is an upper bound on the size of
+        this algebra when it is used in a random test
+        case. Unfortunately, the term "size" is quite vague -- when
+        dealing with `R^n` under either the Hadamard or Jordan spin
+        product, the "size" refers to the dimension `n`. When dealing
+        with a matrix algebra (real symmetric or complex/quaternion
+        Hermitian), it refers to the size of the matrix, which is
+        far less than the dimension of the underlying vector space.
+
+        We default to five in this class, which is safe in `R^n`. The
+        matrix algebra subclasses (or any class where the "size" is
+        interpreted to be far less than the dimension) should override
+        with a smaller number.
+        """
+        return 5
+
+    @classmethod
+    def random_instance(cls, field=QQ, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+
+        Beware, this will crash for "most instances" because the
+        constructor below looks wrong.
+        """
+        n = ZZ.random_element(cls._max_test_case_size()) + 1
+        return cls(n, field, **kwargs)
+
+
+class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra,
+                              KnownRankEJA):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
     `R^n` under the Hadamard product.
@@ -830,7 +841,7 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
         return x.to_vector().inner_product(y.to_vector())
 
 
-def random_eja():
+def random_eja(field=QQ):
     """
     Return a "random" finite-dimensional Euclidean Jordan Algebra.
 
@@ -866,12 +877,8 @@ def random_eja():
         Euclidean Jordan algebra of dimension...
 
     """
-    classname = choice([RealCartesianProductEJA,
-                        JordanSpinEJA,
-                        RealSymmetricEJA,
-                        ComplexHermitianEJA,
-                        QuaternionHermitianEJA])
-    return classname.random_instance()
+    classname = choice(KnownRankEJA.__subclasses__())
+    return classname.random_instance(field=field)
 
 
 
@@ -906,7 +913,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
             z = R.gen()
             p = z**2 - 2
             if p.is_irreducible():
-                field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
+                field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
                 basis = tuple( s.change_ring(field) for s in basis )
             self._basis_normalizers = tuple(
                 ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
@@ -935,8 +942,9 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
         else:
             basis = ( (b/n) for (b,n) in izip(self.natural_basis(),
                                               self._basis_normalizers) )
-            field = self.base_ring().base_ring() # yeeeaahhhhhhh
-            J = MatrixEuclideanJordanAlgebra(field,
+
+            # Do this over the rationals and convert back at the end.
+            J = MatrixEuclideanJordanAlgebra(QQ,
                                              basis,
                                              self.rank(),
                                              normalize_basis=False)
@@ -945,7 +953,14 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
             # p might be missing some vars, have to substitute "optionally"
             pairs = izip(x.base_ring().gens(), self._basis_normalizers)
             substitutions = { v: v*c for (v,c) in pairs }
-            return p.subs(substitutions)
+            result = p.subs(substitutions)
+
+            # The result of "subs" can be either a coefficient-ring
+            # element or a polynomial. Gotta handle both cases.
+            if result in QQ:
+                return self.base_ring()(result)
+            else:
+                return result.change_ring(self.base_ring())
 
 
     @staticmethod
@@ -1008,6 +1023,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
         Xu = cls.real_unembed(X)
         Yu = cls.real_unembed(Y)
         tr = (Xu*Yu).trace()
+
         if tr in RLF:
             # It's real already.
             return tr
@@ -1041,7 +1057,7 @@ class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         return M
 
 
-class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
+class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra, KnownRankEJA):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
@@ -1062,6 +1078,14 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
         sage: e2*e2
         e2
 
+    In theory, our "field" can be any subfield of the reals::
+
+        sage: RealSymmetricEJA(2, AA)
+        Euclidean Jordan algebra of dimension 3 over Algebraic Real Field
+        sage: RealSymmetricEJA(2, RR)
+        Euclidean Jordan algebra of dimension 3 over Real Field with
+        53 bits of precision
+
     TESTS:
 
     The dimension of this algebra is `(n^2 + n) / 2`::
@@ -1202,15 +1226,17 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         n = M.nrows()
         if M.ncols() != n:
             raise ValueError("the matrix 'M' must be square")
-        field = M.base_ring()
+
+        # We don't need any adjoined elements...
+        field = M.base_ring().base_ring()
+
         blocks = []
         for z in M.list():
-            a = z.vector()[0] # real part, I guess
-            b = z.vector()[1] # imag part, I guess
+            a = z.list()[0] # real part, I guess
+            b = z.list()[1] # imag part, I guess
             blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
 
-        # We can drop the imaginaries here.
-        return matrix.block(field.base_ring(), n, blocks)
+        return matrix.block(field, n, blocks)
 
 
     @staticmethod
@@ -1251,10 +1277,12 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         if not n.mod(2).is_zero():
             raise ValueError("the matrix 'M' must be a complex embedding")
 
-        field = M.base_ring() # This should already have sqrt2
+        # If "M" was normalized, its base ring might have roots
+        # adjoined and they can stick around after unembedding.
+        field = M.base_ring()
         R = PolynomialRing(field, 'z')
         z = R.gen()
-        F = NumberField(z**2 + 1,'i', embedding=CLF(-1).sqrt())
+        F = field.extension(z**2 + 1, 'i', embedding=CLF(-1).sqrt())
         i = F.gen()
 
         # Go top-left to bottom-right (reading order), converting every
@@ -1304,7 +1332,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
 
 
-class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
+class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra, KnownRankEJA):
     """
     The rank-n simple EJA consisting of complex Hermitian n-by-n
     matrices over the real numbers, the usual symmetric Jordan product,
@@ -1315,6 +1343,16 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
 
         sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
 
+    EXAMPLES:
+
+    In theory, our "field" can be any subfield of the reals::
+
+        sage: ComplexHermitianEJA(2, AA)
+        Euclidean Jordan algebra of dimension 4 over Algebraic Real Field
+        sage: ComplexHermitianEJA(2, RR)
+        Euclidean Jordan algebra of dimension 4 over Real Field with
+        53 bits of precision
+
     TESTS:
 
     The dimension of this algebra is `n^2`::
@@ -1393,7 +1431,7 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
         """
         R = PolynomialRing(field, 'z')
         z = R.gen()
-        F = NumberField(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
+        F = field.extension(z**2 + 1, 'I')
         I = F.gen()
 
         # This is like the symmetric case, but we need to be careful:
@@ -1528,7 +1566,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         if M.ncols() != n:
             raise ValueError("the matrix 'M' must be square")
         if not n.mod(4).is_zero():
-            raise ValueError("the matrix 'M' must be a complex embedding")
+            raise ValueError("the matrix 'M' must be a quaternion embedding")
 
         # Use the base ring of the matrix to ensure that its entries can be
         # multiplied by elements of the quaternion algebra.
@@ -1588,7 +1626,8 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
 
 
-class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
+class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra,
+                             KnownRankEJA):
     """
     The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
     matrices, the usual symmetric Jordan product, and the
@@ -1599,6 +1638,16 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
 
         sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
 
+    EXAMPLES:
+
+    In theory, our "field" can be any subfield of the reals::
+
+        sage: QuaternionHermitianEJA(2, AA)
+        Euclidean Jordan algebra of dimension 6 over Algebraic Real Field
+        sage: QuaternionHermitianEJA(2, RR)
+        Euclidean Jordan algebra of dimension 6 over Real Field with
+        53 bits of precision
+
     TESTS:
 
     The dimension of this algebra is `2*n^2 - n`::
@@ -1699,7 +1748,10 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
                     S.append(Sij_J)
                     Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
                     S.append(Sij_K)
-        return S
+
+        # Since we embedded these, we can drop back to the "field" that we
+        # started with instead of the quaternion algebra "Q".
+        return ( s.change_ring(field) for s in S )
 
 
     def __init__(self, n, field=QQ, **kwargs):
@@ -1707,7 +1759,7 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
         super(QuaternionHermitianEJA,self).__init__(field, basis, n, **kwargs)
 
 
-class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
+class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):
     """
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the usual inner product and jordan product ``x*y =