]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: add OctonionHermitianEJA to the docs.
[sage.d.git] / mjo / eja / eja_algebra.py
index aef11acd1dbb6dc60b4765be1790f2fb71c5a1be..43f8021706fdeaa20033043ae31d808b00bc007a 100644 (file)
@@ -32,22 +32,21 @@ for these simple algebras:
   * :class:`RealSymmetricEJA`
   * :class:`ComplexHermitianEJA`
   * :class:`QuaternionHermitianEJA`
+  * :class:`OctonionHermitianEJA`
 
-Missing from this list is the algebra of three-by-three octononion
-Hermitian matrices, as there is (as of yet) no implementation of the
-octonions in SageMath. In addition to these, we provide two other
-example constructions,
+In addition to these, we provide two other example constructions,
 
   * :class:`HadamardEJA`
   * :class:`TrivialEJA`
 
 The Jordan spin algebra is a bilinear form algebra where the bilinear
 form is the identity. The Hadamard EJA is simply a Cartesian product
-of one-dimensional spin algebras. And last but not least, the trivial
-EJA is exactly what you think. Cartesian products of these are also
-supported using the usual ``cartesian_product()`` function; as a
-result, we support (up to isomorphism) all Euclidean Jordan algebras
-that don't involve octonions.
+of one-dimensional spin algebras. And last but least, the trivial EJA
+is exactly what you think it is; it could also be obtained by
+constructing a dimension-zero instance of any of the other
+algebras. Cartesian products of these are also supported using the
+usual ``cartesian_product()`` function; as a result, we support (up to
+isomorphism) all Euclidean Jordan algebras.
 
 SETUP::
 
@@ -3380,9 +3379,17 @@ class CartesianProductEJA(FiniteDimensionalEJA):
         Return the space that our matrix basis lives in as a Cartesian
         product.
 
+        We don't simply use the ``cartesian_product()`` functor here
+        because it acts differently on SageMath MatrixSpaces and our
+        custom MatrixAlgebras, which are CombinatorialFreeModules. We
+        always want the result to be represented (and indexed) as
+        an ordered tuple.
+
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  HadamardEJA,
+            ....:                                  OctonionHermitianEJA,
             ....:                                  RealSymmetricEJA)
 
         EXAMPLES::
@@ -3395,10 +3402,44 @@ class CartesianProductEJA(FiniteDimensionalEJA):
             matrices over Algebraic Real Field, Full MatrixSpace of 2
             by 2 dense matrices over Algebraic Real Field)
 
+        ::
+
+            sage: J1 = ComplexHermitianEJA(1)
+            sage: J2 = ComplexHermitianEJA(1)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.one().to_matrix()[0]
+            [1 0]
+            [0 1]
+            sage: J.one().to_matrix()[1]
+            [1 0]
+            [0 1]
+
+        ::
+
+            sage: J1 = OctonionHermitianEJA(1)
+            sage: J2 = OctonionHermitianEJA(1)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.one().to_matrix()[0]
+            +----+
+            | e0 |
+            +----+
+            sage: J.one().to_matrix()[1]
+            +----+
+            | e0 |
+            +----+
+
         """
-        from sage.categories.cartesian_product import cartesian_product
-        return cartesian_product( [J.matrix_space()
-                                   for J in self.cartesian_factors()] )
+        scalars = self.cartesian_factor(0).base_ring()
+
+        # This category isn't perfect, but is good enough for what we
+        # need to do.
+        cat = MagmaticAlgebras(scalars).FiniteDimensional().WithBasis()
+        cat = cat.Unital().CartesianProducts()
+        factors = tuple( J.matrix_space() for J in self.cartesian_factors() )
+
+        from sage.sets.cartesian_product import CartesianProduct
+        return CartesianProduct(factors, cat)
+
 
     @cached_method
     def cartesian_projection(self, i):