]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: factor out a class for real-embedded matrices.
[sage.d.git] / mjo / eja / eja_algebra.py
index ad2afbda465ca37bb1f0e940b8e5fb72b89cdba0..5bf597565b2ae292032c3f0a532763d7889cd2a8 100644 (file)
 """
-Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
-specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
-are used in optimization, and have some additional nice methods beyond
-what can be supported in a general Jordan Algebra.
+Representations and constructions for Euclidean Jordan algebras.
+
+A Euclidean Jordan algebra is a Jordan algebra that has some
+additional properties:
+
+  1.   It is finite-dimensional.
+  2.   Its scalar field is the real numbers.
+  3a.  An inner product is defined on it, and...
+  3b.  That inner product is compatible with the Jordan product
+       in the sense that `<x*y,z> = <y,x*z>` for all elements
+       `x,y,z` in the algebra.
+
+Every Euclidean Jordan algebra is formally-real: for any two elements
+`x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
+0`. Conversely, every finite-dimensional formally-real Jordan algebra
+can be made into a Euclidean Jordan algebra with an appropriate choice
+of inner-product.
+
+Formally-real Jordan algebras were originally studied as a framework
+for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
+symmetric cone optimization, since every symmetric cone arises as the
+cone of squares in some Euclidean Jordan algebra.
+
+It is known that every Euclidean Jordan algebra decomposes into an
+orthogonal direct sum (essentially, a Cartesian product) of simple
+algebras, and that moreover, up to Jordan-algebra isomorphism, there
+are only five families of simple algebras. We provide constructions
+for these simple algebras:
+
+  * :class:`BilinearFormEJA`
+  * :class:`RealSymmetricEJA`
+  * :class:`ComplexHermitianEJA`
+  * :class:`QuaternionHermitianEJA`
+
+Missing from this list is the algebra of three-by-three octononion
+Hermitian matrices, as there is (as of yet) no implementation of the
+octonions in SageMath. In addition to these, we provide two other
+example constructions,
+
+  * :class:`HadamardEJA`
+  * :class:`TrivialEJA`
+
+The Jordan spin algebra is a bilinear form algebra where the bilinear
+form is the identity. The Hadamard EJA is simply a Cartesian product
+of one-dimensional spin algebras. And last but not least, the trivial
+EJA is exactly what you think. Cartesian products of these are also
+supported using the usual ``cartesian_product()`` function; as a
+result, we support (up to isomorphism) all Euclidean Jordan algebras
+that don't involve octonions.
+
+SETUP::
+
+    sage: from mjo.eja.eja_algebra import random_eja
+
+EXAMPLES::
+
+    sage: random_eja()
+    Euclidean Jordan algebra of dimension...
 """
 
+from itertools import repeat
 
-
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
-from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis
-from sage.functions.other import sqrt
+from sage.categories.magmatic_algebras import MagmaticAlgebras
+from sage.categories.sets_cat import cartesian_product
+from sage.combinat.free_module import CombinatorialFreeModule
 from sage.matrix.constructor import matrix
+from sage.matrix.matrix_space import MatrixSpace
 from sage.misc.cachefunc import cached_method
-from sage.misc.prandom import choice
-from sage.modules.free_module import VectorSpace
-from sage.modules.free_module_element import vector
-from sage.rings.integer_ring import ZZ
-from sage.rings.number_field.number_field import QuadraticField
-from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
-from sage.rings.rational_field import QQ
-from sage.structure.element import is_Matrix
-from sage.structure.category_object import normalize_names
+from sage.misc.table import table
+from sage.modules.free_module import FreeModule, VectorSpace
+from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
+                            PolynomialRing,
+                            QuadraticField)
+from mjo.eja.eja_element import FiniteDimensionalEJAElement
+from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
+from mjo.eja.eja_utils import _all2list, _mat2vec
+
+class FiniteDimensionalEJA(CombinatorialFreeModule):
+    r"""
+    A finite-dimensional Euclidean Jordan algebra.
+
+    INPUT:
+
+      - ``basis`` -- a tuple; a tuple of basis elements in "matrix
+        form," which must be the same form as the arguments to
+        ``jordan_product`` and ``inner_product``. In reality, "matrix
+        form" can be either vectors, matrices, or a Cartesian product
+        (ordered tuple) of vectors or matrices. All of these would
+        ideally be vector spaces in sage with no special-casing
+        needed; but in reality we turn vectors into column-matrices
+        and Cartesian products `(a,b)` into column matrices
+        `(a,b)^{T}` after converting `a` and `b` themselves.
+
+      - ``jordan_product`` -- a function; afunction of two ``basis``
+        elements (in matrix form) that returns their jordan product,
+        also in matrix form; this will be applied to ``basis`` to
+        compute a multiplication table for the algebra.
+
+      - ``inner_product`` -- a function; a function of two ``basis``
+        elements (in matrix form) that returns their inner
+        product. This will be applied to ``basis`` to compute an
+        inner-product table (basically a matrix) for this algebra.
+
+      - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
+        field for the algebra.
+
+      - ``orthonormalize`` -- boolean (default: ``True``); whether or
+        not to orthonormalize the basis. Doing so is expensive and
+        generally rules out using the rationals as your ``field``, but
+        is required for spectral decompositions.
 
-from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
+    SETUP::
 
+        sage: from mjo.eja.eja_algebra import random_eja
 
-class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
-    @staticmethod
-    def __classcall_private__(cls,
-                              field,
-                              mult_table,
-                              rank,
-                              names='e',
-                              assume_associative=False,
-                              category=None,
-                              natural_basis=None):
-        n = len(mult_table)
-        mult_table = [b.base_extend(field) for b in mult_table]
-        for b in mult_table:
-            b.set_immutable()
-            if not (is_Matrix(b) and b.dimensions() == (n, n)):
-                raise ValueError("input is not a multiplication table")
-        mult_table = tuple(mult_table)
-
-        cat = FiniteDimensionalAlgebrasWithBasis(field)
-        cat.or_subcategory(category)
-        if assume_associative:
-            cat = cat.Associative()
-
-        names = normalize_names(n, names)
-
-        fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
-        return fda.__classcall__(cls,
-                                 field,
-                                 mult_table,
-                                 rank=rank,
-                                 assume_associative=assume_associative,
-                                 names=names,
-                                 category=cat,
-                                 natural_basis=natural_basis)
+    TESTS:
+
+    We should compute that an element subalgebra is associative even
+    if we circumvent the element method::
+
+        sage: set_random_seed()
+        sage: J = random_eja(field=QQ,orthonormalize=False)
+        sage: x = J.random_element()
+        sage: A = x.subalgebra_generated_by(orthonormalize=False)
+        sage: basis = tuple(b.superalgebra_element() for b in A.basis())
+        sage: J.subalgebra(basis, orthonormalize=False).is_associative()
+        True
 
+    """
+    Element = FiniteDimensionalEJAElement
 
     def __init__(self,
-                 field,
-                 mult_table,
-                 rank,
-                 names='e',
-                 assume_associative=False,
-                 category=None,
-                 natural_basis=None):
+                 basis,
+                 jordan_product,
+                 inner_product,
+                 field=AA,
+                 orthonormalize=True,
+                 associative=None,
+                 cartesian_product=False,
+                 check_field=True,
+                 check_axioms=True,
+                 prefix="b"):
+
+        n = len(basis)
+
+        if check_field:
+            if not field.is_subring(RR):
+                # Note: this does return true for the real algebraic
+                # field, the rationals, and any quadratic field where
+                # we've specified a real embedding.
+                raise ValueError("scalar field is not real")
+
+        if check_axioms:
+            # Check commutativity of the Jordan and inner-products.
+            # This has to be done before we build the multiplication
+            # and inner-product tables/matrices, because we take
+            # advantage of symmetry in the process.
+            if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
+                        for bi in basis
+                        for bj in basis ):
+                raise ValueError("Jordan product is not commutative")
+
+            if not all( inner_product(bi,bj) == inner_product(bj,bi)
+                        for bi in basis
+                        for bj in basis ):
+                raise ValueError("inner-product is not commutative")
+
+
+        category = MagmaticAlgebras(field).FiniteDimensional()
+        category = category.WithBasis().Unital().Commutative()
+
+        if associative is None:
+            # We should figure it out. As with check_axioms, we have to do
+            # this without the help of the _jordan_product_is_associative()
+            # method because we need to know the category before we
+            # initialize the algebra.
+            associative = all( jordan_product(jordan_product(bi,bj),bk)
+                               ==
+                               jordan_product(bi,jordan_product(bj,bk))
+                               for bi in basis
+                               for bj in basis
+                               for bk in basis)
+
+        if associative:
+            # Element subalgebras can take advantage of this.
+            category = category.Associative()
+        if cartesian_product:
+            # Use join() here because otherwise we only get the
+            # "Cartesian product of..." and not the things themselves.
+            category = category.join([category,
+                                      category.CartesianProducts()])
+
+        # Call the superclass constructor so that we can use its from_vector()
+        # method to build our multiplication table.
+        CombinatorialFreeModule.__init__(self,
+                                         field,
+                                         range(n),
+                                         prefix=prefix,
+                                         category=category,
+                                         bracket=False)
+
+        # Now comes all of the hard work. We'll be constructing an
+        # ambient vector space V that our (vectorized) basis lives in,
+        # as well as a subspace W of V spanned by those (vectorized)
+        # basis elements. The W-coordinates are the coefficients that
+        # we see in things like x = 1*b1 + 2*b2.
+        vector_basis = basis
+
+        degree = 0
+        if n > 0:
+            degree = len(_all2list(basis[0]))
+
+        # Build an ambient space that fits our matrix basis when
+        # written out as "long vectors."
+        V = VectorSpace(field, degree)
+
+        # The matrix that will hole the orthonormal -> unorthonormal
+        # coordinate transformation.
+        self._deortho_matrix = None
+
+        if orthonormalize:
+            # Save a copy of the un-orthonormalized basis for later.
+            # Convert it to ambient V (vector) coordinates while we're
+            # at it, because we'd have to do it later anyway.
+            deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
+
+            from mjo.eja.eja_utils import gram_schmidt
+            basis = tuple(gram_schmidt(basis, inner_product))
+
+        # Save the (possibly orthonormalized) matrix basis for
+        # later...
+        self._matrix_basis = basis
+
+        # Now create the vector space for the algebra, which will have
+        # its own set of non-ambient coordinates (in terms of the
+        # supplied basis).
+        vector_basis = tuple( V(_all2list(b)) for b in basis )
+        W = V.span_of_basis( vector_basis, check=check_axioms)
+
+        if orthonormalize:
+            # Now "W" is the vector space of our algebra coordinates. The
+            # variables "X1", "X2",...  refer to the entries of vectors in
+            # W. Thus to convert back and forth between the orthonormal
+            # coordinates and the given ones, we need to stick the original
+            # basis in W.
+            U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
+            self._deortho_matrix = matrix( U.coordinate_vector(q)
+                                           for q in vector_basis )
+
+
+        # Now we actually compute the multiplication and inner-product
+        # tables/matrices using the possibly-orthonormalized basis.
+        self._inner_product_matrix = matrix.identity(field, n)
+        self._multiplication_table = [ [0 for j in range(i+1)]
+                                       for i in range(n) ]
+
+        # Note: the Jordan and inner-products are defined in terms
+        # of the ambient basis. It's important that their arguments
+        # are in ambient coordinates as well.
+        for i in range(n):
+            for j in range(i+1):
+                # ortho basis w.r.t. ambient coords
+                q_i = basis[i]
+                q_j = basis[j]
+
+                # The jordan product returns a matrixy answer, so we
+                # have to convert it to the algebra coordinates.
+                elt = jordan_product(q_i, q_j)
+                elt = W.coordinate_vector(V(_all2list(elt)))
+                self._multiplication_table[i][j] = self.from_vector(elt)
+
+                if not orthonormalize:
+                    # If we're orthonormalizing the basis with respect
+                    # to an inner-product, then the inner-product
+                    # matrix with respect to the resulting basis is
+                    # just going to be the identity.
+                    ip = inner_product(q_i, q_j)
+                    self._inner_product_matrix[i,j] = ip
+                    self._inner_product_matrix[j,i] = ip
+
+        self._inner_product_matrix._cache = {'hermitian': True}
+        self._inner_product_matrix.set_immutable()
+
+        if check_axioms:
+            if not self._is_jordanian():
+                raise ValueError("Jordan identity does not hold")
+            if not self._inner_product_is_associative():
+                raise ValueError("inner product is not associative")
+
+
+    def _coerce_map_from_base_ring(self):
+        """
+        Disable the map from the base ring into the algebra.
+
+        Performing a nonsense conversion like this automatically
+        is counterpedagogical. The fallback is to try the usual
+        element constructor, which should also fail.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J(1)
+            Traceback (most recent call last):
+            ...
+            ValueError: not an element of this algebra
+
         """
+        return None
+
+
+    def product_on_basis(self, i, j):
+        r"""
+        Returns the Jordan product of the `i` and `j`th basis elements.
+
+        This completely defines the Jordan product on the algebra, and
+        is used direclty by our superclass machinery to implement
+        :meth:`product`.
+
         SETUP::
 
             sage: from mjo.eja.eja_algebra import random_eja
 
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: n = J.dimension()
+            sage: bi = J.zero()
+            sage: bj = J.zero()
+            sage: bi_bj = J.zero()*J.zero()
+            sage: if n > 0:
+            ....:     i = ZZ.random_element(n)
+            ....:     j = ZZ.random_element(n)
+            ....:     bi = J.monomial(i)
+            ....:     bj = J.monomial(j)
+            ....:     bi_bj = J.product_on_basis(i,j)
+            sage: bi*bj == bi_bj
+            True
+
+        """
+        # We only stored the lower-triangular portion of the
+        # multiplication table.
+        if j <= i:
+            return self._multiplication_table[i][j]
+        else:
+            return self._multiplication_table[j][i]
+
+    def inner_product(self, x, y):
+        """
+        The inner product associated with this Euclidean Jordan algebra.
+
+        Defaults to the trace inner product, but can be overridden by
+        subclasses if they are sure that the necessary properties are
+        satisfied.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  HadamardEJA,
+            ....:                                  BilinearFormEJA)
+
         EXAMPLES:
 
-        By definition, Jordan multiplication commutes::
+        Our inner product is "associative," which means the following for
+        a symmetric bilinear form::
 
             sage: set_random_seed()
             sage: J = random_eja()
+            sage: x,y,z = J.random_elements(3)
+            sage: (x*y).inner_product(z) == y.inner_product(x*z)
+            True
+
+        TESTS:
+
+        Ensure that this is the usual inner product for the algebras
+        over `R^n`::
+
+            sage: set_random_seed()
+            sage: J = HadamardEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: actual = x.inner_product(y)
+            sage: expected = x.to_vector().inner_product(y.to_vector())
+            sage: actual == expected
+            True
+
+        Ensure that this is one-half of the trace inner-product in a
+        BilinearFormEJA that isn't just the reals (when ``n`` isn't
+        one). This is in Faraut and Koranyi, and also my "On the
+        symmetry..." paper::
+
+            sage: set_random_seed()
+            sage: J = BilinearFormEJA.random_instance()
+            sage: n = J.dimension()
             sage: x = J.random_element()
             sage: y = J.random_element()
-            sage: x*y == y*x
+            sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
             True
 
         """
-        self._rank = rank
-        self._natural_basis = natural_basis
-        self._multiplication_table = mult_table
-        fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
-        fda.__init__(field,
-                     mult_table,
-                     names=names,
-                     category=category)
+        B = self._inner_product_matrix
+        return (B*x.to_vector()).inner_product(y.to_vector())
 
 
-    def _repr_(self):
-        """
-        Return a string representation of ``self``.
+    def is_associative(self):
+        r"""
+        Return whether or not this algebra's Jordan product is associative.
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import JordanSpinEJA
-
-        TESTS:
+            sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
 
-        Ensure that it says what we think it says::
+        EXAMPLES::
 
-            sage: JordanSpinEJA(2, field=QQ)
-            Euclidean Jordan algebra of degree 2 over Rational Field
-            sage: JordanSpinEJA(3, field=RDF)
-            Euclidean Jordan algebra of degree 3 over Real Double Field
+            sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
+            sage: J.is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A.is_associative()
+            True
 
         """
-        fmt = "Euclidean Jordan algebra of degree {} over {}"
-        return fmt.format(self.degree(), self.base_ring())
+        return "Associative" in self.category().axioms()
 
+    def _is_commutative(self):
+        r"""
+        Whether or not this algebra's multiplication table is commutative.
 
-    def _a_regular_element(self):
+        This method should of course always return ``True``, unless
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid multiplication table.
         """
-        Guess a regular element. Needed to compute the basis for our
-        characteristic polynomial coefficients.
+        return all( x*y == y*x for x in self.gens() for y in self.gens() )
+
+    def _is_jordanian(self):
+        r"""
+        Whether or not this algebra's multiplication table respects the
+        Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
+
+        We only check one arrangement of `x` and `y`, so for a
+        ``True`` result to be truly true, you should also check
+        :meth:`_is_commutative`. This method should of course always
+        return ``True``, unless this algebra was constructed with
+        ``check_axioms=False`` and passed an invalid multiplication table.
+        """
+        return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
+                    ==
+                    (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
+                    for i in range(self.dimension())
+                    for j in range(self.dimension()) )
+
+    def _jordan_product_is_associative(self):
+        r"""
+        Return whether or not this algebra's Jordan product is
+        associative; that is, whether or not `x*(y*z) = (x*y)*z`
+        for all `x,y,x`.
+
+        This method should agree with :meth:`is_associative` unless
+        you lied about the value of the ``associative`` parameter
+        when you constructed the algebra.
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import random_eja
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  QuaternionHermitianEJA)
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(4, orthonormalize=False)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by()
+            sage: A._jordan_product_is_associative()
+            True
+
+        ::
+
+            sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A._jordan_product_is_associative()
+            True
+
+        ::
+
+            sage: J = QuaternionHermitianEJA(2)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by()
+            sage: A._jordan_product_is_associative()
+            True
 
         TESTS:
 
-        Ensure that this hacky method succeeds for every algebra that we
-        know how to construct::
+        The values we've presupplied to the constructors agree with
+        the computation::
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: J._a_regular_element().is_regular()
+            sage: J.is_associative() == J._jordan_product_is_associative()
             True
 
         """
-        gs = self.gens()
-        z = self.sum( (i+1)*gs[i] for i in range(len(gs)) )
-        if not z.is_regular():
-            raise ValueError("don't know a regular element")
-        return z
+        R = self.base_ring()
+
+        # Used to check whether or not something is zero.
+        epsilon = R.zero()
+        if not R.is_exact():
+            # I don't know of any examples that make this magnitude
+            # necessary because I don't know how to make an
+            # associative algebra when the element subalgebra
+            # construction is unreliable (as it is over RDF; we can't
+            # find the degree of an element because we can't compute
+            # the rank of a matrix). But even multiplication of floats
+            # is non-associative, so *some* epsilon is needed... let's
+            # just take the one from _inner_product_is_associative?
+            epsilon = 1e-15
+
+        for i in range(self.dimension()):
+            for j in range(self.dimension()):
+                for k in range(self.dimension()):
+                    x = self.monomial(i)
+                    y = self.monomial(j)
+                    z = self.monomial(k)
+                    diff = (x*y)*z - x*(y*z)
+
+                    if diff.norm() > epsilon:
+                        return False
+
+        return True
+
+    def _inner_product_is_associative(self):
+        r"""
+        Return whether or not this algebra's inner product `B` is
+        associative; that is, whether or not `B(xy,z) = B(x,yz)`.
+
+        This method should of course always return ``True``, unless
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid Jordan or inner-product.
+        """
+        R = self.base_ring()
 
+        # Used to check whether or not something is zero.
+        epsilon = R.zero()
+        if not R.is_exact():
+            # This choice is sufficient to allow the construction of
+            # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
+            epsilon = 1e-15
 
-    @cached_method
-    def _charpoly_basis_space(self):
-        """
-        Return the vector space spanned by the basis used in our
-        characteristic polynomial coefficients. This is used not only to
-        compute those coefficients, but also any time we need to
-        evaluate the coefficients (like when we compute the trace or
-        determinant).
+        for i in range(self.dimension()):
+            for j in range(self.dimension()):
+                for k in range(self.dimension()):
+                    x = self.monomial(i)
+                    y = self.monomial(j)
+                    z = self.monomial(k)
+                    diff = (x*y).inner_product(z) - x.inner_product(y*z)
+
+                    if diff.abs() > epsilon:
+                        return False
+
+        return True
+
+    def _element_constructor_(self, elt):
         """
-        z = self._a_regular_element()
-        V = self.vector_space()
-        V1 = V.span_of_basis( (z**k).vector() for k in range(self.rank()) )
-        b =  (V1.basis() + V1.complement().basis())
-        return V.span_of_basis(b)
+        Construct an element of this algebra from its vector or matrix
+        representation.
 
+        This gets called only after the parent element _call_ method
+        fails to find a coercion for the argument.
 
-    @cached_method
-    def _charpoly_coeff(self, i):
-        """
-        Return the coefficient polynomial "a_{i}" of this algebra's
-        general characteristic polynomial.
-
-        Having this be a separate cached method lets us compute and
-        store the trace/determinant (a_{r-1} and a_{0} respectively)
-        separate from the entire characteristic polynomial.
-        """
-        (A_of_x, x, xr, detA) = self._charpoly_matrix_system()
-        R = A_of_x.base_ring()
-        if i >= self.rank():
-            # Guaranteed by theory
-            return R.zero()
-
-        # Danger: the in-place modification is done for performance
-        # reasons (reconstructing a matrix with huge polynomial
-        # entries is slow), but I don't know how cached_method works,
-        # so it's highly possible that we're modifying some global
-        # list variable by reference, here. In other words, you
-        # probably shouldn't call this method twice on the same
-        # algebra, at the same time, in two threads
-        Ai_orig = A_of_x.column(i)
-        A_of_x.set_column(i,xr)
-        numerator = A_of_x.det()
-        A_of_x.set_column(i,Ai_orig)
-
-        # We're relying on the theory here to ensure that each a_i is
-        # indeed back in R, and the added negative signs are to make
-        # the whole charpoly expression sum to zero.
-        return R(-numerator/detA)
+        SETUP::
 
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA)
 
-    @cached_method
-    def _charpoly_matrix_system(self):
-        """
-        Compute the matrix whose entries A_ij are polynomials in
-        X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector
-        corresponding to `x^r` and the determinent of the matrix A =
-        [A_ij]. In other words, all of the fixed (cachable) data needed
-        to compute the coefficients of the characteristic polynomial.
-        """
-        r = self.rank()
-        n = self.dimension()
+        EXAMPLES:
+
+        The identity in `S^n` is converted to the identity in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: I = matrix.identity(QQ,3)
+            sage: J(I) == J.one()
+            True
+
+        This skew-symmetric matrix can't be represented in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: A = matrix(QQ,3, lambda i,j: i-j)
+            sage: J(A)
+            Traceback (most recent call last):
+            ...
+            ValueError: not an element of this algebra
+
+        Tuples work as well, provided that the matrix basis for the
+        algebra consists of them::
 
-        # Construct a new algebra over a multivariate polynomial ring...
-        names = ['X' + str(i) for i in range(1,n+1)]
-        R = PolynomialRing(self.base_ring(), names)
-        J = FiniteDimensionalEuclideanJordanAlgebra(R,
-                                                    self._multiplication_table,
-                                                    rank=r)
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
+            b1 + b5
 
-        idmat = matrix.identity(J.base_ring(), n)
+        TESTS:
+
+        Ensure that we can convert any element back and forth
+        faithfully between its matrix and algebra representations::
 
-        W = self._charpoly_basis_space()
-        W = W.change_ring(R.fraction_field())
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: J(x.to_matrix()) == x
+            True
 
-        # Starting with the standard coordinates x = (X1,X2,...,Xn)
-        # and then converting the entries to W-coordinates allows us
-        # to pass in the standard coordinates to the charpoly and get
-        # back the right answer. Specifically, with x = (X1,X2,...,Xn),
-        # we have
+        We cannot coerce elements between algebras just because their
+        matrix representations are compatible::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = JordanSpinEJA(3)
+            sage: J2(J1.one())
+            Traceback (most recent call last):
+            ...
+            ValueError: not an element of this algebra
+            sage: J1(J2.zero())
+            Traceback (most recent call last):
+            ...
+            ValueError: not an element of this algebra
+        """
+        msg = "not an element of this algebra"
+        if elt in self.base_ring():
+            # Ensure that no base ring -> algebra coercion is performed
+            # by this method. There's some stupidity in sage that would
+            # otherwise propagate to this method; for example, sage thinks
+            # that the integer 3 belongs to the space of 2-by-2 matrices.
+            raise ValueError(msg)
+
+        try:
+            # Try to convert a vector into a column-matrix...
+            elt = elt.column()
+        except (AttributeError, TypeError):
+            # and ignore failure, because we weren't really expecting
+            # a vector as an argument anyway.
+            pass
+
+        if elt not in self.matrix_space():
+            raise ValueError(msg)
+
+        # Thanks for nothing! Matrix spaces aren't vector spaces in
+        # Sage, so we have to figure out its matrix-basis coordinates
+        # ourselves. We use the basis space's ring instead of the
+        # element's ring because the basis space might be an algebraic
+        # closure whereas the base ring of the 3-by-3 identity matrix
+        # could be QQ instead of QQbar.
         #
-        #   W.coordinates(x^2) eval'd at (standard z-coords)
-        #     =
-        #   W-coords of (z^2)
-        #     =
-        #   W-coords of (standard coords of x^2 eval'd at std-coords of z)
+        # And, we also have to handle Cartesian product bases (when
+        # the matrix basis consists of tuples) here. The "good news"
+        # is that we're already converting everything to long vectors,
+        # and that strategy works for tuples as well.
         #
-        # We want the middle equivalent thing in our matrix, but use
-        # the first equivalent thing instead so that we can pass in
-        # standard coordinates.
-        x = J(W(R.gens()))
-        l1 = [matrix.column(W.coordinates((x**k).vector())) for k in range(r)]
-        l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)]
-        A_of_x = matrix.block(R, 1, n, (l1 + l2))
-        xr = W.coordinates((x**r).vector())
-        return (A_of_x, x, xr, A_of_x.det())
+        # We pass check=False because the matrix basis is "guaranteed"
+        # to be linearly independent... right? Ha ha.
+        elt = _all2list(elt)
+        V = VectorSpace(self.base_ring(), len(elt))
+        W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()),
+                             check=False)
+
+        try:
+            coords = W.coordinate_vector(V(elt))
+        except ArithmeticError:  # vector is not in free module
+            raise ValueError(msg)
+
+        return self.from_vector(coords)
+
+    def _repr_(self):
+        """
+        Return a string representation of ``self``.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import JordanSpinEJA
+
+        TESTS:
+
+        Ensure that it says what we think it says::
+
+            sage: JordanSpinEJA(2, field=AA)
+            Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
+            sage: JordanSpinEJA(3, field=RDF)
+            Euclidean Jordan algebra of dimension 3 over Real Double Field
+
+        """
+        fmt = "Euclidean Jordan algebra of dimension {} over {}"
+        return fmt.format(self.dimension(), self.base_ring())
 
 
     @cached_method
-    def characteristic_polynomial(self):
+    def characteristic_polynomial_of(self):
         """
-        Return a characteristic polynomial that works for all elements
-        of this algebra.
+        Return the algebra's "characteristic polynomial of" function,
+        which is itself a multivariate polynomial that, when evaluated
+        at the coordinates of some algebra element, returns that
+        element's characteristic polynomial.
 
         The resulting polynomial has `n+1` variables, where `n` is the
         dimension of this algebra. The first `n` variables correspond to
@@ -260,7 +725,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import JordanSpinEJA
+            sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
 
         EXAMPLES:
 
@@ -268,42 +733,64 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         Alizadeh, Example 11.11::
 
             sage: J = JordanSpinEJA(3)
-            sage: p = J.characteristic_polynomial(); p
+            sage: p = J.characteristic_polynomial_of(); p
             X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
-            sage: xvec = J.one().vector()
+            sage: xvec = J.one().to_vector()
             sage: p(*xvec)
             t^2 - 2*t + 1
 
+        By definition, the characteristic polynomial is a monic
+        degree-zero polynomial in a rank-zero algebra. Note that
+        Cayley-Hamilton is indeed satisfied since the polynomial
+        ``1`` evaluates to the identity element of the algebra on
+        any argument::
+
+            sage: J = TrivialEJA()
+            sage: J.characteristic_polynomial_of()
+            1
+
         """
         r = self.rank()
         n = self.dimension()
 
-        # The list of coefficient polynomials a_1, a_2, ..., a_n.
-        a = [ self._charpoly_coeff(i) for i in range(n) ]
+        # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
+        a = self._charpoly_coefficients()
 
         # We go to a bit of trouble here to reorder the
         # indeterminates, so that it's easier to evaluate the
         # characteristic polynomial at x's coordinates and get back
         # something in terms of t, which is what we want.
-        R = a[0].parent()
         S = PolynomialRing(self.base_ring(),'t')
         t = S.gen(0)
-        S = PolynomialRing(S, R.variable_names())
-        t = S(t)
-
-        # Note: all entries past the rth should be zero. The
-        # coefficient of the highest power (x^r) is 1, but it doesn't
-        # appear in the solution vector which contains coefficients
-        # for the other powers (to make them sum to x^r).
-        if (r < n):
-            a[r] = 1 # corresponds to x^r
-        else:
-            # When the rank is equal to the dimension, trying to
-            # assign a[r] goes out-of-bounds.
-            a.append(1) # corresponds to x^r
+        if r > 0:
+            R = a[0].parent()
+            S = PolynomialRing(S, R.variable_names())
+            t = S(t)
+
+        return (t**r + sum( a[k]*(t**k) for k in range(r) ))
+
+    def coordinate_polynomial_ring(self):
+        r"""
+        The multivariate polynomial ring in which this algebra's
+        :meth:`characteristic_polynomial_of` lives.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES::
 
-        return sum( a[k]*(t**k) for k in range(len(a)) )
+            sage: J = HadamardEJA(2)
+            sage: J.coordinate_polynomial_ring()
+            Multivariate Polynomial Ring in X1, X2...
+            sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
+            sage: J.coordinate_polynomial_ring()
+            Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
 
+        """
+        var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
+        return PolynomialRing(self.base_ring(), var_names)
 
     def inner_product(self, x, y):
         """
@@ -315,39 +802,144 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import random_eja
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  HadamardEJA,
+            ....:                                  BilinearFormEJA)
 
         EXAMPLES:
 
-        The inner product must satisfy its axiom for this algebra to truly
-        be a Euclidean Jordan Algebra::
+        Our inner product is "associative," which means the following for
+        a symmetric bilinear form::
 
             sage: set_random_seed()
             sage: J = random_eja()
+            sage: x,y,z = J.random_elements(3)
+            sage: (x*y).inner_product(z) == y.inner_product(x*z)
+            True
+
+        TESTS:
+
+        Ensure that this is the usual inner product for the algebras
+        over `R^n`::
+
+            sage: set_random_seed()
+            sage: J = HadamardEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: actual = x.inner_product(y)
+            sage: expected = x.to_vector().inner_product(y.to_vector())
+            sage: actual == expected
+            True
+
+        Ensure that this is one-half of the trace inner-product in a
+        BilinearFormEJA that isn't just the reals (when ``n`` isn't
+        one). This is in Faraut and Koranyi, and also my "On the
+        symmetry..." paper::
+
+            sage: set_random_seed()
+            sage: J = BilinearFormEJA.random_instance()
+            sage: n = J.dimension()
             sage: x = J.random_element()
             sage: y = J.random_element()
-            sage: z = J.random_element()
-            sage: (x*y).inner_product(z) == y.inner_product(x*z)
+            sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
+            True
+        """
+        B = self._inner_product_matrix
+        return (B*x.to_vector()).inner_product(y.to_vector())
+
+
+    def is_trivial(self):
+        """
+        Return whether or not this algebra is trivial.
+
+        A trivial algebra contains only the zero element.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  TrivialEJA)
+
+        EXAMPLES::
+
+            sage: J = ComplexHermitianEJA(3)
+            sage: J.is_trivial()
+            False
+
+        ::
+
+            sage: J = TrivialEJA()
+            sage: J.is_trivial()
             True
 
         """
-        if (not x in self) or (not y in self):
-            raise TypeError("arguments must live in this algebra")
-        return x.trace_inner_product(y)
+        return self.dimension() == 0
+
+
+    def multiplication_table(self):
+        """
+        Return a visual representation of this algebra's multiplication
+        table (on basis elements).
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import JordanSpinEJA
+
+        EXAMPLES::
 
+            sage: J = JordanSpinEJA(4)
+            sage: J.multiplication_table()
+            +----++----+----+----+----+
+            | *  || b0 | b1 | b2 | b3 |
+            +====++====+====+====+====+
+            | b0 || b0 | b1 | b2 | b3 |
+            +----++----+----+----+----+
+            | b1 || b1 | b0 | 0  | 0  |
+            +----++----+----+----+----+
+            | b2 || b2 | 0  | b0 | 0  |
+            +----++----+----+----+----+
+            | b3 || b3 | 0  | 0  | b0 |
+            +----++----+----+----+----+
 
-    def natural_basis(self):
         """
-        Return a more-natural representation of this algebra's basis.
+        n = self.dimension()
+        # Prepend the header row.
+        M = [["*"] + list(self.gens())]
 
-        Every finite-dimensional Euclidean Jordan Algebra is a direct
-        sum of five simple algebras, four of which comprise Hermitian
-        matrices. This method returns the original "natural" basis
-        for our underlying vector space. (Typically, the natural basis
-        is used to construct the multiplication table in the first place.)
+        # And to each subsequent row, prepend an entry that belongs to
+        # the left-side "header column."
+        M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
+                                    for j in range(n) ]
+               for i in range(n) ]
 
-        Note that this will always return a matrix. The standard basis
-        in `R^n` will be returned as `n`-by-`1` column matrices.
+        return table(M, header_row=True, header_column=True, frame=True)
+
+
+    def matrix_basis(self):
+        """
+        Return an (often more natural) representation of this algebras
+        basis as an ordered tuple of matrices.
+
+        Every finite-dimensional Euclidean Jordan Algebra is a, up to
+        Jordan isomorphism, a direct sum of five simple
+        algebras---four of which comprise Hermitian matrices. And the
+        last type of algebra can of course be thought of as `n`-by-`1`
+        column matrices (ambiguusly called column vectors) to avoid
+        special cases. As a result, matrices (and column vectors) are
+        a natural representation format for Euclidean Jordan algebra
+        elements.
+
+        But, when we construct an algebra from a basis of matrices,
+        those matrix representations are lost in favor of coordinate
+        vectors *with respect to* that basis. We could eventually
+        convert back if we tried hard enough, but having the original
+        representations handy is valuable enough that we simply store
+        them and return them from this method.
+
+        Why implement this for non-matrix algebras? Avoiding special
+        cases for the :class:`BilinearFormEJA` pays with simplicity in
+        its own right. But mainly, we would like to be able to assume
+        that elements of a :class:`CartesianProductEJA` can be displayed
+        nicely, without having to have special classes for direct sums
+        one of whose components was a matrix algebra.
 
         SETUP::
 
@@ -358,2033 +950,1906 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             sage: J = RealSymmetricEJA(2)
             sage: J.basis()
-            Family (e0, e1, e2)
-            sage: J.natural_basis()
+            Finite family {0: b0, 1: b1, 2: b2}
+            sage: J.matrix_basis()
             (
-            [1 0]  [0 1]  [0 0]
-            [0 0], [1 0], [0 1]
+            [1 0]  [                  0 0.7071067811865475?]  [0 0]
+            [0 0], [0.7071067811865475?                   0], [0 1]
             )
 
         ::
 
             sage: J = JordanSpinEJA(2)
             sage: J.basis()
-            Family (e0, e1)
-            sage: J.natural_basis()
+            Finite family {0: b0, 1: b1}
+            sage: J.matrix_basis()
             (
             [1]  [0]
             [0], [1]
             )
-
         """
-        if self._natural_basis is None:
-            return tuple( b.vector().column() for b in self.basis() )
-        else:
-            return self._natural_basis
+        return self._matrix_basis
 
 
-    def rank(self):
+    def matrix_space(self):
         """
-        Return the rank of this EJA.
-
-        ALGORITHM:
+        Return the matrix space in which this algebra's elements live, if
+        we think of them as matrices (including column vectors of the
+        appropriate size).
 
-        The author knows of no algorithm to compute the rank of an EJA
-        where only the multiplication table is known. In lieu of one, we
-        require the rank to be specified when the algebra is created,
-        and simply pass along that number here.
+        "By default" this will be an `n`-by-`1` column-matrix space,
+        except when the algebra is trivial. There it's `n`-by-`n`
+        (where `n` is zero), to ensure that two elements of the matrix
+        space (empty matrices) can be multiplied. For algebras of
+        matrices, this returns the space in which their
+        real embeddings live.
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-            ....:                                  RealSymmetricEJA,
-            ....:                                  ComplexHermitianEJA,
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  JordanSpinEJA,
             ....:                                  QuaternionHermitianEJA,
-            ....:                                  random_eja)
+            ....:                                  TrivialEJA)
 
         EXAMPLES:
 
-        The rank of the Jordan spin algebra is always two::
-
-            sage: JordanSpinEJA(2).rank()
-            2
-            sage: JordanSpinEJA(3).rank()
-            2
-            sage: JordanSpinEJA(4).rank()
-            2
+        By default, the matrix representation is just a column-matrix
+        equivalent to the vector representation::
 
-        The rank of the `n`-by-`n` Hermitian real, complex, or
-        quaternion matrices is `n`::
+            sage: J = JordanSpinEJA(3)
+            sage: J.matrix_space()
+            Full MatrixSpace of 3 by 1 dense matrices over Algebraic
+            Real Field
 
-            sage: RealSymmetricEJA(2).rank()
-            2
-            sage: ComplexHermitianEJA(2).rank()
-            2
-            sage: QuaternionHermitianEJA(2).rank()
-            2
-            sage: RealSymmetricEJA(5).rank()
-            5
-            sage: ComplexHermitianEJA(5).rank()
-            5
-            sage: QuaternionHermitianEJA(5).rank()
-            5
+        The matrix representation in the trivial algebra is
+        zero-by-zero instead of the usual `n`-by-one::
 
-        TESTS:
+            sage: J = TrivialEJA()
+            sage: J.matrix_space()
+            Full MatrixSpace of 0 by 0 dense matrices over Algebraic
+            Real Field
 
-        Ensure that every EJA that we know how to construct has a
-        positive integer rank::
+        The matrix space for complex/quaternion Hermitian matrix EJA
+        is the space in which their real-embeddings live, not the
+        original complex/quaternion matrix space::
 
-            sage: set_random_seed()
-            sage: r = random_eja().rank()
-            sage: r in ZZ and r > 0
-            True
+            sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J.matrix_space()
+            Full MatrixSpace of 4 by 4 dense matrices over Rational Field
+            sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
+            sage: J.matrix_space()
+            Full MatrixSpace of 4 by 4 dense matrices over Rational Field
 
         """
-        return self._rank
+        if self.is_trivial():
+            return MatrixSpace(self.base_ring(), 0)
+        else:
+            return self.matrix_basis()[0].parent()
 
 
-    def vector_space(self):
+    @cached_method
+    def one(self):
         """
-        Return the vector space that underlies this algebra.
+        Return the unit element of this algebra.
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  random_eja)
 
-        EXAMPLES::
+        EXAMPLES:
 
-            sage: J = RealSymmetricEJA(2)
-            sage: J.vector_space()
-            Vector space of dimension 3 over Rational Field
+        We can compute unit element in the Hadamard EJA::
 
-        """
-        return self.zero().vector().parent().ambient_vector_space()
+            sage: J = HadamardEJA(5)
+            sage: J.one()
+            b0 + b1 + b2 + b3 + b4
 
+        The unit element in the Hadamard EJA is inherited in the
+        subalgebras generated by its elements::
 
-    class Element(FiniteDimensionalAlgebraElement):
-        """
-        An element of a Euclidean Jordan algebra.
-        """
+            sage: J = HadamardEJA(5)
+            sage: J.one()
+            b0 + b1 + b2 + b3 + b4
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A.one()
+            c0
+            sage: A.one().superalgebra_element()
+            b0 + b1 + b2 + b3 + b4
 
-        def __dir__(self):
-            """
-            Oh man, I should not be doing this. This hides the "disabled"
-            methods ``left_matrix`` and ``matrix`` from introspection;
-            in particular it removes them from tab-completion.
-            """
-            return filter(lambda s: s not in ['left_matrix', 'matrix'],
-                          dir(self.__class__) )
+        TESTS:
 
+        The identity element acts like the identity, regardless of
+        whether or not we orthonormalize::
 
-        def __init__(self, A, elt=None):
-            """
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: J.one()*x == x and x*J.one() == x
+            True
+            sage: A = x.subalgebra_generated_by()
+            sage: y = A.random_element()
+            sage: A.one()*y == y and y*A.one() == y
+            True
 
-            SETUP::
+        ::
 
-                sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
-                ....:                                  random_eja)
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: x = J.random_element()
+            sage: J.one()*x == x and x*J.one() == x
+            True
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: y = A.random_element()
+            sage: A.one()*y == y and y*A.one() == y
+            True
 
-            EXAMPLES:
+        The matrix of the unit element's operator is the identity,
+        regardless of the base field and whether or not we
+        orthonormalize::
 
-            The identity in `S^n` is converted to the identity in the EJA::
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: actual = J.one().operator().matrix()
+            sage: expected = matrix.identity(J.base_ring(), J.dimension())
+            sage: actual == expected
+            True
+            sage: x = J.random_element()
+            sage: A = x.subalgebra_generated_by()
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
+            sage: actual == expected
+            True
 
-                sage: J = RealSymmetricEJA(3)
-                sage: I = matrix.identity(QQ,3)
-                sage: J(I) == J.one()
-                True
+        ::
 
-            This skew-symmetric matrix can't be represented in the EJA::
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: actual = J.one().operator().matrix()
+            sage: expected = matrix.identity(J.base_ring(), J.dimension())
+            sage: actual == expected
+            True
+            sage: x = J.random_element()
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
+            sage: actual == expected
+            True
 
-                sage: J = RealSymmetricEJA(3)
-                sage: A = matrix(QQ,3, lambda i,j: i-j)
-                sage: J(A)
-                Traceback (most recent call last):
-                ...
-                ArithmeticError: vector is not in free module
+        Ensure that the cached unit element (often precomputed by
+        hand) agrees with the computed one::
 
-            TESTS:
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: cached = J.one()
+            sage: J.one.clear_cache()
+            sage: J.one() == cached
+            True
 
-            Ensure that we can convert any element of the parent's
-            underlying vector space back into an algebra element whose
-            vector representation is what we started with::
+        ::
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: v = J.vector_space().random_element()
-                sage: J(v).vector() == v
-                True
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: cached = J.one()
+            sage: J.one.clear_cache()
+            sage: J.one() == cached
+            True
 
-            """
-            # Goal: if we're given a matrix, and if it lives in our
-            # parent algebra's "natural ambient space," convert it
-            # into an algebra element.
-            #
-            # The catch is, we make a recursive call after converting
-            # the given matrix into a vector that lives in the algebra.
-            # This we need to try the parent class initializer first,
-            # to avoid recursing forever if we're given something that
-            # already fits into the algebra, but also happens to live
-            # in the parent's "natural ambient space" (this happens with
-            # vectors in R^n).
-            try:
-                FiniteDimensionalAlgebraElement.__init__(self, A, elt)
-            except ValueError:
-                natural_basis = A.natural_basis()
-                if elt in natural_basis[0].matrix_space():
-                    # Thanks for nothing! Matrix spaces aren't vector
-                    # spaces in Sage, so we have to figure out its
-                    # natural-basis coordinates ourselves.
-                    V = VectorSpace(elt.base_ring(), elt.nrows()**2)
-                    W = V.span( _mat2vec(s) for s in natural_basis )
-                    coords =  W.coordinates(_mat2vec(elt))
-                    FiniteDimensionalAlgebraElement.__init__(self, A, coords)
-
-        def __pow__(self, n):
-            """
-            Return ``self`` raised to the power ``n``.
-
-            Jordan algebras are always power-associative; see for
-            example Faraut and Koranyi, Proposition II.1.2 (ii).
-
-            We have to override this because our superclass uses row
-            vectors instead of column vectors! We, on the other hand,
-            assume column vectors everywhere.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The definition of `x^2` is the unambiguous `x*x`::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x*x == (x^2)
-                True
-
-            A few examples of power-associativity::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x*(x*x)*(x*x) == x^5
-                True
-                sage: (x*x)*(x*x*x) == x^5
-                True
-
-            We also know that powers operator-commute (Koecher, Chapter
-            III, Corollary 1)::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: m = ZZ.random_element(0,10)
-                sage: n = ZZ.random_element(0,10)
-                sage: Lxm = (x^m).operator()
-                sage: Lxn = (x^n).operator()
-                sage: Lxm*Lxn == Lxn*Lxm
-                True
-
-            """
-            if n == 0:
-                return self.parent().one()
-            elif n == 1:
-                return self
-            else:
-                return (self.operator()**(n-1))(self)
+        """
+        # We can brute-force compute the matrices of the operators
+        # that correspond to the basis elements of this algebra.
+        # If some linear combination of those basis elements is the
+        # algebra identity, then the same linear combination of
+        # their matrices has to be the identity matrix.
+        #
+        # Of course, matrices aren't vectors in sage, so we have to
+        # appeal to the "long vectors" isometry.
+        oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
 
+        # Now we use basic linear algebra to find the coefficients,
+        # of the matrices-as-vectors-linear-combination, which should
+        # work for the original algebra basis too.
+        A = matrix(self.base_ring(), oper_vecs)
 
-        def apply_univariate_polynomial(self, p):
-            """
-            Apply the univariate polynomial ``p`` to this element.
+        # We used the isometry on the left-hand side already, but we
+        # still need to do it for the right-hand side. Recall that we
+        # wanted something that summed to the identity matrix.
+        b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
 
-            A priori, SageMath won't allow us to apply a univariate
-            polynomial to an element of an EJA, because we don't know
-            that EJAs are rings (they are usually not associative). Of
-            course, we know that EJAs are power-associative, so the
-            operation is ultimately kosher. This function sidesteps
-            the CAS to get the answer we want and expect.
+        # Now if there's an identity element in the algebra, this
+        # should work. We solve on the left to avoid having to
+        # transpose the matrix "A".
+        return self.from_vector(A.solve_left(b))
 
-            SETUP::
 
-                sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
-                ....:                                  random_eja)
+    def peirce_decomposition(self, c):
+        """
+        The Peirce decomposition of this algebra relative to the
+        idempotent ``c``.
 
-            EXAMPLES::
+        In the future, this can be extended to a complete system of
+        orthogonal idempotents.
 
-                sage: R = PolynomialRing(QQ, 't')
-                sage: t = R.gen(0)
-                sage: p = t^4 - t^3 + 5*t - 2
-                sage: J = RealCartesianProductEJA(5)
-                sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
-                True
+        INPUT:
 
-            TESTS:
+          - ``c`` -- an idempotent of this algebra.
 
-            We should always get back an element of the algebra::
+        OUTPUT:
 
-                sage: set_random_seed()
-                sage: p = PolynomialRing(QQ, 't').random_element()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: x.apply_univariate_polynomial(p) in J
-                True
+        A triple (J0, J5, J1) containing two subalgebras and one subspace
+        of this algebra,
 
-            """
-            if len(p.variables()) > 1:
-                raise ValueError("not a univariate polynomial")
-            P = self.parent()
-            R = P.base_ring()
-            # Convert the coeficcients to the parent's base ring,
-            # because a priori they might live in an (unnecessarily)
-            # larger ring for which P.sum() would fail below.
-            cs = [ R(c) for c in p.coefficients(sparse=False) ]
-            return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
+          - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
+            corresponding to the eigenvalue zero.
 
+          - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
+            corresponding to the eigenvalue one-half.
 
-        def characteristic_polynomial(self):
-            """
-            Return the characteristic polynomial of this element.
+          - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
+            corresponding to the eigenvalue one.
 
-            SETUP::
+        These are the only possible eigenspaces for that operator, and this
+        algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
+        orthogonal, and are subalgebras of this algebra with the appropriate
+        restrictions.
 
-                sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
-
-            EXAMPLES:
-
-            The rank of `R^3` is three, and the minimal polynomial of
-            the identity element is `(t-1)` from which it follows that
-            the characteristic polynomial should be `(t-1)^3`::
-
-                sage: J = RealCartesianProductEJA(3)
-                sage: J.one().characteristic_polynomial()
-                t^3 - 3*t^2 + 3*t - 1
+        SETUP::
 
-            Likewise, the characteristic of the zero element in the
-            rank-three algebra `R^{n}` should be `t^{3}`::
+            sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
 
-                sage: J = RealCartesianProductEJA(3)
-                sage: J.zero().characteristic_polynomial()
-                t^3
+        EXAMPLES:
 
-            TESTS:
+        The canonical example comes from the symmetric matrices, which
+        decompose into diagonal and off-diagonal parts::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: C = matrix(QQ, [ [1,0,0],
+            ....:                  [0,1,0],
+            ....:                  [0,0,0] ])
+            sage: c = J(C)
+            sage: J0,J5,J1 = J.peirce_decomposition(c)
+            sage: J0
+            Euclidean Jordan algebra of dimension 1...
+            sage: J5
+            Vector space of degree 6 and dimension 2...
+            sage: J1
+            Euclidean Jordan algebra of dimension 3...
+            sage: J0.one().to_matrix()
+            [0 0 0]
+            [0 0 0]
+            [0 0 1]
+            sage: orig_df = AA.options.display_format
+            sage: AA.options.display_format = 'radical'
+            sage: J.from_vector(J5.basis()[0]).to_matrix()
+            [          0           0 1/2*sqrt(2)]
+            [          0           0           0]
+            [1/2*sqrt(2)           0           0]
+            sage: J.from_vector(J5.basis()[1]).to_matrix()
+            [          0           0           0]
+            [          0           0 1/2*sqrt(2)]
+            [          0 1/2*sqrt(2)           0]
+            sage: AA.options.display_format = orig_df
+            sage: J1.one().to_matrix()
+            [1 0 0]
+            [0 1 0]
+            [0 0 0]
 
-            The characteristic polynomial of an element should evaluate
-            to zero on that element::
+        TESTS:
 
-                sage: set_random_seed()
-                sage: x = RealCartesianProductEJA(3).random_element()
-                sage: p = x.characteristic_polynomial()
-                sage: x.apply_univariate_polynomial(p)
-                0
+        Every algebra decomposes trivially with respect to its identity
+        element::
 
-            """
-            p = self.parent().characteristic_polynomial()
-            return p(*self.vector())
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J0,J5,J1 = J.peirce_decomposition(J.one())
+            sage: J0.dimension() == 0 and J5.dimension() == 0
+            True
+            sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
+            True
 
+        The decomposition is into eigenspaces, and its components are
+        therefore necessarily orthogonal. Moreover, the identity
+        elements in the two subalgebras are the projections onto their
+        respective subspaces of the superalgebra's identity element::
 
-        def inner_product(self, other):
-            """
-            Return the parent algebra's inner product of myself and ``other``.
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: if not J.is_trivial():
+            ....:     while x.is_nilpotent():
+            ....:         x = J.random_element()
+            sage: c = x.subalgebra_idempotent()
+            sage: J0,J5,J1 = J.peirce_decomposition(c)
+            sage: ipsum = 0
+            sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
+            ....:     w = w.superalgebra_element()
+            ....:     y = J.from_vector(y)
+            ....:     z = z.superalgebra_element()
+            ....:     ipsum += w.inner_product(y).abs()
+            ....:     ipsum += w.inner_product(z).abs()
+            ....:     ipsum += y.inner_product(z).abs()
+            sage: ipsum
+            0
+            sage: J1(c) == J1.one()
+            True
+            sage: J0(J.one() - c) == J0.one()
+            True
 
-            SETUP::
+        """
+        if not c.is_idempotent():
+            raise ValueError("element is not idempotent: %s" % c)
+
+        # Default these to what they should be if they turn out to be
+        # trivial, because eigenspaces_left() won't return eigenvalues
+        # corresponding to trivial spaces (e.g. it returns only the
+        # eigenspace corresponding to lambda=1 if you take the
+        # decomposition relative to the identity element).
+        trivial = self.subalgebra(())
+        J0 = trivial                          # eigenvalue zero
+        J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
+        J1 = trivial                          # eigenvalue one
+
+        for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
+            if eigval == ~(self.base_ring()(2)):
+                J5 = eigspace
+            else:
+                gens = tuple( self.from_vector(b) for b in eigspace.basis() )
+                subalg = self.subalgebra(gens, check_axioms=False)
+                if eigval == 0:
+                    J0 = subalg
+                elif eigval == 1:
+                    J1 = subalg
+                else:
+                    raise ValueError("unexpected eigenvalue: %s" % eigval)
 
-                sage: from mjo.eja.eja_algebra import (
-                ....:   ComplexHermitianEJA,
-                ....:   JordanSpinEJA,
-                ....:   QuaternionHermitianEJA,
-                ....:   RealSymmetricEJA,
-                ....:   random_eja)
+        return (J0, J5, J1)
 
-            EXAMPLES:
 
-            The inner product in the Jordan spin algebra is the usual
-            inner product on `R^n` (this example only works because the
-            basis for the Jordan algebra is the standard basis in `R^n`)::
+    def random_element(self, thorough=False):
+        r"""
+        Return a random element of this algebra.
 
-                sage: J = JordanSpinEJA(3)
-                sage: x = vector(QQ,[1,2,3])
-                sage: y = vector(QQ,[4,5,6])
-                sage: x.inner_product(y)
-                32
-                sage: J(x).inner_product(J(y))
-                32
+        Our algebra superclass method only returns a linear
+        combination of at most two basis elements. We instead
+        want the vector space "random element" method that
+        returns a more diverse selection.
 
-            The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
-            multiplication is the usual matrix multiplication in `S^n`,
-            so the inner product of the identity matrix with itself
-            should be the `n`::
-
-                sage: J = RealSymmetricEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
+        INPUT:
 
-            Likewise, the inner product on `C^n` is `<X,Y> =
-            Re(trace(X*Y))`, where we must necessarily take the real
-            part because the product of Hermitian matrices may not be
-            Hermitian::
-
-                sage: J = ComplexHermitianEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            Ditto for the quaternions::
-
-                sage: J = QuaternionHermitianEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            TESTS:
-
-            Ensure that we can always compute an inner product, and that
-            it gives us back a real number::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: x.inner_product(y) in RR
-                True
-
-            """
-            P = self.parent()
-            if not other in P:
-                raise TypeError("'other' must live in the same algebra")
-
-            return P.inner_product(self, other)
-
-
-        def operator_commutes_with(self, other):
-            """
-            Return whether or not this element operator-commutes
-            with ``other``.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            EXAMPLES:
-
-            The definition of a Jordan algebra says that any element
-            operator-commutes with its square::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.operator_commutes_with(x^2)
-                True
-
-            TESTS:
-
-            Test Lemma 1 from Chapter III of Koecher::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: u = J.random_element()
-                sage: v = J.random_element()
-                sage: lhs = u.operator_commutes_with(u*v)
-                sage: rhs = v.operator_commutes_with(u^2)
-                sage: lhs == rhs
-                True
-
-            Test the first polarization identity from my notes, Koecher
-            Chapter III, or from Baes (2.3)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: Lx = x.operator()
-                sage: Ly = y.operator()
-                sage: Lxx = (x*x).operator()
-                sage: Lxy = (x*y).operator()
-                sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
-                True
-
-            Test the second polarization identity from my notes or from
-            Baes (2.4)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: Lx = x.operator()
-                sage: Ly = y.operator()
-                sage: Lz = z.operator()
-                sage: Lzy = (z*y).operator()
-                sage: Lxy = (x*y).operator()
-                sage: Lxz = (x*z).operator()
-                sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
-                True
-
-            Test the third polarization identity from my notes or from
-            Baes (2.5)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: u = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: Lu = u.operator()
-                sage: Ly = y.operator()
-                sage: Lz = z.operator()
-                sage: Lzy = (z*y).operator()
-                sage: Luy = (u*y).operator()
-                sage: Luz = (u*z).operator()
-                sage: Luyz = (u*(y*z)).operator()
-                sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
-                sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
-                sage: bool(lhs == rhs)
-                True
-
-            """
-            if not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            A = self.operator()
-            B = other.operator()
-            return (A*B == B*A)
-
-
-        def det(self):
-            """
-            Return my determinant, the product of my eigenvalues.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(2)
-                sage: e0,e1 = J.gens()
-                sage: x = sum( J.gens() )
-                sage: x.det()
-                0
-
-            ::
-
-                sage: J = JordanSpinEJA(3)
-                sage: e0,e1,e2 = J.gens()
-                sage: x = sum( J.gens() )
-                sage: x.det()
-                -1
-
-            TESTS:
-
-            An element is invertible if and only if its determinant is
-            non-zero::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.is_invertible() == (x.det() != 0)
-                True
-
-            """
-            P = self.parent()
-            r = P.rank()
-            p = P._charpoly_coeff(0)
-            # The _charpoly_coeff function already adds the factor of
-            # -1 to ensure that _charpoly_coeff(0) is really what
-            # appears in front of t^{0} in the charpoly. However,
-            # we want (-1)^r times THAT for the determinant.
-            return ((-1)**r)*p(*self.vector())
-
-
-        def inverse(self):
-            """
-            Return the Jordan-multiplicative inverse of this element.
-
-            ALGORITHM:
+        - ``thorough`` -- (boolean; default False) whether or not we
+          should generate irrational coefficients for the random
+          element when our base ring is irrational; this slows the
+          algebra operations to a crawl, but any truly random method
+          should include them
 
-            We appeal to the quadratic representation as in Koecher's
-            Theorem 12 in Chapter III, Section 5.
-
-            SETUP::
+        """
+        # For a general base ring... maybe we can trust this to do the
+        # right thing? Unlikely, but.
+        V = self.vector_space()
+        v = V.random_element()
 
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
+        if self.base_ring() is AA:
+            # The "random element" method of the algebraic reals is
+            # stupid at the moment, and only returns integers between
+            # -2 and 2, inclusive:
+            #
+            #   https://trac.sagemath.org/ticket/30875
+            #
+            # Instead, we implement our own "random vector" method,
+            # and then coerce that into the algebra. We use the vector
+            # space degree here instead of the dimension because a
+            # subalgebra could (for example) be spanned by only two
+            # vectors, each with five coordinates.  We need to
+            # generate all five coordinates.
+            if thorough:
+                v *= QQbar.random_element().real()
+            else:
+                v *= QQ.random_element()
 
-            The inverse in the spin factor algebra is given in Alizadeh's
-            Example 11.11::
+        return self.from_vector(V.coordinate_vector(v))
 
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: while not x.is_invertible():
-                ....:     x = J.random_element()
-                sage: x_vec = x.vector()
-                sage: x0 = x_vec[0]
-                sage: x_bar = x_vec[1:]
-                sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
-                sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
-                sage: x_inverse = coeff*inv_vec
-                sage: x.inverse() == J(x_inverse)
-                True
+    def random_elements(self, count, thorough=False):
+        """
+        Return ``count`` random elements as a tuple.
 
-            TESTS:
+        INPUT:
 
-            The identity element is its own inverse::
+        - ``thorough`` -- (boolean; default False) whether or not we
+          should generate irrational coefficients for the random
+          elements when our base ring is irrational; this slows the
+          algebra operations to a crawl, but any truly random method
+          should include them
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().inverse() == J.one()
-                True
+        SETUP::
 
-            If an element has an inverse, it acts like one::
+            sage: from mjo.eja.eja_algebra import JordanSpinEJA
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
-                True
+        EXAMPLES::
 
-            The inverse of the inverse is what we started with::
+            sage: J = JordanSpinEJA(3)
+            sage: x,y,z = J.random_elements(3)
+            sage: all( [ x in J, y in J, z in J ])
+            True
+            sage: len( J.random_elements(10) ) == 10
+            True
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
-                True
+        """
+        return tuple( self.random_element(thorough)
+                      for idx in range(count) )
 
-            The zero element is never invertible::
 
-                sage: set_random_seed()
-                sage: J = random_eja().zero().inverse()
-                Traceback (most recent call last):
-                ...
-                ValueError: element is not invertible
+    @cached_method
+    def _charpoly_coefficients(self):
+        r"""
+        The `r` polynomial coefficients of the "characteristic polynomial
+        of" function.
 
-            """
-            if not self.is_invertible():
-                raise ValueError("element is not invertible")
+        SETUP::
 
-            return (~self.quadratic_representation())(self)
+            sage: from mjo.eja.eja_algebra import random_eja
 
+        TESTS:
 
-        def is_invertible(self):
-            """
-            Return whether or not this element is invertible.
+        The theory shows that these are all homogeneous polynomials of
+        a known degree::
 
-            ALGORITHM:
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
+            True
 
-            The usual way to do this is to check if the determinant is
-            zero, but we need the characteristic polynomial for the
-            determinant. The minimal polynomial is a lot easier to get,
-            so we use Corollary 2 in Chapter V of Koecher to check
-            whether or not the paren't algebra's zero element is a root
-            of this element's minimal polynomial.
+        """
+        n = self.dimension()
+        R = self.coordinate_polynomial_ring()
+        vars = R.gens()
+        F = R.fraction_field()
+
+        def L_x_i_j(i,j):
+            # From a result in my book, these are the entries of the
+            # basis representation of L_x.
+            return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
+                        for k in range(n) )
+
+        L_x = matrix(F, n, n, L_x_i_j)
+
+        r = None
+        if self.rank.is_in_cache():
+            r = self.rank()
+            # There's no need to pad the system with redundant
+            # columns if we *know* they'll be redundant.
+            n = r
+
+        # Compute an extra power in case the rank is equal to
+        # the dimension (otherwise, we would stop at x^(r-1)).
+        x_powers = [ (L_x**k)*self.one().to_vector()
+                     for k in range(n+1) ]
+        A = matrix.column(F, x_powers[:n])
+        AE = A.extended_echelon_form()
+        E = AE[:,n:]
+        A_rref = AE[:,:n]
+        if r is None:
+            r = A_rref.rank()
+        b = x_powers[r]
+
+        # The theory says that only the first "r" coefficients are
+        # nonzero, and they actually live in the original polynomial
+        # ring and not the fraction field. We negate them because in
+        # the actual characteristic polynomial, they get moved to the
+        # other side where x^r lives. We don't bother to trim A_rref
+        # down to a square matrix and solve the resulting system,
+        # because the upper-left r-by-r portion of A_rref is
+        # guaranteed to be the identity matrix, so e.g.
+        #
+        #   A_rref.solve_right(Y)
+        #
+        # would just be returning Y.
+        return (-E*b)[:r].change_ring(R)
 
-            Beware that we can't use the superclass method, because it
-            relies on the algebra being associative.
+    @cached_method
+    def rank(self):
+        r"""
+        Return the rank of this EJA.
 
-            SETUP::
+        This is a cached method because we know the rank a priori for
+        all of the algebras we can construct. Thus we can avoid the
+        expensive ``_charpoly_coefficients()`` call unless we truly
+        need to compute the whole characteristic polynomial.
 
-                sage: from mjo.eja.eja_algebra import random_eja
+        SETUP::
 
-            TESTS:
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  JordanSpinEJA,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  QuaternionHermitianEJA,
+            ....:                                  random_eja)
 
-            The identity element is always invertible::
+        EXAMPLES:
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().is_invertible()
-                True
+        The rank of the Jordan spin algebra is always two::
 
-            The zero element is never invertible::
+            sage: JordanSpinEJA(2).rank()
+            2
+            sage: JordanSpinEJA(3).rank()
+            2
+            sage: JordanSpinEJA(4).rank()
+            2
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.zero().is_invertible()
-                False
+        The rank of the `n`-by-`n` Hermitian real, complex, or
+        quaternion matrices is `n`::
 
-            """
-            zero = self.parent().zero()
-            p = self.minimal_polynomial()
-            return not (p(zero) == zero)
+            sage: RealSymmetricEJA(4).rank()
+            4
+            sage: ComplexHermitianEJA(3).rank()
+            3
+            sage: QuaternionHermitianEJA(2).rank()
+            2
 
+        TESTS:
 
-        def is_nilpotent(self):
-            """
-            Return whether or not some power of this element is zero.
+        Ensure that every EJA that we know how to construct has a
+        positive integer rank, unless the algebra is trivial in
+        which case its rank will be zero::
 
-            ALGORITHM:
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: r = J.rank()
+            sage: r in ZZ
+            True
+            sage: r > 0 or (r == 0 and J.is_trivial())
+            True
 
-            We use Theorem 5 in Chapter III of Koecher, which says that
-            an element ``x`` is nilpotent if and only if ``x.operator()``
-            is nilpotent. And it is a basic fact of linear algebra that
-            an operator on an `n`-dimensional space is nilpotent if and
-            only if, when raised to the `n`th power, it equals the zero
-            operator (for example, see Axler Corollary 8.8).
+        Ensure that computing the rank actually works, since the ranks
+        of all simple algebras are known and will be cached by default::
 
-            SETUP::
+            sage: set_random_seed()    # long time
+            sage: J = random_eja()     # long time
+            sage: cached = J.rank()    # long time
+            sage: J.rank.clear_cache() # long time
+            sage: J.rank() == cached   # long time
+            True
 
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
+        """
+        return len(self._charpoly_coefficients())
 
-            EXAMPLES::
 
-                sage: J = JordanSpinEJA(3)
-                sage: x = sum(J.gens())
-                sage: x.is_nilpotent()
-                False
+    def subalgebra(self, basis, **kwargs):
+        r"""
+        Create a subalgebra of this algebra from the given basis.
+        """
+        from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
+        return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
 
-            TESTS:
 
-            The identity element is never nilpotent::
+    def vector_space(self):
+        """
+        Return the vector space that underlies this algebra.
 
-                sage: set_random_seed()
-                sage: random_eja().one().is_nilpotent()
-                False
+        SETUP::
 
-            The additive identity is always nilpotent::
+            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
 
-                sage: set_random_seed()
-                sage: random_eja().zero().is_nilpotent()
-                True
+        EXAMPLES::
 
-            """
-            P = self.parent()
-            zero_operator = P.zero().operator()
-            return self.operator()**P.dimension() == zero_operator
+            sage: J = RealSymmetricEJA(2)
+            sage: J.vector_space()
+            Vector space of dimension 3 over...
 
+        """
+        return self.zero().to_vector().parent().ambient_vector_space()
 
-        def is_regular(self):
-            """
-            Return whether or not this is a regular element.
 
-            SETUP::
 
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
+class RationalBasisEJA(FiniteDimensionalEJA):
+    r"""
+    New class for algebras whose supplied basis elements have all rational entries.
 
-            EXAMPLES:
+    SETUP::
 
-            The identity element always has degree one, but any element
-            linearly-independent from it is regular::
+        sage: from mjo.eja.eja_algebra import BilinearFormEJA
 
-                sage: J = JordanSpinEJA(5)
-                sage: J.one().is_regular()
-                False
-                sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
-                sage: for x in J.gens():
-                ....:     (J.one() + x).is_regular()
-                False
-                True
-                True
-                True
-                True
+    EXAMPLES:
 
-            TESTS:
+    The supplied basis is orthonormalized by default::
 
-            The zero element should never be regular::
+        sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
+        sage: J = BilinearFormEJA(B)
+        sage: J.matrix_basis()
+        (
+        [1]  [  0]  [   0]
+        [0]  [1/5]  [32/5]
+        [0], [  0], [   5]
+        )
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.zero().is_regular()
-                False
+    """
+    def __init__(self,
+                 basis,
+                 jordan_product,
+                 inner_product,
+                 field=AA,
+                 check_field=True,
+                 **kwargs):
+
+        if check_field:
+            # Abuse the check_field parameter to check that the entries of
+            # out basis (in ambient coordinates) are in the field QQ.
+            if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
+                raise TypeError("basis not rational")
+
+        super().__init__(basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         check_field=check_field,
+                         **kwargs)
+
+        self._rational_algebra = None
+        if field is not QQ:
+            # There's no point in constructing the extra algebra if this
+            # one is already rational.
+            #
+            # Note: the same Jordan and inner-products work here,
+            # because they are necessarily defined with respect to
+            # ambient coordinates and not any particular basis.
+            self._rational_algebra = FiniteDimensionalEJA(
+                                       basis,
+                                       jordan_product,
+                                       inner_product,
+                                       field=QQ,
+                                       associative=self.is_associative(),
+                                       orthonormalize=False,
+                                       check_field=False,
+                                       check_axioms=False)
 
-            The unit element isn't regular unless the algebra happens to
-            consist of only its scalar multiples::
+    @cached_method
+    def _charpoly_coefficients(self):
+        r"""
+        SETUP::
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.dimension() == 1 or not J.one().is_regular()
-                True
+            sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
+            ....:                                  JordanSpinEJA)
 
-            """
-            return self.degree() == self.parent().rank()
+        EXAMPLES:
 
+        The base ring of the resulting polynomial coefficients is what
+        it should be, and not the rationals (unless the algebra was
+        already over the rationals)::
 
-        def degree(self):
-            """
-            Return the degree of this element, which is defined to be
-            the degree of its minimal polynomial.
+            sage: J = JordanSpinEJA(3)
+            sage: J._charpoly_coefficients()
+            (X1^2 - X2^2 - X3^2, -2*X1)
+            sage: a0 = J._charpoly_coefficients()[0]
+            sage: J.base_ring()
+            Algebraic Real Field
+            sage: a0.base_ring()
+            Algebraic Real Field
 
-            ALGORITHM:
+        """
+        if self._rational_algebra is None:
+            # There's no need to construct *another* algebra over the
+            # rationals if this one is already over the
+            # rationals. Likewise, if we never orthonormalized our
+            # basis, we might as well just use the given one.
+            return super()._charpoly_coefficients()
+
+        # Do the computation over the rationals. The answer will be
+        # the same, because all we've done is a change of basis.
+        # Then, change back from QQ to our real base ring
+        a = ( a_i.change_ring(self.base_ring())
+              for a_i in self._rational_algebra._charpoly_coefficients() )
+
+        if self._deortho_matrix is None:
+            # This can happen if our base ring was, say, AA and we
+            # chose not to (or didn't need to) orthonormalize. It's
+            # still faster to do the computations over QQ even if
+            # the numbers in the boxes stay the same.
+            return tuple(a)
+
+        # Otherwise, convert the coordinate variables back to the
+        # deorthonormalized ones.
+        R = self.coordinate_polynomial_ring()
+        from sage.modules.free_module_element import vector
+        X = vector(R, R.gens())
+        BX = self._deortho_matrix*X
+
+        subs_dict = { X[i]: BX[i] for i in range(len(X)) }
+        return tuple( a_i.subs(subs_dict) for a_i in a )
+
+class ConcreteEJA(RationalBasisEJA):
+    r"""
+    A class for the Euclidean Jordan algebras that we know by name.
+
+    These are the Jordan algebras whose basis, multiplication table,
+    rank, and so on are known a priori. More to the point, they are
+    the Euclidean Jordan algebras for which we are able to conjure up
+    a "random instance."
 
-            For now, we skip the messy minimal polynomial computation
-            and instead return the dimension of the vector space spanned
-            by the powers of this element. The latter is a bit more
-            straightforward to compute.
+    SETUP::
 
-            SETUP::
+        sage: from mjo.eja.eja_algebra import ConcreteEJA
 
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
+    TESTS:
 
-            EXAMPLES::
+    Our basis is normalized with respect to the algebra's inner
+    product, unless we specify otherwise::
 
-                sage: J = JordanSpinEJA(4)
-                sage: J.one().degree()
-                1
-                sage: e0,e1,e2,e3 = J.gens()
-                sage: (e0 - e1).degree()
-                2
+        sage: set_random_seed()
+        sage: J = ConcreteEJA.random_instance()
+        sage: all( b.norm() == 1 for b in J.gens() )
+        True
 
-            In the spin factor algebra (of rank two), all elements that
-            aren't multiples of the identity are regular::
+    Since our basis is orthonormal with respect to the algebra's inner
+    product, and since we know that this algebra is an EJA, any
+    left-multiplication operator's matrix will be symmetric because
+    natural->EJA basis representation is an isometry and within the
+    EJA the operator is self-adjoint by the Jordan axiom::
 
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: x == x.coefficient(0)*J.one() or x.degree() == 2
-                True
+        sage: set_random_seed()
+        sage: J = ConcreteEJA.random_instance()
+        sage: x = J.random_element()
+        sage: x.operator().is_self_adjoint()
+        True
+    """
 
-            TESTS:
+    @staticmethod
+    def _max_random_instance_size():
+        """
+        Return an integer "size" that is an upper bound on the size of
+        this algebra when it is used in a random test
+        case. Unfortunately, the term "size" is ambiguous -- when
+        dealing with `R^n` under either the Hadamard or Jordan spin
+        product, the "size" refers to the dimension `n`. When dealing
+        with a matrix algebra (real symmetric or complex/quaternion
+        Hermitian), it refers to the size of the matrix, which is far
+        less than the dimension of the underlying vector space.
+
+        This method must be implemented in each subclass.
+        """
+        raise NotImplementedError
 
-            The zero and unit elements are both of degree one::
+    @classmethod
+    def random_instance(cls, *args, **kwargs):
+        """
+        Return a random instance of this type of algebra.
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.zero().degree()
-                1
-                sage: J.one().degree()
-                1
+        This method should be implemented in each subclass.
+        """
+        from sage.misc.prandom import choice
+        eja_class = choice(cls.__subclasses__())
 
-            Our implementation agrees with the definition::
+        # These all bubble up to the RationalBasisEJA superclass
+        # constructor, so any (kw)args valid there are also valid
+        # here.
+        return eja_class.random_instance(*args, **kwargs)
 
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
-                True
 
-            """
-            return self.span_of_powers().dimension()
+class MatrixEJA:
+    @staticmethod
+    def jordan_product(X,Y):
+        return (X*Y + Y*X)/2
 
+    @staticmethod
+    def trace_inner_product(X,Y):
+        r"""
+        A trace inner-product for matrices that aren't embedded in the
+        reals.
+        """
+        # We take the norm (absolute value) because Octonions() isn't
+        # smart enough yet to coerce its one() into the base field.
+        return (X*Y).trace().abs()
 
-        def left_matrix(self):
-            """
-            Our parent class defines ``left_matrix`` and ``matrix``
-            methods whose names are misleading. We don't want them.
-            """
-            raise NotImplementedError("use operator().matrix() instead")
+class RealEmbeddedMatrixEJA(MatrixEJA):
+    @staticmethod
+    def dimension_over_reals():
+        r"""
+        The dimension of this matrix's base ring over the reals.
 
-        matrix = left_matrix
+        The reals are dimension one over themselves, obviously; that's
+        just `\mathbb{R}^{1}`. Likewise, the complex numbers `a + bi`
+        have dimension two. Finally, the quaternions have dimension
+        four over the reals.
 
+        This is used to determine the size of the matrix returned from
+        :meth:`real_embed`, among other things.
+        """
+        raise NotImplementedError
 
-        def minimal_polynomial(self):
-            """
-            Return the minimal polynomial of this element,
-            as a function of the variable `t`.
-
-            ALGORITHM:
+    @classmethod
+    def real_embed(cls,M):
+        """
+        Embed the matrix ``M`` into a space of real matrices.
 
-            We restrict ourselves to the associative subalgebra
-            generated by this element, and then return the minimal
-            polynomial of this element's operator matrix (in that
-            subalgebra). This works by Baes Proposition 2.3.16.
+        The matrix ``M`` can have entries in any field at the moment:
+        the real numbers, complex numbers, or quaternions. And although
+        they are not a field, we can probably support octonions at some
+        point, too. This function returns a real matrix that "acts like"
+        the original with respect to matrix multiplication; i.e.
 
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            TESTS:
-
-            The minimal polynomial of the identity and zero elements are
-            always the same::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().minimal_polynomial()
-                t - 1
-                sage: J.zero().minimal_polynomial()
-                t
-
-            The degree of an element is (by one definition) the degree
-            of its minimal polynomial::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
-                True
-
-            The minimal polynomial and the characteristic polynomial coincide
-            and are known (see Alizadeh, Example 11.11) for all elements of
-            the spin factor algebra that aren't scalar multiples of the
-            identity::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10)
-                sage: J = JordanSpinEJA(n)
-                sage: y = J.random_element()
-                sage: while y == y.coefficient(0)*J.one():
-                ....:     y = J.random_element()
-                sage: y0 = y.vector()[0]
-                sage: y_bar = y.vector()[1:]
-                sage: actual = y.minimal_polynomial()
-                sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
-                sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
-                sage: bool(actual == expected)
-                True
-
-            The minimal polynomial should always kill its element::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: p = x.minimal_polynomial()
-                sage: x.apply_univariate_polynomial(p)
-                0
-
-            """
-            V = self.span_of_powers()
-            assoc_subalg = self.subalgebra_generated_by()
-            # Mis-design warning: the basis used for span_of_powers()
-            # and subalgebra_generated_by() must be the same, and in
-            # the same order!
-            elt = assoc_subalg(V.coordinates(self.vector()))
-            return elt.operator().minimal_polynomial()
-
-
-
-        def natural_representation(self):
-            """
-            Return a more-natural representation of this element.
-
-            Every finite-dimensional Euclidean Jordan Algebra is a
-            direct sum of five simple algebras, four of which comprise
-            Hermitian matrices. This method returns the original
-            "natural" representation of this element as a Hermitian
-            matrix, if it has one. If not, you get the usual representation.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-                ....:                                  QuaternionHermitianEJA)
-
-            EXAMPLES::
-
-                sage: J = ComplexHermitianEJA(3)
-                sage: J.one()
-                e0 + e5 + e8
-                sage: J.one().natural_representation()
-                [1 0 0 0 0 0]
-                [0 1 0 0 0 0]
-                [0 0 1 0 0 0]
-                [0 0 0 1 0 0]
-                [0 0 0 0 1 0]
-                [0 0 0 0 0 1]
-
-            ::
-
-                sage: J = QuaternionHermitianEJA(3)
-                sage: J.one()
-                e0 + e9 + e14
-                sage: J.one().natural_representation()
-                [1 0 0 0 0 0 0 0 0 0 0 0]
-                [0 1 0 0 0 0 0 0 0 0 0 0]
-                [0 0 1 0 0 0 0 0 0 0 0 0]
-                [0 0 0 1 0 0 0 0 0 0 0 0]
-                [0 0 0 0 1 0 0 0 0 0 0 0]
-                [0 0 0 0 0 1 0 0 0 0 0 0]
-                [0 0 0 0 0 0 1 0 0 0 0 0]
-                [0 0 0 0 0 0 0 1 0 0 0 0]
-                [0 0 0 0 0 0 0 0 1 0 0 0]
-                [0 0 0 0 0 0 0 0 0 1 0 0]
-                [0 0 0 0 0 0 0 0 0 0 1 0]
-                [0 0 0 0 0 0 0 0 0 0 0 1]
-
-            """
-            B = self.parent().natural_basis()
-            W = B[0].matrix_space()
-            return W.linear_combination(zip(self.vector(), B))
-
-
-        def operator(self):
-            """
-            Return the left-multiplication-by-this-element
-            operator on the ambient algebra.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: x.operator()(y) == x*y
-                True
-                sage: y.operator()(x) == x*y
-                True
-
-            """
-            P = self.parent()
-            fda_elt = FiniteDimensionalAlgebraElement(P, self)
-            return FiniteDimensionalEuclideanJordanAlgebraOperator(
-                     P,
-                     P,
-                     fda_elt.matrix().transpose() )
-
-
-        def quadratic_representation(self, other=None):
-            """
-            Return the quadratic representation of this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
-
-            The explicit form in the spin factor algebra is given by
-            Alizadeh's Example 11.12::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: x_vec = x.vector()
-                sage: x0 = x_vec[0]
-                sage: x_bar = x_vec[1:]
-                sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
-                sage: B = 2*x0*x_bar.row()
-                sage: C = 2*x0*x_bar.column()
-                sage: D = matrix.identity(QQ, n-1)
-                sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
-                sage: D = D + 2*x_bar.tensor_product(x_bar)
-                sage: Q = matrix.block(2,2,[A,B,C,D])
-                sage: Q == x.quadratic_representation().matrix()
-                True
-
-            Test all of the properties from Theorem 11.2 in Alizadeh::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: Lx = x.operator()
-                sage: Lxx = (x*x).operator()
-                sage: Qx = x.quadratic_representation()
-                sage: Qy = y.quadratic_representation()
-                sage: Qxy = x.quadratic_representation(y)
-                sage: Qex = J.one().quadratic_representation(x)
-                sage: n = ZZ.random_element(10)
-                sage: Qxn = (x^n).quadratic_representation()
-
-            Property 1:
-
-                sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
-                True
-
-            Property 2 (multiply on the right for :trac:`28272`):
-
-                sage: alpha = QQ.random_element()
-                sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
-                True
-
-            Property 3:
-
-                sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
-                True
+          real_embed(M*N) = real_embed(M)*real_embed(N)
 
-                sage: not x.is_invertible() or (
-                ....:   ~Qx
-                ....:   ==
-                ....:   x.inverse().quadratic_representation() )
-                True
+        """
+        if M.ncols() != M.nrows():
+            raise ValueError("the matrix 'M' must be square")
+        return M
 
-                sage: Qxy(J.one()) == x*y
-                True
 
-            Property 4:
-
-                sage: not x.is_invertible() or (
-                ....:   x.quadratic_representation(x.inverse())*Qx
-                ....:   == Qx*x.quadratic_representation(x.inverse()) )
-                True
+    @classmethod
+    def real_unembed(cls,M):
+        """
+        The inverse of :meth:`real_embed`.
+        """
+        if M.ncols() != M.nrows():
+            raise ValueError("the matrix 'M' must be square")
+        if not ZZ(M.nrows()).mod(cls.dimension_over_reals()).is_zero():
+            raise ValueError("the matrix 'M' must be a real embedding")
+        return M
 
-                sage: not x.is_invertible() or (
-                ....:   x.quadratic_representation(x.inverse())*Qx
-                ....:   ==
-                ....:   2*x.operator()*Qex - Qx )
-                True
-
-                sage: 2*x.operator()*Qex - Qx == Lxx
-                True
-
-            Property 5:
-
-                sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
-                True
-
-            Property 6:
 
-                sage: Qxn == (Qx)^n
-                True
+    @classmethod
+    def trace_inner_product(cls,X,Y):
+        r"""
+        Compute the trace inner-product of two real-embeddings.
 
-            Property 7:
+        SETUP::
 
-                sage: not x.is_invertible() or (
-                ....:   Qx*x.inverse().operator() == Lx )
-                True
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  QuaternionHermitianEJA)
 
-            Property 8:
-
-                sage: not x.operator_commutes_with(y) or (
-                ....:   Qx(y)^n == Qxn(y^n) )
-                True
-
-            """
-            if other is None:
-                other=self
-            elif not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            L = self.operator()
-            M = other.operator()
-            return ( L*M + M*L - (self*other).operator() )
-
-
-        def span_of_powers(self):
-            """
-            Return the vector space spanned by successive powers of
-            this element.
-            """
-            # The dimension of the subalgebra can't be greater than
-            # the big algebra, so just put everything into a list
-            # and let span() get rid of the excess.
-            #
-            # We do the extra ambient_vector_space() in case we're messing
-            # with polynomials and the direct parent is a module.
-            V = self.parent().vector_space()
-            return V.span( (self**d).vector() for d in xrange(V.dimension()) )
-
-
-        def subalgebra_generated_by(self):
-            """
-            Return the associative subalgebra of the parent EJA generated
-            by this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.subalgebra_generated_by().is_associative()
-                True
-
-            Squaring in the subalgebra should work the same as in
-            the superalgebra::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: u = x.subalgebra_generated_by().random_element()
-                sage: u.operator()(u) == u^2
-                True
-
-            """
-            # First get the subspace spanned by the powers of myself...
-            V = self.span_of_powers()
-            F = self.base_ring()
-
-            # Now figure out the entries of the right-multiplication
-            # matrix for the successive basis elements b0, b1,... of
-            # that subspace.
-            mats = []
-            for b_right in V.basis():
-                eja_b_right = self.parent()(b_right)
-                b_right_rows = []
-                # The first row of the right-multiplication matrix by
-                # b1 is what we get if we apply that matrix to b1. The
-                # second row of the right multiplication matrix by b1
-                # is what we get when we apply that matrix to b2...
-                #
-                # IMPORTANT: this assumes that all vectors are COLUMN
-                # vectors, unlike our superclass (which uses row vectors).
-                for b_left in V.basis():
-                    eja_b_left = self.parent()(b_left)
-                    # Multiply in the original EJA, but then get the
-                    # coordinates from the subalgebra in terms of its
-                    # basis.
-                    this_row = V.coordinates((eja_b_left*eja_b_right).vector())
-                    b_right_rows.append(this_row)
-                b_right_matrix = matrix(F, b_right_rows)
-                mats.append(b_right_matrix)
-
-            # It's an algebra of polynomials in one element, and EJAs
-            # are power-associative.
-            #
-            # TODO: choose generator names intelligently.
-            #
-            # The rank is the highest possible degree of a minimal polynomial,
-            # and is bounded above by the dimension. We know in this case that
-            # there's an element whose minimal polynomial has the same degree
-            # as the space's dimension, so that must be its rank too.
-            return FiniteDimensionalEuclideanJordanAlgebra(
-                     F,
-                     mats,
-                     V.dimension(),
-                     assume_associative=True,
-                     names='f')
-
-
-        def subalgebra_idempotent(self):
-            """
-            Find an idempotent in the associative subalgebra I generate
-            using Proposition 2.3.5 in Baes.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: while x.is_nilpotent():
-                ....:     x = J.random_element()
-                sage: c = x.subalgebra_idempotent()
-                sage: c^2 == c
-                True
-
-            """
-            if self.is_nilpotent():
-                raise ValueError("this only works with non-nilpotent elements!")
-
-            V = self.span_of_powers()
-            J = self.subalgebra_generated_by()
-            # Mis-design warning: the basis used for span_of_powers()
-            # and subalgebra_generated_by() must be the same, and in
-            # the same order!
-            u = J(V.coordinates(self.vector()))
-
-            # The image of the matrix of left-u^m-multiplication
-            # will be minimal for some natural number s...
-            s = 0
-            minimal_dim = V.dimension()
-            for i in xrange(1, V.dimension()):
-                this_dim = (u**i).operator().matrix().image().dimension()
-                if this_dim < minimal_dim:
-                    minimal_dim = this_dim
-                    s = i
-
-            # Now minimal_matrix should correspond to the smallest
-            # non-zero subspace in Baes's (or really, Koecher's)
-            # proposition.
-            #
-            # However, we need to restrict the matrix to work on the
-            # subspace... or do we? Can't we just solve, knowing that
-            # A(c) = u^(s+1) should have a solution in the big space,
-            # too?
-            #
-            # Beware, solve_right() means that we're using COLUMN vectors.
-            # Our FiniteDimensionalAlgebraElement superclass uses rows.
-            u_next = u**(s+1)
-            A = u_next.operator().matrix()
-            c_coordinates = A.solve_right(u_next.vector())
-
-            # Now c_coordinates is the idempotent we want, but it's in
-            # the coordinate system of the subalgebra.
-            #
-            # We need the basis for J, but as elements of the parent algebra.
-            #
-            basis = [self.parent(v) for v in V.basis()]
-            return self.parent().linear_combination(zip(c_coordinates, basis))
+        EXAMPLES::
 
+            sage: set_random_seed()
+            sage: J = ComplexHermitianEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: Xe = x.to_matrix()
+            sage: Ye = y.to_matrix()
+            sage: X = J.real_unembed(Xe)
+            sage: Y = J.real_unembed(Ye)
+            sage: expected = (X*Y).trace().real()
+            sage: actual = J.trace_inner_product(Xe,Ye)
+            sage: actual == expected
+            True
 
-        def trace(self):
-            """
-            Return my trace, the sum of my eigenvalues.
+        ::
 
-            SETUP::
+            sage: set_random_seed()
+            sage: J = QuaternionHermitianEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: Xe = x.to_matrix()
+            sage: Ye = y.to_matrix()
+            sage: X = J.real_unembed(Xe)
+            sage: Y = J.real_unembed(Ye)
+            sage: expected = (X*Y).trace().coefficient_tuple()[0]
+            sage: actual = J.trace_inner_product(Xe,Ye)
+            sage: actual == expected
+            True
 
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  RealCartesianProductEJA,
-                ....:                                  random_eja)
+        """
+        # This does in fact compute the real part of the trace.
+        # If we compute the trace of e.g. a complex matrix M,
+        # then we do so by adding up its diagonal entries --
+        # call them z_1 through z_n. The real embedding of z_1
+        # will be a 2-by-2 REAL matrix [a, b; -b, a] whose trace
+        # as a REAL matrix will be 2*a = 2*Re(z_1). And so forth.
+        return (X*Y).trace()/cls.dimension_over_reals()
+
+class RealSymmetricEJA(ConcreteEJA, MatrixEJA):
+    """
+    The rank-n simple EJA consisting of real symmetric n-by-n
+    matrices, the usual symmetric Jordan product, and the trace inner
+    product. It has dimension `(n^2 + n)/2` over the reals.
 
-            EXAMPLES::
+    SETUP::
 
-                sage: J = JordanSpinEJA(3)
-                sage: x = sum(J.gens())
-                sage: x.trace()
-                2
+        sage: from mjo.eja.eja_algebra import RealSymmetricEJA
 
-            ::
+    EXAMPLES::
 
-                sage: J = RealCartesianProductEJA(5)
-                sage: J.one().trace()
-                5
+        sage: J = RealSymmetricEJA(2)
+        sage: b0, b1, b2 = J.gens()
+        sage: b0*b0
+        b0
+        sage: b1*b1
+        1/2*b0 + 1/2*b2
+        sage: b2*b2
+        b2
+
+    In theory, our "field" can be any subfield of the reals::
+
+        sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
+        Euclidean Jordan algebra of dimension 3 over Real Double Field
+        sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
+        Euclidean Jordan algebra of dimension 3 over Real Field with
+        53 bits of precision
 
-            TESTS:
+    TESTS:
 
-            The trace of an element is a real number::
+    The dimension of this algebra is `(n^2 + n) / 2`::
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.random_element().trace() in J.base_ring()
-                True
+        sage: set_random_seed()
+        sage: n_max = RealSymmetricEJA._max_random_instance_size()
+        sage: n = ZZ.random_element(1, n_max)
+        sage: J = RealSymmetricEJA(n)
+        sage: J.dimension() == (n^2 + n)/2
+        True
 
-            """
-            P = self.parent()
-            r = P.rank()
-            p = P._charpoly_coeff(r-1)
-            # The _charpoly_coeff function already adds the factor of
-            # -1 to ensure that _charpoly_coeff(r-1) is really what
-            # appears in front of t^{r-1} in the charpoly. However,
-            # we want the negative of THAT for the trace.
-            return -p(*self.vector())
+    The Jordan multiplication is what we think it is::
 
+        sage: set_random_seed()
+        sage: J = RealSymmetricEJA.random_instance()
+        sage: x,y = J.random_elements(2)
+        sage: actual = (x*y).to_matrix()
+        sage: X = x.to_matrix()
+        sage: Y = y.to_matrix()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
 
-        def trace_inner_product(self, other):
-            """
-            Return the trace inner product of myself and ``other``.
+    We can change the generator prefix::
 
-            SETUP::
+        sage: RealSymmetricEJA(3, prefix='q').gens()
+        (q0, q1, q2, q3, q4, q5)
 
-                sage: from mjo.eja.eja_algebra import random_eja
+    We can construct the (trivial) algebra of rank zero::
 
-            TESTS:
+        sage: RealSymmetricEJA(0)
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
 
-            The trace inner product is commutative::
+    """
+    @classmethod
+    def _denormalized_basis(cls, n, field):
+        """
+        Return a basis for the space of real symmetric n-by-n matrices.
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element(); y = J.random_element()
-                sage: x.trace_inner_product(y) == y.trace_inner_product(x)
-                True
+        SETUP::
 
-            The trace inner product is bilinear::
+            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: a = QQ.random_element();
-                sage: actual = (a*(x+z)).trace_inner_product(y)
-                sage: expected = ( a*x.trace_inner_product(y) +
-                ....:              a*z.trace_inner_product(y) )
-                sage: actual == expected
-                True
-                sage: actual = x.trace_inner_product(a*(y+z))
-                sage: expected = ( a*x.trace_inner_product(y) +
-                ....:              a*x.trace_inner_product(z) )
-                sage: actual == expected
-                True
+        TESTS::
 
-            The trace inner product satisfies the compatibility
-            condition in the definition of a Euclidean Jordan algebra::
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(1,5)
+            sage: B = RealSymmetricEJA._denormalized_basis(n,ZZ)
+            sage: all( M.is_symmetric() for M in  B)
+            True
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
-                True
+        """
+        # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
+        # coordinates.
+        S = []
+        for i in range(n):
+            for j in range(i+1):
+                Eij = matrix(field, n, lambda k,l: k==i and l==j)
+                if i == j:
+                    Sij = Eij
+                else:
+                    Sij = Eij + Eij.transpose()
+                S.append(Sij)
+        return tuple(S)
 
-            """
-            if not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
 
-            return (self*other).trace()
+    @staticmethod
+    def _max_random_instance_size():
+        return 4 # Dimension 10
 
+    @classmethod
+    def random_instance(cls, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        return cls(n, **kwargs)
+
+    def __init__(self, n, field=AA, **kwargs):
+        # We know this is a valid EJA, but will double-check
+        # if the user passes check_axioms=True.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        associative = False
+        if n <= 1:
+            associative = True
+
+        super().__init__(self._denormalized_basis(n,field),
+                         self.jordan_product,
+                         self.trace_inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
+
+        # TODO: this could be factored out somehow, but is left here
+        # because the MatrixEJA is not presently a subclass of the
+        # FDEJA class that defines rank() and one().
+        self.rank.set_cache(n)
+        idV = self.matrix_space().one()
+        self.one.set_cache(self(idV))
+
+
+
+class ComplexMatrixEJA(RealEmbeddedMatrixEJA):
+    # A manual dictionary-cache for the complex_extension() method,
+    # since apparently @classmethods can't also be @cached_methods.
+    _complex_extension = {}
+
+    @classmethod
+    def complex_extension(cls,field):
+        r"""
+        The complex field that we embed/unembed, as an extension
+        of the given ``field``.
+        """
+        if field in cls._complex_extension:
+            return cls._complex_extension[field]
+
+        # Sage doesn't know how to adjoin the complex "i" (the root of
+        # x^2 + 1) to a field in a general way. Here, we just enumerate
+        # all of the cases that I have cared to support so far.
+        if field is AA:
+            # Sage doesn't know how to embed AA into QQbar, i.e. how
+            # to adjoin sqrt(-1) to AA.
+            F = QQbar
+        elif not field.is_exact():
+            # RDF or RR
+            F = field.complex_field()
+        else:
+            # Works for QQ and... maybe some other fields.
+            R = PolynomialRing(field, 'z')
+            z = R.gen()
+            F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
 
-class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
-    """
-    Return the Euclidean Jordan Algebra corresponding to the set
-    `R^n` under the Hadamard product.
+        cls._complex_extension[field] = F
+        return F
 
-    Note: this is nothing more than the Cartesian product of ``n``
-    copies of the spin algebra. Once Cartesian product algebras
-    are implemented, this can go.
+    @staticmethod
+    def dimension_over_reals():
+        return 2
 
-    SETUP::
+    @classmethod
+    def real_embed(cls,M):
+        """
+        Embed the n-by-n complex matrix ``M`` into the space of real
+        matrices of size 2n-by-2n via the map the sends each entry `z = a +
+        bi` to the block matrix ``[[a,b],[-b,a]]``.
 
-        sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
+        SETUP::
 
-    EXAMPLES:
+            sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
 
-    This multiplication table can be verified by hand::
+        EXAMPLES::
 
-        sage: J = RealCartesianProductEJA(3)
-        sage: e0,e1,e2 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e0*e1
-        0
-        sage: e0*e2
-        0
-        sage: e1*e1
-        e1
-        sage: e1*e2
-        0
-        sage: e2*e2
-        e2
+            sage: F = QuadraticField(-1, 'I')
+            sage: x1 = F(4 - 2*i)
+            sage: x2 = F(1 + 2*i)
+            sage: x3 = F(-i)
+            sage: x4 = F(6)
+            sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
+            sage: ComplexMatrixEJA.real_embed(M)
+            [ 4 -2| 1  2]
+            [ 2  4|-2  1]
+            [-----+-----]
+            [ 0 -1| 6  0]
+            [ 1  0| 0  6]
 
-    """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        # The FiniteDimensionalAlgebra constructor takes a list of
-        # matrices, the ith representing right multiplication by the ith
-        # basis element in the vector space. So if e_1 = (1,0,0), then
-        # right (Hadamard) multiplication of x by e_1 picks out the first
-        # component of x; and likewise for the ith basis element e_i.
-        Qs = [ matrix(field, n, n, lambda k,j: 1*(k == j == i))
-               for i in xrange(n) ]
-
-        fdeja = super(RealCartesianProductEJA, cls)
-        return fdeja.__classcall_private__(cls, field, Qs, rank=n)
+        TESTS:
 
-    def inner_product(self, x, y):
-        return _usual_ip(x,y)
+        Embedding is a homomorphism (isomorphism, in fact)::
 
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(3)
+            sage: F = QuadraticField(-1, 'I')
+            sage: X = random_matrix(F, n)
+            sage: Y = random_matrix(F, n)
+            sage: Xe = ComplexMatrixEJA.real_embed(X)
+            sage: Ye = ComplexMatrixEJA.real_embed(Y)
+            sage: XYe = ComplexMatrixEJA.real_embed(X*Y)
+            sage: Xe*Ye == XYe
+            True
 
-def random_eja():
-    """
-    Return a "random" finite-dimensional Euclidean Jordan Algebra.
+        """
+        super().real_embed(M)
+        n = M.nrows()
 
-    ALGORITHM:
+        # We don't need any adjoined elements...
+        field = M.base_ring().base_ring()
 
-    For now, we choose a random natural number ``n`` (greater than zero)
-    and then give you back one of the following:
+        blocks = []
+        for z in M.list():
+            a = z.real()
+            b = z.imag()
+            blocks.append(matrix(field, 2, [ [ a, b],
+                                             [-b, a] ]))
 
-      * The cartesian product of the rational numbers ``n`` times; this is
-        ``QQ^n`` with the Hadamard product.
+        return matrix.block(field, n, blocks)
 
-      * The Jordan spin algebra on ``QQ^n``.
 
-      * The ``n``-by-``n`` rational symmetric matrices with the symmetric
-        product.
+    @classmethod
+    def real_unembed(cls,M):
+        """
+        The inverse of _embed_complex_matrix().
 
-      * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
-        in the space of ``2n``-by-``2n`` real symmetric matrices.
+        SETUP::
 
-      * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
-        in the space of ``4n``-by-``4n`` real symmetric matrices.
+            sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
 
-    Later this might be extended to return Cartesian products of the
-    EJAs above.
+        EXAMPLES::
 
-    SETUP::
+            sage: A = matrix(QQ,[ [ 1,  2,   3,  4],
+            ....:                 [-2,  1,  -4,  3],
+            ....:                 [ 9,  10, 11, 12],
+            ....:                 [-10, 9, -12, 11] ])
+            sage: ComplexMatrixEJA.real_unembed(A)
+            [  2*I + 1   4*I + 3]
+            [ 10*I + 9 12*I + 11]
 
-        sage: from mjo.eja.eja_algebra import random_eja
+        TESTS:
 
-    TESTS::
+        Unembedding is the inverse of embedding::
 
-        sage: random_eja()
-        Euclidean Jordan algebra of degree...
+            sage: set_random_seed()
+            sage: F = QuadraticField(-1, 'I')
+            sage: M = random_matrix(F, 3)
+            sage: Me = ComplexMatrixEJA.real_embed(M)
+            sage: ComplexMatrixEJA.real_unembed(Me) == M
+            True
 
+        """
+        super().real_unembed(M)
+        n = ZZ(M.nrows())
+        d = cls.dimension_over_reals()
+        F = cls.complex_extension(M.base_ring())
+        i = F.gen()
+
+        # Go top-left to bottom-right (reading order), converting every
+        # 2-by-2 block we see to a single complex element.
+        elements = []
+        for k in range(n/d):
+            for j in range(n/d):
+                submat = M[d*k:d*k+d,d*j:d*j+d]
+                if submat[0,0] != submat[1,1]:
+                    raise ValueError('bad on-diagonal submatrix')
+                if submat[0,1] != -submat[1,0]:
+                    raise ValueError('bad off-diagonal submatrix')
+                z = submat[0,0] + submat[0,1]*i
+                elements.append(z)
+
+        return matrix(F, n/d, elements)
+
+
+class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
     """
+    The rank-n simple EJA consisting of complex Hermitian n-by-n
+    matrices over the real numbers, the usual symmetric Jordan product,
+    and the real-part-of-trace inner product. It has dimension `n^2` over
+    the reals.
 
-    # The max_n component lets us choose different upper bounds on the
-    # value "n" that gets passed to the constructor. This is needed
-    # because e.g. R^{10} is reasonable to test, while the Hermitian
-    # 10-by-10 quaternion matrices are not.
-    (constructor, max_n) = choice([(RealCartesianProductEJA, 6),
-                                   (JordanSpinEJA, 6),
-                                   (RealSymmetricEJA, 5),
-                                   (ComplexHermitianEJA, 4),
-                                   (QuaternionHermitianEJA, 3)])
-    n = ZZ.random_element(1, max_n)
-    return constructor(n, field=QQ)
+    SETUP::
 
+        sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
 
+    EXAMPLES:
 
-def _real_symmetric_basis(n, field=QQ):
-    """
-    Return a basis for the space of real symmetric n-by-n matrices.
-    """
-    # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
-    # coordinates.
-    S = []
-    for i in xrange(n):
-        for j in xrange(i+1):
-            Eij = matrix(field, n, lambda k,l: k==i and l==j)
-            if i == j:
-                Sij = Eij
-            else:
-                # Beware, orthogonal but not normalized!
-                Sij = Eij + Eij.transpose()
-            S.append(Sij)
-    return tuple(S)
+    In theory, our "field" can be any subfield of the reals::
 
+        sage: ComplexHermitianEJA(2, field=RDF, check_axioms=True)
+        Euclidean Jordan algebra of dimension 4 over Real Double Field
+        sage: ComplexHermitianEJA(2, field=RR, check_axioms=True)
+        Euclidean Jordan algebra of dimension 4 over Real Field with
+        53 bits of precision
 
-def _complex_hermitian_basis(n, field=QQ):
-    """
-    Returns a basis for the space of complex Hermitian n-by-n matrices.
+    TESTS:
 
-    SETUP::
+    The dimension of this algebra is `n^2`::
 
-        sage: from mjo.eja.eja_algebra import _complex_hermitian_basis
+        sage: set_random_seed()
+        sage: n_max = ComplexHermitianEJA._max_random_instance_size()
+        sage: n = ZZ.random_element(1, n_max)
+        sage: J = ComplexHermitianEJA(n)
+        sage: J.dimension() == n^2
+        True
 
-    TESTS::
+    The Jordan multiplication is what we think it is::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
+        sage: J = ComplexHermitianEJA.random_instance()
+        sage: x,y = J.random_elements(2)
+        sage: actual = (x*y).to_matrix()
+        sage: X = x.to_matrix()
+        sage: Y = y.to_matrix()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
         True
 
-    """
-    F = QuadraticField(-1, 'I')
-    I = F.gen()
-
-    # This is like the symmetric case, but we need to be careful:
-    #
-    #   * We want conjugate-symmetry, not just symmetry.
-    #   * The diagonal will (as a result) be real.
-    #
-    S = []
-    for i in xrange(n):
-        for j in xrange(i+1):
-            Eij = matrix(field, n, lambda k,l: k==i and l==j)
-            if i == j:
-                Sij = _embed_complex_matrix(Eij)
-                S.append(Sij)
-            else:
-                # Beware, orthogonal but not normalized! The second one
-                # has a minus because it's conjugated.
-                Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
-                S.append(Sij_real)
-                Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
-                S.append(Sij_imag)
-    return tuple(S)
+    We can change the generator prefix::
 
+        sage: ComplexHermitianEJA(2, prefix='z').gens()
+        (z0, z1, z2, z3)
 
-def _quaternion_hermitian_basis(n, field=QQ):
-    """
-    Returns a basis for the space of quaternion Hermitian n-by-n matrices.
+    We can construct the (trivial) algebra of rank zero::
 
-    SETUP::
+        sage: ComplexHermitianEJA(0)
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
 
-        sage: from mjo.eja.eja_algebra import _quaternion_hermitian_basis
+    """
 
-    TESTS::
+    @classmethod
+    def _denormalized_basis(cls, n, field):
+        """
+        Returns a basis for the space of complex Hermitian n-by-n matrices.
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: all( M.is_symmetric() for M in _quaternion_hermitian_basis(n) )
-        True
+        Why do we embed these? Basically, because all of numerical linear
+        algebra assumes that you're working with vectors consisting of `n`
+        entries from a field and scalars from the same field. There's no way
+        to tell SageMath that (for example) the vectors contain complex
+        numbers, while the scalar field is real.
 
-    """
-    Q = QuaternionAlgebra(QQ,-1,-1)
-    I,J,K = Q.gens()
-
-    # This is like the symmetric case, but we need to be careful:
-    #
-    #   * We want conjugate-symmetry, not just symmetry.
-    #   * The diagonal will (as a result) be real.
-    #
-    S = []
-    for i in xrange(n):
-        for j in xrange(i+1):
-            Eij = matrix(Q, n, lambda k,l: k==i and l==j)
-            if i == j:
-                Sij = _embed_quaternion_matrix(Eij)
-                S.append(Sij)
-            else:
-                # Beware, orthogonal but not normalized! The second,
-                # third, and fourth ones have a minus because they're
-                # conjugated.
-                Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
-                S.append(Sij_real)
-                Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
-                S.append(Sij_I)
-                Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
-                S.append(Sij_J)
-                Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
-                S.append(Sij_K)
-    return tuple(S)
-
-
-def _mat2vec(m):
-        return vector(m.base_ring(), m.list())
-
-def _vec2mat(v):
-        return matrix(v.base_ring(), sqrt(v.degree()), v.list())
-
-def _multiplication_table_from_matrix_basis(basis):
-    """
-    At least three of the five simple Euclidean Jordan algebras have the
-    symmetric multiplication (A,B) |-> (AB + BA)/2, where the
-    multiplication on the right is matrix multiplication. Given a basis
-    for the underlying matrix space, this function returns a
-    multiplication table (obtained by looping through the basis
-    elements) for an algebra of those matrices. A reordered copy
-    of the basis is also returned to work around the fact that
-    the ``span()`` in this function will change the order of the basis
-    from what we think it is, to... something else.
-    """
-    # In S^2, for example, we nominally have four coordinates even
-    # though the space is of dimension three only. The vector space V
-    # is supposed to hold the entire long vector, and the subspace W
-    # of V will be spanned by the vectors that arise from symmetric
-    # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
-    field = basis[0].base_ring()
-    dimension = basis[0].nrows()
-
-    V = VectorSpace(field, dimension**2)
-    W = V.span( _mat2vec(s) for s in basis )
-
-    # Taking the span above reorders our basis (thanks, jerk!) so we
-    # need to put our "matrix basis" in the same order as the
-    # (reordered) vector basis.
-    S = tuple( _vec2mat(b) for b in W.basis() )
-
-    Qs = []
-    for s in S:
-        # Brute force the multiplication-by-s matrix by looping
-        # through all elements of the basis and doing the computation
-        # to find out what the corresponding row should be. BEWARE:
-        # these multiplication tables won't be symmetric! It therefore
-        # becomes REALLY IMPORTANT that the underlying algebra
-        # constructor uses ROW vectors and not COLUMN vectors. That's
-        # why we're computing rows here and not columns.
-        Q_rows = []
-        for t in S:
-            this_row = _mat2vec((s*t + t*s)/2)
-            Q_rows.append(W.coordinates(this_row))
-        Q = matrix(field, W.dimension(), Q_rows)
-        Qs.append(Q)
-
-    return (Qs, S)
-
-
-def _embed_complex_matrix(M):
-    """
-    Embed the n-by-n complex matrix ``M`` into the space of real
-    matrices of size 2n-by-2n via the map the sends each entry `z = a +
-    bi` to the block matrix ``[[a,b],[-b,a]]``.
+        SETUP::
 
-    SETUP::
+            sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
 
-        sage: from mjo.eja.eja_algebra import _embed_complex_matrix
+        TESTS::
 
-    EXAMPLES::
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(1,5)
+            sage: B = ComplexHermitianEJA._denormalized_basis(n,ZZ)
+            sage: all( M.is_symmetric() for M in  B)
+            True
 
-        sage: F = QuadraticField(-1,'i')
-        sage: x1 = F(4 - 2*i)
-        sage: x2 = F(1 + 2*i)
-        sage: x3 = F(-i)
-        sage: x4 = F(6)
-        sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
-        sage: _embed_complex_matrix(M)
-        [ 4 -2| 1  2]
-        [ 2  4|-2  1]
-        [-----+-----]
-        [ 0 -1| 6  0]
-        [ 1  0| 0  6]
+        """
+        R = PolynomialRing(ZZ, 'z')
+        z = R.gen()
+        F = ZZ.extension(z**2 + 1, 'I')
+        I = F.gen(1)
 
-    TESTS:
+        # This is like the symmetric case, but we need to be careful:
+        #
+        #   * We want conjugate-symmetry, not just symmetry.
+        #   * The diagonal will (as a result) be real.
+        #
+        S = []
+        Eij = matrix.zero(F,n)
+        for i in range(n):
+            for j in range(i+1):
+                # "build" E_ij
+                Eij[i,j] = 1
+                if i == j:
+                    Sij = cls.real_embed(Eij)
+                    S.append(Sij)
+                else:
+                    # The second one has a minus because it's conjugated.
+                    Eij[j,i] = 1 # Eij = Eij + Eij.transpose()
+                    Sij_real = cls.real_embed(Eij)
+                    S.append(Sij_real)
+                    # Eij = I*Eij - I*Eij.transpose()
+                    Eij[i,j] = I
+                    Eij[j,i] = -I
+                    Sij_imag = cls.real_embed(Eij)
+                    S.append(Sij_imag)
+                    Eij[j,i] = 0
+                # "erase" E_ij
+                Eij[i,j] = 0
+
+        # Since we embedded the entries, we can drop back to the
+        # desired real "field" instead of the extension "F".
+        return tuple( s.change_ring(field) for s in S )
+
+
+    def __init__(self, n, field=AA, **kwargs):
+        # We know this is a valid EJA, but will double-check
+        # if the user passes check_axioms=True.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        associative = False
+        if n <= 1:
+            associative = True
+
+        super().__init__(self._denormalized_basis(n,field),
+                         self.jordan_product,
+                         self.trace_inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
+        # TODO: this could be factored out somehow, but is left here
+        # because the MatrixEJA is not presently a subclass of the
+        # FDEJA class that defines rank() and one().
+        self.rank.set_cache(n)
+        idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
+        self.one.set_cache(self(idV))
 
-    Embedding is a homomorphism (isomorphism, in fact)::
+    @staticmethod
+    def _max_random_instance_size():
+        return 3 # Dimension 9
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(5)
-        sage: F = QuadraticField(-1, 'i')
-        sage: X = random_matrix(F, n)
-        sage: Y = random_matrix(F, n)
-        sage: actual = _embed_complex_matrix(X) * _embed_complex_matrix(Y)
-        sage: expected = _embed_complex_matrix(X*Y)
-        sage: actual == expected
-        True
+    @classmethod
+    def random_instance(cls, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        return cls(n, **kwargs)
 
-    """
-    n = M.nrows()
-    if M.ncols() != n:
-        raise ValueError("the matrix 'M' must be square")
-    field = M.base_ring()
-    blocks = []
-    for z in M.list():
-        a = z.real()
-        b = z.imag()
-        blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
+class QuaternionMatrixEJA(RealEmbeddedMatrixEJA):
 
-    # We can drop the imaginaries here.
-    return matrix.block(field.base_ring(), n, blocks)
+    # A manual dictionary-cache for the quaternion_extension() method,
+    # since apparently @classmethods can't also be @cached_methods.
+    _quaternion_extension = {}
 
+    @classmethod
+    def quaternion_extension(cls,field):
+        r"""
+        The quaternion field that we embed/unembed, as an extension
+        of the given ``field``.
+        """
+        if field in cls._quaternion_extension:
+            return cls._quaternion_extension[field]
 
-def _unembed_complex_matrix(M):
-    """
-    The inverse of _embed_complex_matrix().
+        Q = QuaternionAlgebra(field,-1,-1)
 
-    SETUP::
+        cls._quaternion_extension[field] = Q
+        return Q
 
-        sage: from mjo.eja.eja_algebra import (_embed_complex_matrix,
-        ....:                                  _unembed_complex_matrix)
+    @staticmethod
+    def dimension_over_reals():
+        return 4
 
-    EXAMPLES::
+    @classmethod
+    def real_embed(cls,M):
+        """
+        Embed the n-by-n quaternion matrix ``M`` into the space of real
+        matrices of size 4n-by-4n by first sending each quaternion entry `z
+        = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
+        c+di],[-c + di, a-bi]]`, and then embedding those into a real
+        matrix.
 
-        sage: A = matrix(QQ,[ [ 1,  2,   3,  4],
-        ....:                 [-2,  1,  -4,  3],
-        ....:                 [ 9,  10, 11, 12],
-        ....:                 [-10, 9, -12, 11] ])
-        sage: _unembed_complex_matrix(A)
-        [  2*i + 1   4*i + 3]
-        [ 10*i + 9 12*i + 11]
+        SETUP::
 
-    TESTS:
+            sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
 
-    Unembedding is the inverse of embedding::
+        EXAMPLES::
 
-        sage: set_random_seed()
-        sage: F = QuadraticField(-1, 'i')
-        sage: M = random_matrix(F, 3)
-        sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
-        True
+            sage: Q = QuaternionAlgebra(QQ,-1,-1)
+            sage: i,j,k = Q.gens()
+            sage: x = 1 + 2*i + 3*j + 4*k
+            sage: M = matrix(Q, 1, [[x]])
+            sage: QuaternionMatrixEJA.real_embed(M)
+            [ 1  2  3  4]
+            [-2  1 -4  3]
+            [-3  4  1 -2]
+            [-4 -3  2  1]
 
-    """
-    n = ZZ(M.nrows())
-    if M.ncols() != n:
-        raise ValueError("the matrix 'M' must be square")
-    if not n.mod(2).is_zero():
-        raise ValueError("the matrix 'M' must be a complex embedding")
-
-    F = QuadraticField(-1, 'i')
-    i = F.gen()
-
-    # Go top-left to bottom-right (reading order), converting every
-    # 2-by-2 block we see to a single complex element.
-    elements = []
-    for k in xrange(n/2):
-        for j in xrange(n/2):
-            submat = M[2*k:2*k+2,2*j:2*j+2]
-            if submat[0,0] != submat[1,1]:
-                raise ValueError('bad on-diagonal submatrix')
-            if submat[0,1] != -submat[1,0]:
-                raise ValueError('bad off-diagonal submatrix')
-            z = submat[0,0] + submat[0,1]*i
-            elements.append(z)
-
-    return matrix(F, n/2, elements)
-
-
-def _embed_quaternion_matrix(M):
-    """
-    Embed the n-by-n quaternion matrix ``M`` into the space of real
-    matrices of size 4n-by-4n by first sending each quaternion entry
-    `z = a + bi + cj + dk` to the block-complex matrix
-    ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
-    a real matrix.
+        Embedding is a homomorphism (isomorphism, in fact)::
 
-    SETUP::
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(2)
+            sage: Q = QuaternionAlgebra(QQ,-1,-1)
+            sage: X = random_matrix(Q, n)
+            sage: Y = random_matrix(Q, n)
+            sage: Xe = QuaternionMatrixEJA.real_embed(X)
+            sage: Ye = QuaternionMatrixEJA.real_embed(Y)
+            sage: XYe = QuaternionMatrixEJA.real_embed(X*Y)
+            sage: Xe*Ye == XYe
+            True
 
-        sage: from mjo.eja.eja_algebra import _embed_quaternion_matrix
+        """
+        super().real_embed(M)
+        quaternions = M.base_ring()
+        n = M.nrows()
 
-    EXAMPLES::
+        F = QuadraticField(-1, 'I')
+        i = F.gen()
 
-        sage: Q = QuaternionAlgebra(QQ,-1,-1)
-        sage: i,j,k = Q.gens()
-        sage: x = 1 + 2*i + 3*j + 4*k
-        sage: M = matrix(Q, 1, [[x]])
-        sage: _embed_quaternion_matrix(M)
-        [ 1  2  3  4]
-        [-2  1 -4  3]
-        [-3  4  1 -2]
-        [-4 -3  2  1]
+        blocks = []
+        for z in M.list():
+            t = z.coefficient_tuple()
+            a = t[0]
+            b = t[1]
+            c = t[2]
+            d = t[3]
+            cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
+                                 [-c + d*i, a - b*i]])
+            realM = ComplexMatrixEJA.real_embed(cplxM)
+            blocks.append(realM)
 
-    Embedding is a homomorphism (isomorphism, in fact)::
+        # We should have real entries by now, so use the realest field
+        # we've got for the return value.
+        return matrix.block(quaternions.base_ring(), n, blocks)
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(5)
-        sage: Q = QuaternionAlgebra(QQ,-1,-1)
-        sage: X = random_matrix(Q, n)
-        sage: Y = random_matrix(Q, n)
-        sage: actual = _embed_quaternion_matrix(X)*_embed_quaternion_matrix(Y)
-        sage: expected = _embed_quaternion_matrix(X*Y)
-        sage: actual == expected
-        True
 
-    """
-    quaternions = M.base_ring()
-    n = M.nrows()
-    if M.ncols() != n:
-        raise ValueError("the matrix 'M' must be square")
-
-    F = QuadraticField(-1, 'i')
-    i = F.gen()
-
-    blocks = []
-    for z in M.list():
-        t = z.coefficient_tuple()
-        a = t[0]
-        b = t[1]
-        c = t[2]
-        d = t[3]
-        cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
-                                    [-c + d*i, a - b*i]])
-        blocks.append(_embed_complex_matrix(cplx_matrix))
-
-    # We should have real entries by now, so use the realest field
-    # we've got for the return value.
-    return matrix.block(quaternions.base_ring(), n, blocks)
-
-
-def _unembed_quaternion_matrix(M):
-    """
-    The inverse of _embed_quaternion_matrix().
 
-    SETUP::
+    @classmethod
+    def real_unembed(cls,M):
+        """
+        The inverse of _embed_quaternion_matrix().
+
+        SETUP::
 
-        sage: from mjo.eja.eja_algebra import (_embed_quaternion_matrix,
-        ....:                                  _unembed_quaternion_matrix)
+            sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
 
-    EXAMPLES::
+        EXAMPLES::
 
-        sage: M = matrix(QQ, [[ 1,  2,  3,  4],
-        ....:                 [-2,  1, -4,  3],
-        ....:                 [-3,  4,  1, -2],
-        ....:                 [-4, -3,  2,  1]])
-        sage: _unembed_quaternion_matrix(M)
-        [1 + 2*i + 3*j + 4*k]
+            sage: M = matrix(QQ, [[ 1,  2,  3,  4],
+            ....:                 [-2,  1, -4,  3],
+            ....:                 [-3,  4,  1, -2],
+            ....:                 [-4, -3,  2,  1]])
+            sage: QuaternionMatrixEJA.real_unembed(M)
+            [1 + 2*i + 3*j + 4*k]
 
-    TESTS:
+        TESTS:
 
-    Unembedding is the inverse of embedding::
+        Unembedding is the inverse of embedding::
 
-        sage: set_random_seed()
-        sage: Q = QuaternionAlgebra(QQ, -1, -1)
-        sage: M = random_matrix(Q, 3)
-        sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
-        True
+            sage: set_random_seed()
+            sage: Q = QuaternionAlgebra(QQ, -1, -1)
+            sage: M = random_matrix(Q, 3)
+            sage: Me = QuaternionMatrixEJA.real_embed(M)
+            sage: QuaternionMatrixEJA.real_unembed(Me) == M
+            True
 
-    """
-    n = ZZ(M.nrows())
-    if M.ncols() != n:
-        raise ValueError("the matrix 'M' must be square")
-    if not n.mod(4).is_zero():
-        raise ValueError("the matrix 'M' must be a complex embedding")
-
-    Q = QuaternionAlgebra(QQ,-1,-1)
-    i,j,k = Q.gens()
-
-    # Go top-left to bottom-right (reading order), converting every
-    # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
-    # quaternion block.
-    elements = []
-    for l in xrange(n/4):
-        for m in xrange(n/4):
-            submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
-            if submat[0,0] != submat[1,1].conjugate():
-                raise ValueError('bad on-diagonal submatrix')
-            if submat[0,1] != -submat[1,0].conjugate():
-                raise ValueError('bad off-diagonal submatrix')
-            z  = submat[0,0].real() + submat[0,0].imag()*i
-            z += submat[0,1].real()*j + submat[0,1].imag()*k
-            elements.append(z)
-
-    return matrix(Q, n/4, elements)
-
-
-# The usual inner product on R^n.
-def _usual_ip(x,y):
-    return x.vector().inner_product(y.vector())
-
-# The inner product used for the real symmetric simple EJA.
-# We keep it as a separate function because e.g. the complex
-# algebra uses the same inner product, except divided by 2.
-def _matrix_ip(X,Y):
-    X_mat = X.natural_representation()
-    Y_mat = Y.natural_representation()
-    return (X_mat*Y_mat).trace()
-
-
-class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
-    """
-    The rank-n simple EJA consisting of real symmetric n-by-n
-    matrices, the usual symmetric Jordan product, and the trace inner
-    product. It has dimension `(n^2 + n)/2` over the reals.
+        """
+        super().real_unembed(M)
+        n = ZZ(M.nrows())
+        d = cls.dimension_over_reals()
+
+        # Use the base ring of the matrix to ensure that its entries can be
+        # multiplied by elements of the quaternion algebra.
+        Q = cls.quaternion_extension(M.base_ring())
+        i,j,k = Q.gens()
+
+        # Go top-left to bottom-right (reading order), converting every
+        # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
+        # quaternion block.
+        elements = []
+        for l in range(n/d):
+            for m in range(n/d):
+                submat = ComplexMatrixEJA.real_unembed(
+                    M[d*l:d*l+d,d*m:d*m+d] )
+                if submat[0,0] != submat[1,1].conjugate():
+                    raise ValueError('bad on-diagonal submatrix')
+                if submat[0,1] != -submat[1,0].conjugate():
+                    raise ValueError('bad off-diagonal submatrix')
+                z  = submat[0,0].real()
+                z += submat[0,0].imag()*i
+                z += submat[0,1].real()*j
+                z += submat[0,1].imag()*k
+                elements.append(z)
+
+        return matrix(Q, n/d, elements)
+
+
+class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
+    r"""
+    The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
+    matrices, the usual symmetric Jordan product, and the
+    real-part-of-trace inner product. It has dimension `2n^2 - n` over
+    the reals.
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import RealSymmetricEJA
+        sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
 
-    EXAMPLES::
+    EXAMPLES:
 
-        sage: J = RealSymmetricEJA(2)
-        sage: e0, e1, e2 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e1*e1
-        e0 + e2
-        sage: e2*e2
-        e2
+    In theory, our "field" can be any subfield of the reals::
+
+        sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
+        Euclidean Jordan algebra of dimension 6 over Real Double Field
+        sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
+        Euclidean Jordan algebra of dimension 6 over Real Field with
+        53 bits of precision
 
     TESTS:
 
-    The degree of this algebra is `(n^2 + n) / 2`::
+    The dimension of this algebra is `2*n^2 - n`::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = RealSymmetricEJA(n)
-        sage: J.degree() == (n^2 + n)/2
+        sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
+        sage: n = ZZ.random_element(1, n_max)
+        sage: J = QuaternionHermitianEJA(n)
+        sage: J.dimension() == 2*(n^2) - n
         True
 
     The Jordan multiplication is what we think it is::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = RealSymmetricEJA(n)
-        sage: x = J.random_element()
-        sage: y = J.random_element()
-        sage: actual = (x*y).natural_representation()
-        sage: X = x.natural_representation()
-        sage: Y = y.natural_representation()
+        sage: J = QuaternionHermitianEJA.random_instance()
+        sage: x,y = J.random_elements(2)
+        sage: actual = (x*y).to_matrix()
+        sage: X = x.to_matrix()
+        sage: Y = y.to_matrix()
         sage: expected = (X*Y + Y*X)/2
         sage: actual == expected
         True
         sage: J(expected) == x*y
         True
 
+    We can change the generator prefix::
+
+        sage: QuaternionHermitianEJA(2, prefix='a').gens()
+        (a0, a1, a2, a3, a4, a5)
+
+    We can construct the (trivial) algebra of rank zero::
+
+        sage: QuaternionHermitianEJA(0)
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
+
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        S = _real_symmetric_basis(n, field=field)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    @classmethod
+    def _denormalized_basis(cls, n, field):
+        """
+        Returns a basis for the space of quaternion Hermitian n-by-n matrices.
 
-        fdeja = super(RealSymmetricEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+        Why do we embed these? Basically, because all of numerical
+        linear algebra assumes that you're working with vectors consisting
+        of `n` entries from a field and scalars from the same field. There's
+        no way to tell SageMath that (for example) the vectors contain
+        complex numbers, while the scalar field is real.
 
-    def inner_product(self, x, y):
-        return _matrix_ip(x,y)
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
 
+        TESTS::
 
-class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(1,5)
+            sage: B = QuaternionHermitianEJA._denormalized_basis(n,ZZ)
+            sage: all( M.is_symmetric() for M in B )
+            True
+
+        """
+        Q = QuaternionAlgebra(QQ,-1,-1)
+        I,J,K = Q.gens()
+
+        # This is like the symmetric case, but we need to be careful:
+        #
+        #   * We want conjugate-symmetry, not just symmetry.
+        #   * The diagonal will (as a result) be real.
+        #
+        S = []
+        Eij = matrix.zero(Q,n)
+        for i in range(n):
+            for j in range(i+1):
+                # "build" E_ij
+                Eij[i,j] = 1
+                if i == j:
+                    Sij = cls.real_embed(Eij)
+                    S.append(Sij)
+                else:
+                    # The second, third, and fourth ones have a minus
+                    # because they're conjugated.
+                    # Eij = Eij + Eij.transpose()
+                    Eij[j,i] = 1
+                    Sij_real = cls.real_embed(Eij)
+                    S.append(Sij_real)
+                    # Eij = I*(Eij - Eij.transpose())
+                    Eij[i,j] = I
+                    Eij[j,i] = -I
+                    Sij_I = cls.real_embed(Eij)
+                    S.append(Sij_I)
+                    # Eij = J*(Eij - Eij.transpose())
+                    Eij[i,j] = J
+                    Eij[j,i] = -J
+                    Sij_J = cls.real_embed(Eij)
+                    S.append(Sij_J)
+                    # Eij = K*(Eij - Eij.transpose())
+                    Eij[i,j] = K
+                    Eij[j,i] = -K
+                    Sij_K = cls.real_embed(Eij)
+                    S.append(Sij_K)
+                    Eij[j,i] = 0
+                # "erase" E_ij
+                Eij[i,j] = 0
+
+        # Since we embedded the entries, we can drop back to the
+        # desired real "field" instead of the quaternion algebra "Q".
+        return tuple( s.change_ring(field) for s in S )
+
+
+    def __init__(self, n, field=AA, **kwargs):
+        # We know this is a valid EJA, but will double-check
+        # if the user passes check_axioms=True.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        associative = False
+        if n <= 1:
+            associative = True
+
+        super().__init__(self._denormalized_basis(n,field),
+                         self.jordan_product,
+                         self.trace_inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
+
+        # TODO: this could be factored out somehow, but is left here
+        # because the MatrixEJA is not presently a subclass of the
+        # FDEJA class that defines rank() and one().
+        self.rank.set_cache(n)
+        idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
+        self.one.set_cache(self(idV))
+
+
+    @staticmethod
+    def _max_random_instance_size():
+        r"""
+        The maximum rank of a random QuaternionHermitianEJA.
+        """
+        return 2 # Dimension 6
+
+    @classmethod
+    def random_instance(cls, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        return cls(n, **kwargs)
+
+
+class HadamardEJA(ConcreteEJA):
     """
-    The rank-n simple EJA consisting of complex Hermitian n-by-n
-    matrices over the real numbers, the usual symmetric Jordan product,
-    and the real-part-of-trace inner product. It has dimension `n^2` over
-    the reals.
+    Return the Euclidean Jordan Algebra corresponding to the set
+    `R^n` under the Hadamard product.
+
+    Note: this is nothing more than the Cartesian product of ``n``
+    copies of the spin algebra. Once Cartesian product algebras
+    are implemented, this can go.
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
+        sage: from mjo.eja.eja_algebra import HadamardEJA
 
-    TESTS:
+    EXAMPLES:
 
-    The degree of this algebra is `n^2`::
+    This multiplication table can be verified by hand::
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = ComplexHermitianEJA(n)
-        sage: J.degree() == n^2
-        True
+        sage: J = HadamardEJA(3)
+        sage: b0,b1,b2 = J.gens()
+        sage: b0*b0
+        b0
+        sage: b0*b1
+        0
+        sage: b0*b2
+        0
+        sage: b1*b1
+        b1
+        sage: b1*b2
+        0
+        sage: b2*b2
+        b2
 
-    The Jordan multiplication is what we think it is::
+    TESTS:
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = ComplexHermitianEJA(n)
-        sage: x = J.random_element()
-        sage: y = J.random_element()
-        sage: actual = (x*y).natural_representation()
-        sage: X = x.natural_representation()
-        sage: Y = y.natural_representation()
-        sage: expected = (X*Y + Y*X)/2
-        sage: actual == expected
-        True
-        sage: J(expected) == x*y
-        True
+    We can change the generator prefix::
+
+        sage: HadamardEJA(3, prefix='r').gens()
+        (r0, r1, r2)
 
     """
+    def __init__(self, n, field=AA, **kwargs):
+        if n == 0:
+            jordan_product = lambda x,y: x
+            inner_product = lambda x,y: x
+        else:
+            def jordan_product(x,y):
+                P = x.parent()
+                return P( xi*yi for (xi,yi) in zip(x,y) )
+
+            def inner_product(x,y):
+                return (x.T*y)[0,0]
+
+        # New defaults for keyword arguments. Don't orthonormalize
+        # because our basis is already orthonormal with respect to our
+        # inner-product. Don't check the axioms, because we know this
+        # is a valid EJA... but do double-check if the user passes
+        # check_axioms=True. Note: we DON'T override the "check_field"
+        # default here, because the user can pass in a field!
+        if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        column_basis = tuple( b.column()
+                              for b in FreeModule(field, n).basis() )
+        super().__init__(column_basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         associative=True,
+                         **kwargs)
+        self.rank.set_cache(n)
+
+        if n == 0:
+            self.one.set_cache( self.zero() )
+        else:
+            self.one.set_cache( sum(self.gens()) )
+
     @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        S = _complex_hermitian_basis(n)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    def _max_random_instance_size():
+        r"""
+        The maximum dimension of a random HadamardEJA.
+        """
+        return 5
 
-        fdeja = super(ComplexHermitianEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+    @classmethod
+    def random_instance(cls, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        return cls(n, **kwargs)
 
-    def inner_product(self, x, y):
-        # Since a+bi on the diagonal is represented as
-        #
-        #   a + bi  = [  a  b  ]
-        #             [ -b  a  ],
-        #
-        # we'll double-count the "a" entries if we take the trace of
-        # the embedding.
-        return _matrix_ip(x,y)/2
 
+class BilinearFormEJA(ConcreteEJA):
+    r"""
+    The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
+    with the half-trace inner product and jordan product ``x*y =
+    (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
+    a symmetric positive-definite "bilinear form" matrix. Its
+    dimension is the size of `B`, and it has rank two in dimensions
+    larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
+    the identity matrix of order ``n``.
 
-class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
-    """
-    The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
-    matrices, the usual symmetric Jordan product, and the
-    real-part-of-trace inner product. It has dimension `2n^2 - n` over
-    the reals.
+    We insist that the one-by-one upper-left identity block of `B` be
+    passed in as well so that we can be passed a matrix of size zero
+    to construct a trivial algebra.
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
+        sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
+        ....:                                  JordanSpinEJA)
 
-    TESTS:
+    EXAMPLES:
 
-    The degree of this algebra is `n^2`::
+    When no bilinear form is specified, the identity matrix is used,
+    and the resulting algebra is the Jordan spin algebra::
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = QuaternionHermitianEJA(n)
-        sage: J.degree() == 2*(n^2) - n
+        sage: B = matrix.identity(AA,3)
+        sage: J0 = BilinearFormEJA(B)
+        sage: J1 = JordanSpinEJA(3)
+        sage: J0.multiplication_table() == J0.multiplication_table()
         True
 
-    The Jordan multiplication is what we think it is::
+    An error is raised if the matrix `B` does not correspond to a
+    positive-definite bilinear form::
+
+        sage: B = matrix.random(QQ,2,3)
+        sage: J = BilinearFormEJA(B)
+        Traceback (most recent call last):
+        ...
+        ValueError: bilinear form is not positive-definite
+        sage: B = matrix.zero(QQ,3)
+        sage: J = BilinearFormEJA(B)
+        Traceback (most recent call last):
+        ...
+        ValueError: bilinear form is not positive-definite
+
+    TESTS:
+
+    We can create a zero-dimensional algebra::
+
+        sage: B = matrix.identity(AA,0)
+        sage: J = BilinearFormEJA(B)
+        sage: J.basis()
+        Finite family {}
+
+    We can check the multiplication condition given in the Jordan, von
+    Neumann, and Wigner paper (and also discussed on my "On the
+    symmetry..." paper). Note that this relies heavily on the standard
+    choice of basis, as does anything utilizing the bilinear form
+    matrix.  We opt not to orthonormalize the basis, because if we
+    did, we would have to normalize the `s_{i}` in a similar manner::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = QuaternionHermitianEJA(n)
-        sage: x = J.random_element()
-        sage: y = J.random_element()
-        sage: actual = (x*y).natural_representation()
-        sage: X = x.natural_representation()
-        sage: Y = y.natural_representation()
-        sage: expected = (X*Y + Y*X)/2
+        sage: n = ZZ.random_element(5)
+        sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
+        sage: B11 = matrix.identity(QQ,1)
+        sage: B22 = M.transpose()*M
+        sage: B = block_matrix(2,2,[ [B11,0  ],
+        ....:                        [0, B22 ] ])
+        sage: J = BilinearFormEJA(B, orthonormalize=False)
+        sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
+        sage: V = J.vector_space()
+        sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
+        ....:         for ei in eis ]
+        sage: actual = [ sis[i]*sis[j]
+        ....:            for i in range(n-1)
+        ....:            for j in range(n-1) ]
+        sage: expected = [ J.one() if i == j else J.zero()
+        ....:              for i in range(n-1)
+        ....:              for j in range(n-1) ]
         sage: actual == expected
         True
-        sage: J(expected) == x*y
-        True
 
     """
+    def __init__(self, B, field=AA, **kwargs):
+        # The matrix "B" is supplied by the user in most cases,
+        # so it makes sense to check whether or not its positive-
+        # definite unless we are specifically asked not to...
+        if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
+            if not B.is_positive_definite():
+                raise ValueError("bilinear form is not positive-definite")
+
+        # However, all of the other data for this EJA is computed
+        # by us in manner that guarantees the axioms are
+        # satisfied. So, again, unless we are specifically asked to
+        # verify things, we'll skip the rest of the checks.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        def inner_product(x,y):
+            return (y.T*B*x)[0,0]
+
+        def jordan_product(x,y):
+            P = x.parent()
+            x0 = x[0,0]
+            xbar = x[1:,0]
+            y0 = y[0,0]
+            ybar = y[1:,0]
+            z0 = inner_product(y,x)
+            zbar = y0*xbar + x0*ybar
+            return P([z0] + zbar.list())
+
+        n = B.nrows()
+        column_basis = tuple( b.column()
+                              for b in FreeModule(field, n).basis() )
+
+        # TODO: I haven't actually checked this, but it seems legit.
+        associative = False
+        if n <= 2:
+            associative = True
+
+        super().__init__(column_basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
+
+        # The rank of this algebra is two, unless we're in a
+        # one-dimensional ambient space (because the rank is bounded
+        # by the ambient dimension).
+        self.rank.set_cache(min(n,2))
+
+        if n == 0:
+            self.one.set_cache( self.zero() )
+        else:
+            self.one.set_cache( self.monomial(0) )
+
     @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        S = _quaternion_hermitian_basis(n)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    def _max_random_instance_size():
+        r"""
+        The maximum dimension of a random BilinearFormEJA.
+        """
+        return 5
 
-        fdeja = super(QuaternionHermitianEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+    @classmethod
+    def random_instance(cls, **kwargs):
+        """
+        Return a random instance of this algebra.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        if n.is_zero():
+            B = matrix.identity(ZZ, n)
+            return cls(B, **kwargs)
 
-    def inner_product(self, x, y):
-        # Since a+bi+cj+dk on the diagonal is represented as
-        #
-        #   a + bi +cj + dk = [  a  b  c  d]
-        #                     [ -b  a -d  c]
-        #                     [ -c  d  a -b]
-        #                     [ -d -c  b  a],
-        #
-        # we'll quadruple-count the "a" entries if we take the trace of
-        # the embedding.
-        return _matrix_ip(x,y)/4
+        B11 = matrix.identity(ZZ, 1)
+        M = matrix.random(ZZ, n-1)
+        I = matrix.identity(ZZ, n-1)
+        alpha = ZZ.zero()
+        while alpha.is_zero():
+            alpha = ZZ.random_element().abs()
+        B22 = M.transpose()*M + alpha*I
 
+        from sage.matrix.special import block_matrix
+        B = block_matrix(2,2, [ [B11,   ZZ(0) ],
+                                [ZZ(0), B22 ] ])
 
-class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
+        return cls(B, **kwargs)
+
+
+class JordanSpinEJA(BilinearFormEJA):
     """
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the usual inner product and jordan product ``x*y =
-    (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
+    (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
     the reals.
 
     SETUP::
@@ -2396,43 +2861,615 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
     This multiplication table can be verified by hand::
 
         sage: J = JordanSpinEJA(4)
-        sage: e0,e1,e2,e3 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e0*e1
-        e1
-        sage: e0*e2
-        e2
-        sage: e0*e3
-        e3
-        sage: e1*e2
+        sage: b0,b1,b2,b3 = J.gens()
+        sage: b0*b0
+        b0
+        sage: b0*b1
+        b1
+        sage: b0*b2
+        b2
+        sage: b0*b3
+        b3
+        sage: b1*b2
         0
-        sage: e1*e3
+        sage: b1*b3
         0
-        sage: e2*e3
+        sage: b2*b3
         0
 
+    We can change the generator prefix::
+
+        sage: JordanSpinEJA(2, prefix='B').gens()
+        (B0, B1)
+
+    TESTS:
+
+        Ensure that we have the usual inner product on `R^n`::
+
+            sage: set_random_seed()
+            sage: J = JordanSpinEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: actual = x.inner_product(y)
+            sage: expected = x.to_vector().inner_product(y.to_vector())
+            sage: actual == expected
+            True
+
     """
+    def __init__(self, n, *args, **kwargs):
+        # This is a special case of the BilinearFormEJA with the
+        # identity matrix as its bilinear form.
+        B = matrix.identity(ZZ, n)
+
+        # Don't orthonormalize because our basis is already
+        # orthonormal with respect to our inner-product.
+        if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
+
+        # But also don't pass check_field=False here, because the user
+        # can pass in a field!
+        super().__init__(B, *args, **kwargs)
+
     @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        Qs = []
-        id_matrix = matrix.identity(field, n)
-        for i in xrange(n):
-            ei = id_matrix.column(i)
-            Qi = matrix.zero(field, n)
-            Qi.set_row(0, ei)
-            Qi.set_column(0, ei)
-            Qi += matrix.diagonal(n, [ei[0]]*n)
-            # The addition of the diagonal matrix adds an extra ei[0] in the
-            # upper-left corner of the matrix.
-            Qi[0,0] = Qi[0,0] * ~field(2)
-            Qs.append(Qi)
-
-        # The rank of the spin algebra is two, unless we're in a
-        # one-dimensional ambient space (because the rank is bounded by
-        # the ambient dimension).
-        fdeja = super(JordanSpinEJA, cls)
-        return fdeja.__classcall_private__(cls, field, Qs, rank=min(n,2))
+    def _max_random_instance_size():
+        r"""
+        The maximum dimension of a random JordanSpinEJA.
+        """
+        return 5
 
-    def inner_product(self, x, y):
-        return _usual_ip(x,y)
+    @classmethod
+    def random_instance(cls, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+
+        Needed here to override the implementation for ``BilinearFormEJA``.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        return cls(n, **kwargs)
+
+
+class TrivialEJA(ConcreteEJA):
+    """
+    The trivial Euclidean Jordan algebra consisting of only a zero element.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import TrivialEJA
+
+    EXAMPLES::
+
+        sage: J = TrivialEJA()
+        sage: J.dimension()
+        0
+        sage: J.zero()
+        0
+        sage: J.one()
+        0
+        sage: 7*J.one()*12*J.one()
+        0
+        sage: J.one().inner_product(J.one())
+        0
+        sage: J.one().norm()
+        0
+        sage: J.one().subalgebra_generated_by()
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
+        sage: J.rank()
+        0
+
+    """
+    def __init__(self, **kwargs):
+        jordan_product = lambda x,y: x
+        inner_product = lambda x,y: 0
+        basis = ()
+
+        # New defaults for keyword arguments
+        if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        super().__init__(basis,
+                         jordan_product,
+                         inner_product,
+                         associative=True,
+                         **kwargs)
+
+        # The rank is zero using my definition, namely the dimension of the
+        # largest subalgebra generated by any element.
+        self.rank.set_cache(0)
+        self.one.set_cache( self.zero() )
+
+    @classmethod
+    def random_instance(cls, **kwargs):
+        # We don't take a "size" argument so the superclass method is
+        # inappropriate for us.
+        return cls(**kwargs)
+
+
+class CartesianProductEJA(FiniteDimensionalEJA):
+    r"""
+    The external (orthogonal) direct sum of two or more Euclidean
+    Jordan algebras. Every Euclidean Jordan algebra decomposes into an
+    orthogonal direct sum of simple Euclidean Jordan algebras which is
+    then isometric to a Cartesian product, so no generality is lost by
+    providing only this construction.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (random_eja,
+        ....:                                  CartesianProductEJA,
+        ....:                                  HadamardEJA,
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
+
+    EXAMPLES:
+
+    The Jordan product is inherited from our factors and implemented by
+    our CombinatorialFreeModule Cartesian product superclass::
+
+        sage: set_random_seed()
+        sage: J1 = HadamardEJA(2)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: J = cartesian_product([J1,J2])
+        sage: x,y = J.random_elements(2)
+        sage: x*y in J
+        True
+
+    The ability to retrieve the original factors is implemented by our
+    CombinatorialFreeModule Cartesian product superclass::
+
+        sage: J1 = HadamardEJA(2, field=QQ)
+        sage: J2 = JordanSpinEJA(3, field=QQ)
+        sage: J = cartesian_product([J1,J2])
+        sage: J.cartesian_factors()
+        (Euclidean Jordan algebra of dimension 2 over Rational Field,
+         Euclidean Jordan algebra of dimension 3 over Rational Field)
+
+    You can provide more than two factors::
+
+        sage: J1 = HadamardEJA(2)
+        sage: J2 = JordanSpinEJA(3)
+        sage: J3 = RealSymmetricEJA(3)
+        sage: cartesian_product([J1,J2,J3])
+        Euclidean Jordan algebra of dimension 2 over Algebraic Real
+        Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
+        Real Field (+) Euclidean Jordan algebra of dimension 6 over
+        Algebraic Real Field
+
+    Rank is additive on a Cartesian product::
+
+        sage: J1 = HadamardEJA(1)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: J = cartesian_product([J1,J2])
+        sage: J1.rank.clear_cache()
+        sage: J2.rank.clear_cache()
+        sage: J.rank.clear_cache()
+        sage: J.rank()
+        3
+        sage: J.rank() == J1.rank() + J2.rank()
+        True
+
+    The same rank computation works over the rationals, with whatever
+    basis you like::
+
+        sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
+        sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
+        sage: J = cartesian_product([J1,J2])
+        sage: J1.rank.clear_cache()
+        sage: J2.rank.clear_cache()
+        sage: J.rank.clear_cache()
+        sage: J.rank()
+        3
+        sage: J.rank() == J1.rank() + J2.rank()
+        True
+
+    The product algebra will be associative if and only if all of its
+    components are associative::
+
+        sage: J1 = HadamardEJA(2)
+        sage: J1.is_associative()
+        True
+        sage: J2 = HadamardEJA(3)
+        sage: J2.is_associative()
+        True
+        sage: J3 = RealSymmetricEJA(3)
+        sage: J3.is_associative()
+        False
+        sage: CP1 = cartesian_product([J1,J2])
+        sage: CP1.is_associative()
+        True
+        sage: CP2 = cartesian_product([J1,J3])
+        sage: CP2.is_associative()
+        False
+
+    Cartesian products of Cartesian products work::
+
+        sage: J1 = JordanSpinEJA(1)
+        sage: J2 = JordanSpinEJA(1)
+        sage: J3 = JordanSpinEJA(1)
+        sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
+        sage: J.multiplication_table()
+        +----++----+----+----+
+        | *  || b0 | b1 | b2 |
+        +====++====+====+====+
+        | b0 || b0 | 0  | 0  |
+        +----++----+----+----+
+        | b1 || 0  | b1 | 0  |
+        +----++----+----+----+
+        | b2 || 0  | 0  | b2 |
+        +----++----+----+----+
+        sage: HadamardEJA(3).multiplication_table()
+        +----++----+----+----+
+        | *  || b0 | b1 | b2 |
+        +====++====+====+====+
+        | b0 || b0 | 0  | 0  |
+        +----++----+----+----+
+        | b1 || 0  | b1 | 0  |
+        +----++----+----+----+
+        | b2 || 0  | 0  | b2 |
+        +----++----+----+----+
+
+    TESTS:
+
+    All factors must share the same base field::
+
+        sage: J1 = HadamardEJA(2, field=QQ)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: CartesianProductEJA((J1,J2))
+        Traceback (most recent call last):
+        ...
+        ValueError: all factors must share the same base field
+
+    The cached unit element is the same one that would be computed::
+
+        sage: set_random_seed()              # long time
+        sage: J1 = random_eja()              # long time
+        sage: J2 = random_eja()              # long time
+        sage: J = cartesian_product([J1,J2]) # long time
+        sage: actual = J.one()               # long time
+        sage: J.one.clear_cache()            # long time
+        sage: expected = J.one()             # long time
+        sage: actual == expected             # long time
+        True
+
+    """
+    Element = FiniteDimensionalEJAElement
+
+
+    def __init__(self, factors, **kwargs):
+        m = len(factors)
+        if m == 0:
+            return TrivialEJA()
+
+        self._sets = factors
+
+        field = factors[0].base_ring()
+        if not all( J.base_ring() == field for J in factors ):
+            raise ValueError("all factors must share the same base field")
+
+        associative = all( f.is_associative() for f in factors )
+
+        MS = self.matrix_space()
+        basis = []
+        zero = MS.zero()
+        for i in range(m):
+            for b in factors[i].matrix_basis():
+                z = list(zero)
+                z[i] = b
+                basis.append(z)
+
+        basis = tuple( MS(b) for b in basis )
+
+        # Define jordan/inner products that operate on that matrix_basis.
+        def jordan_product(x,y):
+            return MS(tuple(
+                (factors[i](x[i])*factors[i](y[i])).to_matrix()
+                for i in range(m)
+            ))
+
+        def inner_product(x, y):
+            return sum(
+                factors[i](x[i]).inner_product(factors[i](y[i]))
+                for i in range(m)
+            )
+
+        # There's no need to check the field since it already came
+        # from an EJA. Likewise the axioms are guaranteed to be
+        # satisfied, unless the guy writing this class sucks.
+        #
+        # If you want the basis to be orthonormalized, orthonormalize
+        # the factors.
+        FiniteDimensionalEJA.__init__(self,
+                                      basis,
+                                      jordan_product,
+                                      inner_product,
+                                      field=field,
+                                      orthonormalize=False,
+                                      associative=associative,
+                                      cartesian_product=True,
+                                      check_field=False,
+                                      check_axioms=False)
+
+        ones = tuple(J.one().to_matrix() for J in factors)
+        self.one.set_cache(self(ones))
+        self.rank.set_cache(sum(J.rank() for J in factors))
+
+    def cartesian_factors(self):
+        # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
+        return self._sets
+
+    def cartesian_factor(self, i):
+        r"""
+        Return the ``i``th factor of this algebra.
+        """
+        return self._sets[i]
+
+    def _repr_(self):
+        # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
+        from sage.categories.cartesian_product import cartesian_product
+        return cartesian_product.symbol.join("%s" % factor
+                                             for factor in self._sets)
+
+    def matrix_space(self):
+        r"""
+        Return the space that our matrix basis lives in as a Cartesian
+        product.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(1)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.matrix_space()
+            The Cartesian product of (Full MatrixSpace of 1 by 1 dense
+            matrices over Algebraic Real Field, Full MatrixSpace of 2
+            by 2 dense matrices over Algebraic Real Field)
+
+        """
+        from sage.categories.cartesian_product import cartesian_product
+        return cartesian_product( [J.matrix_space()
+                                   for J in self.cartesian_factors()] )
+
+    @cached_method
+    def cartesian_projection(self, i):
+        r"""
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA)
+
+        EXAMPLES:
+
+        The projection morphisms are Euclidean Jordan algebra
+        operators::
+
+            sage: J1 = HadamardEJA(2)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.cartesian_projection(0)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [1 0 0 0 0]
+            [0 1 0 0 0]
+            Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field (+) Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field
+            sage: J.cartesian_projection(1)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [0 0 1 0 0]
+            [0 0 0 1 0]
+            [0 0 0 0 1]
+            Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field (+) Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
+            Real Field
+
+        The projections work the way you'd expect on the vector
+        representation of an element::
+
+            sage: J1 = JordanSpinEJA(2)
+            sage: J2 = ComplexHermitianEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: pi_left = J.cartesian_projection(0)
+            sage: pi_right = J.cartesian_projection(1)
+            sage: pi_left(J.one()).to_vector()
+            (1, 0)
+            sage: pi_right(J.one()).to_vector()
+            (1, 0, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 1, 0, 0, 1)
+
+        TESTS:
+
+        The answer never changes::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: P0 = J.cartesian_projection(0)
+            sage: P1 = J.cartesian_projection(0)
+            sage: P0 == P1
+            True
+
+        """
+        offset = sum( self.cartesian_factor(k).dimension()
+                      for k in range(i) )
+        Ji = self.cartesian_factor(i)
+        Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
+                                   codomain=Ji)
+
+        return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
+
+    @cached_method
+    def cartesian_embedding(self, i):
+        r"""
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES:
+
+        The embedding morphisms are Euclidean Jordan algebra
+        operators::
+
+            sage: J1 = HadamardEJA(2)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.cartesian_embedding(0)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [1 0]
+            [0 1]
+            [0 0]
+            [0 0]
+            [0 0]
+            Domain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field (+) Euclidean Jordan algebra of
+            dimension 3 over Algebraic Real Field
+            sage: J.cartesian_embedding(1)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [0 0 0]
+            [0 0 0]
+            [1 0 0]
+            [0 1 0]
+            [0 0 1]
+            Domain: Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field (+) Euclidean Jordan algebra of
+            dimension 3 over Algebraic Real Field
+
+        The embeddings work the way you'd expect on the vector
+        representation of an element::
+
+            sage: J1 = JordanSpinEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: iota_left = J.cartesian_embedding(0)
+            sage: iota_right = J.cartesian_embedding(1)
+            sage: iota_left(J1.zero()) == J.zero()
+            True
+            sage: iota_right(J2.zero()) == J.zero()
+            True
+            sage: J1.one().to_vector()
+            (1, 0, 0)
+            sage: iota_left(J1.one()).to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: J2.one().to_vector()
+            (1, 0, 1)
+            sage: iota_right(J2.one()).to_vector()
+            (0, 0, 0, 1, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 0, 1, 0, 1)
+
+        TESTS:
+
+        The answer never changes::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: E0 = J.cartesian_embedding(0)
+            sage: E1 = J.cartesian_embedding(0)
+            sage: E0 == E1
+            True
+
+        Composing a projection with the corresponding inclusion should
+        produce the identity map, and mismatching them should produce
+        the zero map::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: iota_left = J.cartesian_embedding(0)
+            sage: iota_right = J.cartesian_embedding(1)
+            sage: pi_left = J.cartesian_projection(0)
+            sage: pi_right = J.cartesian_projection(1)
+            sage: pi_left*iota_left == J1.one().operator()
+            True
+            sage: pi_right*iota_right == J2.one().operator()
+            True
+            sage: (pi_left*iota_right).is_zero()
+            True
+            sage: (pi_right*iota_left).is_zero()
+            True
+
+        """
+        offset = sum( self.cartesian_factor(k).dimension()
+                      for k in range(i) )
+        Ji = self.cartesian_factor(i)
+        Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
+                                 codomain=self)
+        return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
+
+
+
+FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
+
+class RationalBasisCartesianProductEJA(CartesianProductEJA,
+                                       RationalBasisEJA):
+    r"""
+    A separate class for products of algebras for which we know a
+    rational basis.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
+
+    EXAMPLES:
+
+    This gives us fast characteristic polynomial computations in
+    product algebras, too::
+
+
+        sage: J1 = JordanSpinEJA(2)
+        sage: J2 = RealSymmetricEJA(3)
+        sage: J = cartesian_product([J1,J2])
+        sage: J.characteristic_polynomial_of().degree()
+        5
+        sage: J.rank()
+        5
+
+    """
+    def __init__(self, algebras, **kwargs):
+        CartesianProductEJA.__init__(self, algebras, **kwargs)
+
+        self._rational_algebra = None
+        if self.vector_space().base_field() is not QQ:
+            self._rational_algebra = cartesian_product([
+                r._rational_algebra for r in algebras
+            ])
+
+
+RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
+
+def random_eja(*args, **kwargs):
+    J1 = ConcreteEJA.random_instance(*args, **kwargs)
+
+    # This might make Cartesian products appear roughly as often as
+    # any other ConcreteEJA.
+    if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0:
+        # Use random_eja() again so we can get more than two factors.
+        J2 = random_eja(*args, **kwargs)
+        J = cartesian_product([J1,J2])
+        return J
+    else:
+        return J1