]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
Revert "eja: factor out a separate class used by cartesian_product()."
[sage.d.git] / mjo / eja / eja_algebra.py
index 99d89c4ab461de5b33861737499e3afca0a51d90..55b8207ddc3f881e8d98f245bf0275bc4b947334 100644 (file)
@@ -64,7 +64,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                  associative=False,
                  check_field=True,
                  check_axioms=True,
-                 prefix='e'):
+                 prefix='e',
+                 category=None):
 
         if check_field:
             if not field.is_subring(RR):
@@ -93,11 +94,12 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 raise ValueError("inner-product is not commutative")
 
 
-        category = MagmaticAlgebras(field).FiniteDimensional()
-        category = category.WithBasis().Unital()
-        if associative:
-            # Element subalgebras can take advantage of this.
-            category = category.Associative()
+        if category is None:
+            category = MagmaticAlgebras(field).FiniteDimensional()
+            category = category.WithBasis().Unital()
+            if associative:
+                # Element subalgebras can take advantage of this.
+                category = category.Associative()
 
         # Call the superclass constructor so that we can use its from_vector()
         # method to build our multiplication table.
@@ -2740,25 +2742,47 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
 
     """
     def __init__(self, modules, **kwargs):
-        CombinatorialFreeModule_CartesianProduct.__init__(self, modules, **kwargs)
+        CombinatorialFreeModule_CartesianProduct.__init__(self,
+                                                          modules,
+                                                          **kwargs)
         field = modules[0].base_ring()
         if not all( J.base_ring() == field for J in modules ):
             raise ValueError("all factors must share the same base field")
 
-        M = cartesian_product( [J.matrix_space() for J in modules] )
-
-        m = len(modules)
-        W = VectorSpace(field,m)
-        self._matrix_basis = []
-        for k in range(m):
-            for a in modules[k].matrix_basis():
-                v = W.zero().list()
-                v[k] = a
-                self._matrix_basis.append(M(v))
-
-        self._matrix_basis = tuple(self._matrix_basis)
-
-        n = len(self._matrix_basis)
+        basis = tuple( b.to_vector().column() for b in self.basis() )
+
+        # Define jordan/inner products that operate on the basis.
+        def jordan_product(x_mat,y_mat):
+            x = self.from_vector(_mat2vec(x_mat))
+            y = self.from_vector(_mat2vec(y_mat))
+            return self.cartesian_jordan_product(x,y).to_vector().column()
+
+        def inner_product(x_mat, y_mat):
+            x = self.from_vector(_mat2vec(x_mat))
+            y = self.from_vector(_mat2vec(y_mat))
+            return self.cartesian_inner_product(x,y)
+
+        # Use whatever category the superclass came up with. Usually
+        # some join of the EJA and Cartesian product
+        # categories. There's no need to check the field since it
+        # already came from an EJA. Likewise the axioms are guaranteed
+        # to be satisfied. We can't orthonormalize by default because
+        # there's no way to pass "orthonormalize=False" to
+        # cartesian_product(...) when the base ring is QQ and
+        # orthonormalizing would give us irrational entries.
+        #
+        # TODO: create a separate constructor that is capable of
+        # orthonormalizing and is only used by the cartesian_product()
+        # thingy.
+        FiniteDimensionalEJA.__init__(self,
+                                      basis,
+                                      jordan_product,
+                                      inner_product,
+                                      field=field,
+                                      orthonormalize=False,
+                                      check_field=False,
+                                      check_axioms=False,
+                                      category=self.category())
         # TODO:
         #
         # Initialize the FDEJA class, too. Does this override the
@@ -2778,10 +2802,15 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
             ....:                                  HadamardEJA,
-            ....:                                  RealSymmetricEJA)
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        The projection morphisms are Euclidean Jordan algebra
+        operators::
 
             sage: J1 = HadamardEJA(2)
             sage: J2 = RealSymmetricEJA(2)
@@ -2808,6 +2837,21 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
             Real Field
 
+        The projections work the way you'd expect on the vector
+        representation of an element::
+
+            sage: J1 = JordanSpinEJA(2)
+            sage: J2 = ComplexHermitianEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: pi_left = J.cartesian_projection(0)
+            sage: pi_right = J.cartesian_projection(1)
+            sage: pi_left(J.one()).to_vector()
+            (1, 0)
+            sage: pi_right(J.one()).to_vector()
+            (1, 0, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 1, 0, 0, 1)
+
         TESTS:
 
         The answer never changes::
@@ -2823,12 +2867,8 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
 
         """
         Ji = self.cartesian_factors()[i]
-        # We reimplement the CombinatorialFreeModule superclass method
-        # because if we don't, something gets messed up with the caching
-        # and the answer changes the second time you run it. See the TESTS.
-        Pi = self._module_morphism(lambda j_t: Ji.monomial(j_t[1])
-                                   if i == j_t[0] else Ji.zero(),
-                                   codomain=Ji)
+        # Requires the fix on Trac 31421/31422 to work!
+        Pi = super().cartesian_projection(i)
         return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
 
     @cached_method
@@ -2837,10 +2877,14 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
             ....:                                  HadamardEJA,
             ....:                                  RealSymmetricEJA)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        The embedding morphisms are Euclidean Jordan algebra
+        operators::
 
             sage: J1 = HadamardEJA(2)
             sage: J2 = RealSymmetricEJA(2)
@@ -2872,6 +2916,29 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             Algebraic Real Field (+) Euclidean Jordan algebra of
             dimension 3 over Algebraic Real Field
 
+        The embeddings work the way you'd expect on the vector
+        representation of an element::
+
+            sage: J1 = JordanSpinEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: iota_left = J.cartesian_embedding(0)
+            sage: iota_right = J.cartesian_embedding(1)
+            sage: iota_left(J1.zero()) == J.zero()
+            True
+            sage: iota_right(J2.zero()) == J.zero()
+            True
+            sage: J1.one().to_vector()
+            (1, 0, 0)
+            sage: iota_left(J1.one()).to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: J2.one().to_vector()
+            (1, 0, 1)
+            sage: iota_right(J2.one()).to_vector()
+            (0, 0, 0, 1, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 0, 1, 0, 1)
+
         TESTS:
 
         The answer never changes::
@@ -2885,25 +2952,83 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             sage: E0 == E1
             True
 
+        Composing a projection with the corresponding inclusion should
+        produce the identity map, and mismatching them should produce
+        the zero map::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: iota_left = J.cartesian_embedding(0)
+            sage: iota_right = J.cartesian_embedding(1)
+            sage: pi_left = J.cartesian_projection(0)
+            sage: pi_right = J.cartesian_projection(1)
+            sage: pi_left*iota_left == J1.one().operator()
+            True
+            sage: pi_right*iota_right == J2.one().operator()
+            True
+            sage: (pi_left*iota_right).is_zero()
+            True
+            sage: (pi_right*iota_left).is_zero()
+            True
+
         """
         Ji = self.cartesian_factors()[i]
-        # We reimplement the CombinatorialFreeModule superclass method
-        # because if we don't, something gets messed up with the caching
-        # and the answer changes the second time you run it. See the TESTS.
-        Ei = Ji._module_morphism(lambda t: self.monomial((i, t)), codomain=self)
+        # Requires the fix on Trac 31421/31422 to work!
+        Ei = super().cartesian_embedding(i)
         return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
 
 
+    def cartesian_jordan_product(self, x, y):
+        r"""
+        The componentwise Jordan product.
+
+        We project ``x`` and ``y`` onto our factors, and add up the
+        Jordan products from the subalgebras. This may still be useful
+        after (if) the default Jordan product in the Cartesian product
+        algebra is overridden.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  JordanSpinEJA)
+
+        EXAMPLE::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = JordanSpinEJA(3)
+            sage: J = cartesian_product([J1,J2])
+            sage: x1 = J1.from_vector(vector(QQ,(1,2,1)))
+            sage: y1 = J1.from_vector(vector(QQ,(1,0,2)))
+            sage: x2 = J2.from_vector(vector(QQ,(1,2,3)))
+            sage: y2 = J2.from_vector(vector(QQ,(1,1,1)))
+            sage: z1 = J.from_vector(vector(QQ,(1,2,1,1,2,3)))
+            sage: z2 = J.from_vector(vector(QQ,(1,0,2,1,1,1)))
+            sage: (x1*y1).to_vector()
+            (1, 0, 2)
+            sage: (x2*y2).to_vector()
+            (6, 3, 4)
+            sage: J.cartesian_jordan_product(z1,z2).to_vector()
+            (1, 0, 2, 6, 3, 4)
+
+        """
+        m = len(self.cartesian_factors())
+        projections = ( self.cartesian_projection(i) for i in range(m) )
+        products = ( P(x)*P(y) for P in projections )
+        return self._cartesian_product_of_elements(tuple(products))
+
     def cartesian_inner_product(self, x, y):
         r"""
         The standard componentwise Cartesian inner-product.
 
         We project ``x`` and ``y`` onto our factors, and add up the
-        inner-products from the subalgebras.
+        inner-products from the subalgebras. This may still be useful
+        after (if) the default inner product in the Cartesian product
+        algebra is overridden.
 
         SETUP::
 
-
             sage: from mjo.eja.eja_algebra import (HadamardEJA,
             ....:                                  QuaternionHermitianEJA)
 
@@ -2931,114 +3056,8 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         return sum( P(x).inner_product(P(y)) for P in projections )
 
 
-FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
-
-
-#     def projections(self):
-#         r"""
-#         Return a pair of projections onto this algebra's factors.
-
-#         SETUP::
-
-#             sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-#             ....:                                  ComplexHermitianEJA,
-#             ....:                                  DirectSumEJA)
-
-#         EXAMPLES::
-
-#             sage: J1 = JordanSpinEJA(2)
-#             sage: J2 = ComplexHermitianEJA(2)
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: (pi_left, pi_right) = J.projections()
-#             sage: J.one().to_vector()
-#             (1, 0, 1, 0, 0, 1)
-#             sage: pi_left(J.one()).to_vector()
-#             (1, 0)
-#             sage: pi_right(J.one()).to_vector()
-#             (1, 0, 0, 1)
-
-#         """
-#         (J1,J2) = self.factors()
-#         m = J1.dimension()
-#         n = J2.dimension()
-#         V_basis = self.vector_space().basis()
-#         # Need to specify the dimensions explicitly so that we don't
-#         # wind up with a zero-by-zero matrix when we want e.g. a
-#         # zero-by-two matrix (important for composing things).
-#         P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
-#         P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
-#         pi_left = FiniteDimensionalEJAOperator(self,J1,P1)
-#         pi_right = FiniteDimensionalEJAOperator(self,J2,P2)
-#         return (pi_left, pi_right)
-
-#     def inclusions(self):
-#         r"""
-#         Return the pair of inclusion maps from our factors into us.
-
-#         SETUP::
-
-#             sage: from mjo.eja.eja_algebra import (random_eja,
-#             ....:                                  JordanSpinEJA,
-#             ....:                                  RealSymmetricEJA,
-#             ....:                                  DirectSumEJA)
-
-#         EXAMPLES::
-
-#             sage: J1 = JordanSpinEJA(3)
-#             sage: J2 = RealSymmetricEJA(2)
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: (iota_left, iota_right) = J.inclusions()
-#             sage: iota_left(J1.zero()) == J.zero()
-#             True
-#             sage: iota_right(J2.zero()) == J.zero()
-#             True
-#             sage: J1.one().to_vector()
-#             (1, 0, 0)
-#             sage: iota_left(J1.one()).to_vector()
-#             (1, 0, 0, 0, 0, 0)
-#             sage: J2.one().to_vector()
-#             (1, 0, 1)
-#             sage: iota_right(J2.one()).to_vector()
-#             (0, 0, 0, 1, 0, 1)
-#             sage: J.one().to_vector()
-#             (1, 0, 0, 1, 0, 1)
-
-#         TESTS:
-
-#         Composing a projection with the corresponding inclusion should
-#         produce the identity map, and mismatching them should produce
-#         the zero map::
-
-#             sage: set_random_seed()
-#             sage: J1 = random_eja()
-#             sage: J2 = random_eja()
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: (iota_left, iota_right) = J.inclusions()
-#             sage: (pi_left, pi_right) = J.projections()
-#             sage: pi_left*iota_left == J1.one().operator()
-#             True
-#             sage: pi_right*iota_right == J2.one().operator()
-#             True
-#             sage: (pi_left*iota_right).is_zero()
-#             True
-#             sage: (pi_right*iota_left).is_zero()
-#             True
-
-#         """
-#         (J1,J2) = self.factors()
-#         m = J1.dimension()
-#         n = J2.dimension()
-#         V_basis = self.vector_space().basis()
-#         # Need to specify the dimensions explicitly so that we don't
-#         # wind up with a zero-by-zero matrix when we want e.g. a
-#         # two-by-zero matrix (important for composing things).
-#         I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
-#         I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
-#         iota_left = FiniteDimensionalEJAOperator(J1,self,I1)
-#         iota_right = FiniteDimensionalEJAOperator(J2,self,I2)
-#         return (iota_left, iota_right)
-
-
+    Element = FiniteDimensionalEJAElement
 
 
+FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
 random_eja = ConcreteEJA.random_instance