]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: fix a baaaaaad typo in the BilinearFormEJA.
[sage.d.git] / mjo / eja / eja_algebra.py
index 3d49005bda1ad3c987c654b11be1ea901da5af7b..34f88010cd31eb8d5cba9446d6dd6ffd2f5a2eaf 100644 (file)
@@ -29,14 +29,168 @@ from sage.modules.free_module import FreeModule, VectorSpace
 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
                             PolynomialRing,
                             QuadraticField)
-from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
-from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
+from mjo.eja.eja_element import FiniteDimensionalEJAElement
+from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
 from mjo.eja.eja_utils import _mat2vec
 
-class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
+class FiniteDimensionalEJA(CombinatorialFreeModule):
     r"""
-    The lowest-level class for representing a Euclidean Jordan algebra.
+    A finite-dimensional Euclidean Jordan algebra.
+
+    INPUT:
+
+      - basis -- a tuple of basis elements in their matrix form.
+
+      - jordan_product -- function of two elements (in matrix form)
+        that returns their jordan product in this algebra; this will
+        be applied to ``basis`` to compute a multiplication table for
+        the algebra.
+
+      - inner_product -- function of two elements (in matrix form) that
+        returns their inner product. This will be applied to ``basis`` to
+        compute an inner-product table (basically a matrix) for this algebra.
+
     """
+    Element = FiniteDimensionalEJAElement
+
+    def __init__(self,
+                 basis,
+                 jordan_product,
+                 inner_product,
+                 field=AA,
+                 orthonormalize=True,
+                 associative=False,
+                 check_field=True,
+                 check_axioms=True,
+                 prefix='e'):
+
+        if check_field:
+            if not field.is_subring(RR):
+                # Note: this does return true for the real algebraic
+                # field, the rationals, and any quadratic field where
+                # we've specified a real embedding.
+                raise ValueError("scalar field is not real")
+
+        # If the basis given to us wasn't over the field that it's
+        # supposed to be over, fix that. Or, you know, crash.
+        basis = tuple( b.change_ring(field) for b in basis )
+
+        if check_axioms:
+            # Check commutativity of the Jordan and inner-products.
+            # This has to be done before we build the multiplication
+            # and inner-product tables/matrices, because we take
+            # advantage of symmetry in the process.
+            if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
+                        for bi in basis
+                        for bj in basis ):
+                raise ValueError("Jordan product is not commutative")
+
+            if not all( inner_product(bi,bj) == inner_product(bj,bi)
+                        for bi in basis
+                        for bj in basis ):
+                raise ValueError("inner-product is not commutative")
+
+
+        category = MagmaticAlgebras(field).FiniteDimensional()
+        category = category.WithBasis().Unital()
+        if associative:
+            # Element subalgebras can take advantage of this.
+            category = category.Associative()
+
+        # Call the superclass constructor so that we can use its from_vector()
+        # method to build our multiplication table.
+        n = len(basis)
+        super().__init__(field,
+                         range(n),
+                         prefix=prefix,
+                         category=category,
+                         bracket=False)
+
+        # Now comes all of the hard work. We'll be constructing an
+        # ambient vector space V that our (vectorized) basis lives in,
+        # as well as a subspace W of V spanned by those (vectorized)
+        # basis elements. The W-coordinates are the coefficients that
+        # we see in things like x = 1*e1 + 2*e2.
+        vector_basis = basis
+
+        degree = 0
+        if n > 0:
+            # Works on both column and square matrices...
+            degree = len(basis[0].list())
+
+        # Build an ambient space that fits our matrix basis when
+        # written out as "long vectors."
+        V = VectorSpace(field, degree)
+
+        # The matrix that will hole the orthonormal -> unorthonormal
+        # coordinate transformation.
+        self._deortho_matrix = None
+
+        if orthonormalize:
+            # Save a copy of the un-orthonormalized basis for later.
+            # Convert it to ambient V (vector) coordinates while we're
+            # at it, because we'd have to do it later anyway.
+            deortho_vector_basis = tuple( V(b.list()) for b in basis )
+
+            from mjo.eja.eja_utils import gram_schmidt
+            basis = gram_schmidt(basis, inner_product)
+
+        # Save the (possibly orthonormalized) matrix basis for
+        # later...
+        self._matrix_basis = basis
+
+        # Now create the vector space for the algebra, which will have
+        # its own set of non-ambient coordinates (in terms of the
+        # supplied basis).
+        vector_basis = tuple( V(b.list()) for b in basis )
+        W = V.span_of_basis( vector_basis, check=check_axioms)
+
+        if orthonormalize:
+            # Now "W" is the vector space of our algebra coordinates. The
+            # variables "X1", "X2",...  refer to the entries of vectors in
+            # W. Thus to convert back and forth between the orthonormal
+            # coordinates and the given ones, we need to stick the original
+            # basis in W.
+            U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
+            self._deortho_matrix = matrix( U.coordinate_vector(q)
+                                           for q in vector_basis )
+
+
+        # Now we actually compute the multiplication and inner-product
+        # tables/matrices using the possibly-orthonormalized basis.
+        self._inner_product_matrix = matrix.zero(field, n)
+        self._multiplication_table = [ [0 for j in range(i+1)]
+                                       for i in range(n) ]
+
+        # Note: the Jordan and inner-products are defined in terms
+        # of the ambient basis. It's important that their arguments
+        # are in ambient coordinates as well.
+        for i in range(n):
+            for j in range(i+1):
+                # ortho basis w.r.t. ambient coords
+                q_i = basis[i]
+                q_j = basis[j]
+
+                elt = jordan_product(q_i, q_j)
+                ip = inner_product(q_i, q_j)
+
+                # The jordan product returns a matrixy answer, so we
+                # have to convert it to the algebra coordinates.
+                elt = W.coordinate_vector(V(elt.list()))
+                self._multiplication_table[i][j] = self.from_vector(elt)
+                self._inner_product_matrix[i,j] = ip
+                self._inner_product_matrix[j,i] = ip
+
+        self._inner_product_matrix._cache = {'hermitian': True}
+        self._inner_product_matrix.set_immutable()
+
+        if check_axioms:
+            if not self._is_jordanian():
+                raise ValueError("Jordan identity does not hold")
+            if not self._inner_product_is_associative():
+                raise ValueError("inner product is not associative")
+
+
     def _coerce_map_from_base_ring(self):
         """
         Disable the map from the base ring into the algebra.
@@ -61,190 +215,130 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         """
         return None
 
-    def __init__(self,
-                 field,
-                 multiplication_table,
-                 inner_product_table,
-                 prefix='e',
-                 category=None,
-                 matrix_basis=None,
-                 check_field=True,
-                 check_axioms=True):
-        """
-        INPUT:
 
-          * field -- the scalar field for this algebra (must be real)
+    def product_on_basis(self, i, j):
+        # We only stored the lower-triangular portion of the
+        # multiplication table.
+        if j <= i:
+            return self._multiplication_table[i][j]
+        else:
+            return self._multiplication_table[j][i]
+
+    def inner_product(self, x, y):
+        """
+        The inner product associated with this Euclidean Jordan algebra.
 
-          * multiplication_table -- the multiplication table for this
-            algebra's implicit basis. Only the lower-triangular portion
-            of the table is used, since the multiplication is assumed
-            to be commutative.
+        Defaults to the trace inner product, but can be overridden by
+        subclasses if they are sure that the necessary properties are
+        satisfied.
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (
-            ....:   FiniteDimensionalEuclideanJordanAlgebra,
-            ....:   JordanSpinEJA,
-            ....:   random_eja)
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  HadamardEJA,
+            ....:                                  BilinearFormEJA)
 
         EXAMPLES:
 
-        By definition, Jordan multiplication commutes::
+        Our inner product is "associative," which means the following for
+        a symmetric bilinear form::
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x,y = J.random_elements(2)
-            sage: x*y == y*x
+            sage: x,y,z = J.random_elements(3)
+            sage: (x*y).inner_product(z) == y.inner_product(x*z)
             True
 
-        An error is raised if the Jordan product is not commutative::
-
-            sage: JP = ((1,2),(0,0))
-            sage: IP = ((1,0),(0,1))
-            sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
-            Traceback (most recent call last):
-            ...
-            ValueError: Jordan product is not commutative
-
-        An error is raised if the inner-product is not commutative::
+        TESTS:
 
-            sage: JP = ((1,0),(0,1))
-            sage: IP = ((1,2),(0,0))
-            sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
-            Traceback (most recent call last):
-            ...
-            ValueError: inner-product is not commutative
+        Ensure that this is the usual inner product for the algebras
+        over `R^n`::
 
-        TESTS:
+            sage: set_random_seed()
+            sage: J = HadamardEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: actual = x.inner_product(y)
+            sage: expected = x.to_vector().inner_product(y.to_vector())
+            sage: actual == expected
+            True
 
-        The ``field`` we're given must be real with ``check_field=True``::
+        Ensure that this is one-half of the trace inner-product in a
+        BilinearFormEJA that isn't just the reals (when ``n`` isn't
+        one). This is in Faraut and Koranyi, and also my "On the
+        symmetry..." paper::
 
-            sage: JordanSpinEJA(2, field=QQbar)
-            Traceback (most recent call last):
-            ...
-            ValueError: scalar field is not real
-            sage: JordanSpinEJA(2, field=QQbar, check_field=False)
-            Euclidean Jordan algebra of dimension 2 over Algebraic Field
+            sage: set_random_seed()
+            sage: J = BilinearFormEJA.random_instance()
+            sage: n = J.dimension()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
+            True
+        """
+        B = self._inner_product_matrix
+        return (B*x.to_vector()).inner_product(y.to_vector())
 
-        The multiplication table must be square with ``check_axioms=True``::
 
-            sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()),((1,),))
-            Traceback (most recent call last):
-            ...
-            ValueError: multiplication table is not square
+    def _is_commutative(self):
+        r"""
+        Whether or not this algebra's multiplication table is commutative.
 
-        The multiplication and inner-product tables must be the same
-        size (and in particular, the inner-product table must also be
-        square) with ``check_axioms=True``::
+        This method should of course always return ``True``, unless
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid multiplication table.
+        """
+        return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
+                    for i in range(self.dimension())
+                    for j in range(self.dimension()) )
 
-            sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),(()))
-            Traceback (most recent call last):
-            ...
-            ValueError: multiplication and inner-product tables are
-            different sizes
-            sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),((1,2),))
-            Traceback (most recent call last):
-            ...
-            ValueError: multiplication and inner-product tables are
-            different sizes
+    def _is_jordanian(self):
+        r"""
+        Whether or not this algebra's multiplication table respects the
+        Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
 
+        We only check one arrangement of `x` and `y`, so for a
+        ``True`` result to be truly true, you should also check
+        :meth:`_is_commutative`. This method should of course always
+        return ``True``, unless this algebra was constructed with
+        ``check_axioms=False`` and passed an invalid multiplication table.
         """
-        if check_field:
-            if not field.is_subring(RR):
-                # Note: this does return true for the real algebraic
-                # field, the rationals, and any quadratic field where
-                # we've specified a real embedding.
-                raise ValueError("scalar field is not real")
+        return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
+                    ==
+                    (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
+                    for i in range(self.dimension())
+                    for j in range(self.dimension()) )
 
+    def _inner_product_is_associative(self):
+        r"""
+        Return whether or not this algebra's inner product `B` is
+        associative; that is, whether or not `B(xy,z) = B(x,yz)`.
 
-        # The multiplication and inner-product tables should be square
-        # if the user wants us to verify them. And we verify them as
-        # soon as possible, because we want to exploit their symmetry.
-        n = len(multiplication_table)
-        if check_axioms:
-            if not all( len(l) == n for l in multiplication_table ):
-                raise ValueError("multiplication table is not square")
-
-            # If the multiplication table is square, we can check if
-            # the inner-product table is square by comparing it to the
-            # multiplication table's dimensions.
-            msg = "multiplication and inner-product tables are different sizes"
-            if not len(inner_product_table) == n:
-                raise ValueError(msg)
-
-            if not all( len(l) == n for l in inner_product_table ):
-                raise ValueError(msg)
-
-            # Check commutativity of the Jordan product (symmetry of
-            # the multiplication table) and the commutativity of the
-            # inner-product (symmetry of the inner-product table)
-            # first if we're going to check them at all.. This has to
-            # be done before we define product_on_basis(), because
-            # that method assumes that self._multiplication_table is
-            # symmetric. And it has to be done before we build
-            # self._inner_product_matrix, because the process used to
-            # construct it assumes symmetry as well.
-            if not all(    multiplication_table[j][i]
-                        == multiplication_table[i][j]
-                        for i in range(n)
-                        for j in range(i+1) ):
-                raise ValueError("Jordan product is not commutative")
+        This method should of course always return ``True``, unless
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid Jordan or inner-product.
+        """
 
-            if not all( inner_product_table[j][i]
-                        == inner_product_table[i][j]
-                        for i in range(n)
-                        for j in range(i+1) ):
-                raise ValueError("inner-product is not commutative")
+        # Used to check whether or not something is zero in an inexact
+        # ring. This number is sufficient to allow the construction of
+        # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
+        epsilon = 1e-16
 
-        self._matrix_basis = matrix_basis
-
-        if category is None:
-            category = MagmaticAlgebras(field).FiniteDimensional()
-            category = category.WithBasis().Unital()
-
-        fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
-        fda.__init__(field,
-                     range(n),
-                     prefix=prefix,
-                     category=category)
-        self.print_options(bracket='')
-
-        # The multiplication table we're given is necessarily in terms
-        # of vectors, because we don't have an algebra yet for
-        # anything to be an element of. However, it's faster in the
-        # long run to have the multiplication table be in terms of
-        # algebra elements. We do this after calling the superclass
-        # constructor so that from_vector() knows what to do.
-        #
-        # Note: we take advantage of symmetry here, and only store
-        # the lower-triangular portion of the table.
-        self._multiplication_table = [ [ self.vector_space().zero()
-                                         for j in range(i+1) ]
-                                       for i in range(n) ]
+        for i in range(self.dimension()):
+            for j in range(self.dimension()):
+                for k in range(self.dimension()):
+                    x = self.monomial(i)
+                    y = self.monomial(j)
+                    z = self.monomial(k)
+                    diff = (x*y).inner_product(z) - x.inner_product(y*z)
 
-        for i in range(n):
-            for j in range(i+1):
-                elt = self.from_vector(multiplication_table[i][j])
-                self._multiplication_table[i][j] = elt
-
-        self._multiplication_table = tuple(map(tuple, self._multiplication_table))
-
-        # Save our inner product as a matrix, since the efficiency of
-        # matrix multiplication will usually outweigh the fact that we
-        # have to store a redundant upper- or lower-triangular part.
-        # Pre-cache the fact that these are Hermitian (real symmetric,
-        # in fact) in case some e.g. matrix multiplication routine can
-        # take advantage of it.
-        ip_matrix_constructor = lambda i,j: inner_product_table[i][j] if j <= i else inner_product_table[j][i]
-        self._inner_product_matrix = matrix(field, n, ip_matrix_constructor)
-        self._inner_product_matrix._cache = {'hermitian': True}
-        self._inner_product_matrix.set_immutable()
+                    if self.base_ring().is_exact():
+                        if diff != 0:
+                            return False
+                    else:
+                        if diff.abs() > epsilon:
+                            return False
 
-        if check_axioms:
-            if not self._is_jordanian():
-                raise ValueError("Jordan identity does not hold")
-            if not self._inner_product_is_associative():
-                raise ValueError("inner product is not associative")
+        return True
 
     def _element_constructor_(self, elt):
         """
@@ -307,6 +401,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             # that the integer 3 belongs to the space of 2-by-2 matrices.
             raise ValueError(msg)
 
+        try:
+            elt = elt.column()
+        except (AttributeError, TypeError):
+            # Try to convert a vector into a column-matrix
+            pass
+
         if elt not in self.matrix_space():
             raise ValueError(msg)
 
@@ -351,74 +451,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         fmt = "Euclidean Jordan algebra of dimension {} over {}"
         return fmt.format(self.dimension(), self.base_ring())
 
-    def product_on_basis(self, i, j):
-        # We only stored the lower-triangular portion of the
-        # multiplication table.
-        if j <= i:
-            return self._multiplication_table[i][j]
-        else:
-            return self._multiplication_table[j][i]
-
-    def _is_commutative(self):
-        r"""
-        Whether or not this algebra's multiplication table is commutative.
-
-        This method should of course always return ``True``, unless
-        this algebra was constructed with ``check_axioms=False`` and
-        passed an invalid multiplication table.
-        """
-        return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
-                    for i in range(self.dimension())
-                    for j in range(self.dimension()) )
-
-    def _is_jordanian(self):
-        r"""
-        Whether or not this algebra's multiplication table respects the
-        Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
-
-        We only check one arrangement of `x` and `y`, so for a
-        ``True`` result to be truly true, you should also check
-        :meth:`_is_commutative`. This method should of course always
-        return ``True``, unless this algebra was constructed with
-        ``check_axioms=False`` and passed an invalid multiplication table.
-        """
-        return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
-                    ==
-                    (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
-                    for i in range(self.dimension())
-                    for j in range(self.dimension()) )
-
-    def _inner_product_is_associative(self):
-        r"""
-        Return whether or not this algebra's inner product `B` is
-        associative; that is, whether or not `B(xy,z) = B(x,yz)`.
-
-        This method should of course always return ``True``, unless
-        this algebra was constructed with ``check_axioms=False`` and
-        passed an invalid multiplication table.
-        """
-
-        # Used to check whether or not something is zero in an inexact
-        # ring. This number is sufficient to allow the construction of
-        # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
-        epsilon = 1e-16
-
-        for i in range(self.dimension()):
-            for j in range(self.dimension()):
-                for k in range(self.dimension()):
-                    x = self.monomial(i)
-                    y = self.monomial(j)
-                    z = self.monomial(k)
-                    diff = (x*y).inner_product(z) - x.inner_product(y*z)
-
-                    if self.base_ring().is_exact():
-                        if diff != 0:
-                            return False
-                    else:
-                        if diff.abs() > epsilon:
-                            return False
-
-        return True
 
     @cached_method
     def characteristic_polynomial_of(self):
@@ -614,20 +646,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
         """
         n = self.dimension()
-        M = [ [ self.zero() for j in range(n) ]
-              for i in range(n) ]
-        for i in range(n):
-            for j in range(i+1):
-                M[i][j] = self._multiplication_table[i][j]
-                M[j][i] = M[i][j]
+        # Prepend the header row.
+        M = [["*"] + list(self.gens())]
 
-        for i in range(n):
-            # Prepend the left "header" column entry Can't do this in
-            # the loop because it messes up the symmetry.
-            M[i] = [self.monomial(i)] + M[i]
+        # And to each subsequent row, prepend an entry that belongs to
+        # the left-side "header column."
+        M += [ [self.monomial(i)] + [ self.product_on_basis(i,j)
+                                      for j in range(n) ]
+               for i in range(n) ]
 
-        # Prepend the header row.
-        M = [["*"] + list(self.gens())] + M
         return table(M, header_row=True, header_column=True, frame=True)
 
 
@@ -686,11 +713,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             [0], [1]
             )
         """
-        if self._matrix_basis is None:
-            M = self.matrix_space()
-            return tuple( M(b.to_vector()) for b in self.basis() )
-        else:
-            return self._matrix_basis
+        return self._matrix_basis
 
 
     def matrix_space(self):
@@ -708,8 +731,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         """
         if self.is_trivial():
             return MatrixSpace(self.base_ring(), 0)
-        elif self._matrix_basis is None or len(self._matrix_basis) == 0:
-            return MatrixSpace(self.base_ring(), self.dimension(), 1)
         else:
             return self._matrix_basis[0].matrix_space()
 
@@ -903,14 +924,14 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         if not c.is_idempotent():
             raise ValueError("element is not idempotent: %s" % c)
 
-        from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+        from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
 
         # Default these to what they should be if they turn out to be
         # trivial, because eigenspaces_left() won't return eigenvalues
         # corresponding to trivial spaces (e.g. it returns only the
         # eigenspace corresponding to lambda=1 if you take the
         # decomposition relative to the identity element).
-        trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
+        trivial = FiniteDimensionalEJASubalgebra(self, ())
         J0 = trivial                          # eigenvalue zero
         J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
         J1 = trivial                          # eigenvalue one
@@ -920,9 +941,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
                 J5 = eigspace
             else:
                 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
-                subalg = FiniteDimensionalEuclideanJordanSubalgebra(self,
-                                                                    gens,
-                                                                    check_axioms=False)
+                subalg = FiniteDimensionalEJASubalgebra(self,
+                                                        gens,
+                                                        check_axioms=False)
                 if eigval == 0:
                     J0 = subalg
                 elif eigval == 1:
@@ -1137,9 +1158,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         return self.zero().to_vector().parent().ambient_vector_space()
 
 
-    Element = FiniteDimensionalEuclideanJordanAlgebraElement
+    Element = FiniteDimensionalEJAElement
 
-class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
+class RationalBasisEJA(FiniteDimensionalEJA):
     r"""
     New class for algebras whose supplied basis elements have all rational entries.
 
@@ -1166,11 +1187,8 @@ class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebr
                  jordan_product,
                  inner_product,
                  field=AA,
-                 orthonormalize=True,
-                 prefix='e',
-                 category=None,
                  check_field=True,
-                 check_axioms=True):
+                 **kwargs):
 
         if check_field:
             # Abuse the check_field parameter to check that the entries of
@@ -1178,32 +1196,6 @@ class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebr
             if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
                 raise TypeError("basis not rational")
 
-        # Temporary(?) hack to ensure that the matrix and vector bases
-        # are over the same ring.
-        basis = tuple( b.change_ring(field) for b in basis )
-
-        n = len(basis)
-        vector_basis = basis
-
-        from sage.structure.element import is_Matrix
-        basis_is_matrices = False
-
-        degree = 0
-        if n > 0:
-            if is_Matrix(basis[0]):
-                basis_is_matrices = True
-                from mjo.eja.eja_utils import _vec2mat
-                vector_basis = tuple( map(_mat2vec,basis) )
-                degree = basis[0].nrows()**2
-            else:
-                degree = basis[0].degree()
-
-        V = VectorSpace(field, degree)
-
-        # Save a copy of an algebra with the original, rational basis
-        # and over QQ where computations are fast.
-        self._rational_algebra = None
-
         if field is not QQ:
             # There's no point in constructing the extra algebra if this
             # one is already rational.
@@ -1211,128 +1203,21 @@ class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebr
             # Note: the same Jordan and inner-products work here,
             # because they are necessarily defined with respect to
             # ambient coordinates and not any particular basis.
-            self._rational_algebra = RationalBasisEuclideanJordanAlgebra(
+            self._rational_algebra = FiniteDimensionalEJA(
                                        basis,
                                        jordan_product,
                                        inner_product,
                                        field=QQ,
                                        orthonormalize=False,
-                                       prefix=prefix,
-                                       category=category,
                                        check_field=False,
                                        check_axioms=False)
 
-        if orthonormalize:
-            # Compute the deorthonormalized tables before we orthonormalize
-            # the given basis. The "check" parameter here guarantees that
-            # the basis is linearly-independent.
-            W = V.span_of_basis( vector_basis, check=check_axioms)
-
-            # Note: the Jordan and inner-products are defined in terms
-            # of the ambient basis. It's important that their arguments
-            # are in ambient coordinates as well.
-            for i in range(n):
-                for j in range(i+1):
-                    # given basis w.r.t. ambient coords
-                    q_i = vector_basis[i]
-                    q_j = vector_basis[j]
-
-                    if basis_is_matrices:
-                        q_i = _vec2mat(q_i)
-                        q_j = _vec2mat(q_j)
-
-                    elt = jordan_product(q_i, q_j)
-                    ip = inner_product(q_i, q_j)
-
-                    if basis_is_matrices:
-                        # do another mat2vec because the multiplication
-                        # table is in terms of vectors
-                        elt = _mat2vec(elt)
-
-        # We overwrite the name "vector_basis" in a second, but never modify it
-        # in place, to this effectively makes a copy of it.
-        deortho_vector_basis = vector_basis
-        self._deortho_matrix = None
-
-        if orthonormalize:
-            from mjo.eja.eja_utils import gram_schmidt
-            if basis_is_matrices:
-                vector_ip = lambda x,y: inner_product(_vec2mat(x), _vec2mat(y))
-                vector_basis = gram_schmidt(vector_basis, vector_ip)
-            else:
-                vector_basis = gram_schmidt(vector_basis, inner_product)
-
-            # Normalize the "matrix" basis, too!
-            basis = vector_basis
-
-            if basis_is_matrices:
-                basis = tuple( map(_vec2mat,basis) )
-
-        W = V.span_of_basis( vector_basis, check=check_axioms)
-
-        # Now "W" is the vector space of our algebra coordinates. The
-        # variables "X1", "X2",...  refer to the entries of vectors in
-        # W. Thus to convert back and forth between the orthonormal
-        # coordinates and the given ones, we need to stick the original
-        # basis in W.
-        U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
-        self._deortho_matrix = matrix( U.coordinate_vector(q)
-                                       for q in vector_basis )
-
-        # If the superclass constructor is going to verify the
-        # symmetry of this table, it has better at least be
-        # square...
-        if check_axioms:
-            mult_table = [ [0 for j in range(n)] for i in range(n) ]
-            ip_table = [ [0 for j in range(n)] for i in range(n) ]
-        else:
-            mult_table = [ [0 for j in range(i+1)] for i in range(n) ]
-            ip_table = [ [0 for j in range(i+1)] for i in range(n) ]
-
-        # Note: the Jordan and inner-products are defined in terms
-        # of the ambient basis. It's important that their arguments
-        # are in ambient coordinates as well.
-        for i in range(n):
-            for j in range(i+1):
-                # ortho basis w.r.t. ambient coords
-                q_i = vector_basis[i]
-                q_j = vector_basis[j]
-
-                if basis_is_matrices:
-                    q_i = _vec2mat(q_i)
-                    q_j = _vec2mat(q_j)
-
-                elt = jordan_product(q_i, q_j)
-                ip = inner_product(q_i, q_j)
-
-                if basis_is_matrices:
-                    # do another mat2vec because the multiplication
-                    # table is in terms of vectors
-                    elt = _mat2vec(elt)
-
-                elt = W.coordinate_vector(elt)
-                mult_table[i][j] = elt
-                ip_table[i][j] = ip
-                if check_axioms:
-                    # The tables are square if we're verifying that they
-                    # are commutative.
-                    mult_table[j][i] = elt
-                    ip_table[j][i] = ip
-
-        if basis_is_matrices:
-            for m in basis:
-                m.set_immutable()
-        else:
-            basis = tuple( x.column() for x in basis )
-
-        super().__init__(field,
-                         mult_table,
-                         ip_table,
-                         prefix,
-                         category,
-                         basis, # matrix basis
-                         check_field,
-                         check_axioms)
+        super().__init__(basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         check_field=check_field,
+                         **kwargs)
 
     @cached_method
     def _charpoly_coefficients(self):
@@ -1363,8 +1248,7 @@ class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebr
             # rationals if this one is already over the
             # rationals. Likewise, if we never orthonormalized our
             # basis, we might as well just use the given one.
-            superclass = super(RationalBasisEuclideanJordanAlgebra, self)
-            return superclass._charpoly_coefficients()
+            return super()._charpoly_coefficients()
 
         # Do the computation over the rationals. The answer will be
         # the same, because all we've done is a change of basis.
@@ -1382,7 +1266,7 @@ class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebr
         subs_dict = { X[i]: BX[i] for i in range(len(X)) }
         return tuple( a_i.subs(subs_dict) for a_i in a )
 
-class ConcreteEuclideanJordanAlgebra(RationalBasisEuclideanJordanAlgebra):
+class ConcreteEJA(RationalBasisEJA):
     r"""
     A class for the Euclidean Jordan algebras that we know by name.
 
@@ -1393,7 +1277,7 @@ class ConcreteEuclideanJordanAlgebra(RationalBasisEuclideanJordanAlgebra):
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import ConcreteEuclideanJordanAlgebra
+        sage: from mjo.eja.eja_algebra import ConcreteEJA
 
     TESTS:
 
@@ -1401,7 +1285,7 @@ class ConcreteEuclideanJordanAlgebra(RationalBasisEuclideanJordanAlgebra):
     product, unless we specify otherwise::
 
         sage: set_random_seed()
-        sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
+        sage: J = ConcreteEJA.random_instance()
         sage: all( b.norm() == 1 for b in J.gens() )
         True
 
@@ -1412,7 +1296,7 @@ class ConcreteEuclideanJordanAlgebra(RationalBasisEuclideanJordanAlgebra):
     EJA the operator is self-adjoint by the Jordan axiom::
 
         sage: set_random_seed()
-        sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
+        sage: J = ConcreteEJA.random_instance()
         sage: x = J.random_element()
         sage: x.operator().is_self_adjoint()
         True
@@ -1444,13 +1328,13 @@ class ConcreteEuclideanJordanAlgebra(RationalBasisEuclideanJordanAlgebra):
         from sage.misc.prandom import choice
         eja_class = choice(cls.__subclasses__())
 
-        # These all bubble up to the RationalBasisEuclideanJordanAlgebra
-        # superclass constructor, so any (kw)args valid there are also
-        # valid here.
+        # These all bubble up to the RationalBasisEJA superclass
+        # constructor, so any (kw)args valid there are also valid
+        # here.
         return eja_class.random_instance(*args, **kwargs)
 
 
-class MatrixEuclideanJordanAlgebra:
+class MatrixEJA:
     @staticmethod
     def dimension_over_reals():
         r"""
@@ -1571,14 +1455,13 @@ class MatrixEuclideanJordanAlgebra:
             return tr.coefficient_tuple()[0]
 
 
-class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
+class RealMatrixEJA(MatrixEJA):
     @staticmethod
     def dimension_over_reals():
         return 1
 
 
-class RealSymmetricEJA(ConcreteEuclideanJordanAlgebra,
-                       RealMatrixEuclideanJordanAlgebra):
+class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
@@ -1698,15 +1581,15 @@ class RealSymmetricEJA(ConcreteEuclideanJordanAlgebra,
                                                **kwargs)
 
         # TODO: this could be factored out somehow, but is left here
-        # because the MatrixEuclideanJordanAlgebra is not presently
-        # a subclass of the FDEJA class that defines rank() and one().
+        # because the MatrixEJA is not presently a subclass of the
+        # FDEJA class that defines rank() and one().
         self.rank.set_cache(n)
         idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
         self.one.set_cache(self(idV))
 
 
 
-class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
+class ComplexMatrixEJA(MatrixEJA):
     @staticmethod
     def dimension_over_reals():
         return 2
@@ -1720,8 +1603,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import \
-            ....:   ComplexMatrixEuclideanJordanAlgebra
+            sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
 
         EXAMPLES::
 
@@ -1731,7 +1613,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: x3 = F(-i)
             sage: x4 = F(6)
             sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
-            sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
+            sage: ComplexMatrixEJA.real_embed(M)
             [ 4 -2| 1  2]
             [ 2  4|-2  1]
             [-----+-----]
@@ -1747,14 +1629,14 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: F = QuadraticField(-1, 'I')
             sage: X = random_matrix(F, n)
             sage: Y = random_matrix(F, n)
-            sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
-            sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
-            sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
+            sage: Xe = ComplexMatrixEJA.real_embed(X)
+            sage: Ye = ComplexMatrixEJA.real_embed(Y)
+            sage: XYe = ComplexMatrixEJA.real_embed(X*Y)
             sage: Xe*Ye == XYe
             True
 
         """
-        super(ComplexMatrixEuclideanJordanAlgebra,cls).real_embed(M)
+        super(ComplexMatrixEJA,cls).real_embed(M)
         n = M.nrows()
 
         # We don't need any adjoined elements...
@@ -1776,8 +1658,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import \
-            ....:   ComplexMatrixEuclideanJordanAlgebra
+            sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
 
         EXAMPLES::
 
@@ -1785,7 +1666,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             ....:                 [-2,  1,  -4,  3],
             ....:                 [ 9,  10, 11, 12],
             ....:                 [-10, 9, -12, 11] ])
-            sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
+            sage: ComplexMatrixEJA.real_unembed(A)
             [  2*I + 1   4*I + 3]
             [ 10*I + 9 12*I + 11]
 
@@ -1796,12 +1677,12 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: set_random_seed()
             sage: F = QuadraticField(-1, 'I')
             sage: M = random_matrix(F, 3)
-            sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
-            sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
+            sage: Me = ComplexMatrixEJA.real_embed(M)
+            sage: ComplexMatrixEJA.real_unembed(Me) == M
             True
 
         """
-        super(ComplexMatrixEuclideanJordanAlgebra,cls).real_unembed(M)
+        super(ComplexMatrixEJA,cls).real_unembed(M)
         n = ZZ(M.nrows())
         d = cls.dimension_over_reals()
 
@@ -1842,8 +1723,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         return matrix(F, n/d, elements)
 
 
-class ComplexHermitianEJA(ConcreteEuclideanJordanAlgebra,
-                          ComplexMatrixEuclideanJordanAlgebra):
+class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
     """
     The rank-n simple EJA consisting of complex Hermitian n-by-n
     matrices over the real numbers, the usual symmetric Jordan product,
@@ -1966,8 +1846,8 @@ class ComplexHermitianEJA(ConcreteEuclideanJordanAlgebra,
                                                   self.trace_inner_product,
                                                   **kwargs)
         # TODO: this could be factored out somehow, but is left here
-        # because the MatrixEuclideanJordanAlgebra is not presently
-        # a subclass of the FDEJA class that defines rank() and one().
+        # because the MatrixEJA is not presently a subclass of the
+        # FDEJA class that defines rank() and one().
         self.rank.set_cache(n)
         idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
         self.one.set_cache(self(idV))
@@ -1984,7 +1864,7 @@ class ComplexHermitianEJA(ConcreteEuclideanJordanAlgebra,
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
         return cls(n, **kwargs)
 
-class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
+class QuaternionMatrixEJA(MatrixEJA):
     @staticmethod
     def dimension_over_reals():
         return 4
@@ -2000,8 +1880,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import \
-            ....:   QuaternionMatrixEuclideanJordanAlgebra
+            sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
 
         EXAMPLES::
 
@@ -2009,7 +1888,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: i,j,k = Q.gens()
             sage: x = 1 + 2*i + 3*j + 4*k
             sage: M = matrix(Q, 1, [[x]])
-            sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
+            sage: QuaternionMatrixEJA.real_embed(M)
             [ 1  2  3  4]
             [-2  1 -4  3]
             [-3  4  1 -2]
@@ -2022,14 +1901,14 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: Q = QuaternionAlgebra(QQ,-1,-1)
             sage: X = random_matrix(Q, n)
             sage: Y = random_matrix(Q, n)
-            sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
-            sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
-            sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
+            sage: Xe = QuaternionMatrixEJA.real_embed(X)
+            sage: Ye = QuaternionMatrixEJA.real_embed(Y)
+            sage: XYe = QuaternionMatrixEJA.real_embed(X*Y)
             sage: Xe*Ye == XYe
             True
 
         """
-        super(QuaternionMatrixEuclideanJordanAlgebra,cls).real_embed(M)
+        super(QuaternionMatrixEJA,cls).real_embed(M)
         quaternions = M.base_ring()
         n = M.nrows()
 
@@ -2045,7 +1924,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             d = t[3]
             cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
                                  [-c + d*i, a - b*i]])
-            realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
+            realM = ComplexMatrixEJA.real_embed(cplxM)
             blocks.append(realM)
 
         # We should have real entries by now, so use the realest field
@@ -2061,8 +1940,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import \
-            ....:   QuaternionMatrixEuclideanJordanAlgebra
+            sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
 
         EXAMPLES::
 
@@ -2070,7 +1948,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             ....:                 [-2,  1, -4,  3],
             ....:                 [-3,  4,  1, -2],
             ....:                 [-4, -3,  2,  1]])
-            sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
+            sage: QuaternionMatrixEJA.real_unembed(M)
             [1 + 2*i + 3*j + 4*k]
 
         TESTS:
@@ -2080,12 +1958,12 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: set_random_seed()
             sage: Q = QuaternionAlgebra(QQ, -1, -1)
             sage: M = random_matrix(Q, 3)
-            sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
-            sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
+            sage: Me = QuaternionMatrixEJA.real_embed(M)
+            sage: QuaternionMatrixEJA.real_unembed(Me) == M
             True
 
         """
-        super(QuaternionMatrixEuclideanJordanAlgebra,cls).real_unembed(M)
+        super(QuaternionMatrixEJA,cls).real_unembed(M)
         n = ZZ(M.nrows())
         d = cls.dimension_over_reals()
 
@@ -2101,7 +1979,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         elements = []
         for l in range(n/d):
             for m in range(n/d):
-                submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
+                submat = ComplexMatrixEJA.real_unembed(
                     M[d*l:d*l+d,d*m:d*m+d] )
                 if submat[0,0] != submat[1,1].conjugate():
                     raise ValueError('bad on-diagonal submatrix')
@@ -2116,8 +1994,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         return matrix(Q, n/d, elements)
 
 
-class QuaternionHermitianEJA(ConcreteEuclideanJordanAlgebra,
-                             QuaternionMatrixEuclideanJordanAlgebra):
+class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
     r"""
     The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
     matrices, the usual symmetric Jordan product, and the
@@ -2241,8 +2118,8 @@ class QuaternionHermitianEJA(ConcreteEuclideanJordanAlgebra,
                                                      self.trace_inner_product,
                                                      **kwargs)
         # TODO: this could be factored out somehow, but is left here
-        # because the MatrixEuclideanJordanAlgebra is not presently
-        # a subclass of the FDEJA class that defines rank() and one().
+        # because the MatrixEJA is not presently a subclass of the
+        # FDEJA class that defines rank() and one().
         self.rank.set_cache(n)
         idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
         self.one.set_cache(self(idV))
@@ -2264,7 +2141,7 @@ class QuaternionHermitianEJA(ConcreteEuclideanJordanAlgebra,
         return cls(n, **kwargs)
 
 
-class HadamardEJA(ConcreteEuclideanJordanAlgebra):
+class HadamardEJA(ConcreteEJA):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
     `R^n` under the Hadamard product.
@@ -2305,11 +2182,16 @@ class HadamardEJA(ConcreteEuclideanJordanAlgebra):
 
     """
     def __init__(self, n, **kwargs):
-        def jordan_product(x,y):
-            P = x.parent()
-            return P(tuple( xi*yi for (xi,yi) in zip(x,y) ))
-        def inner_product(x,y):
-            return x.inner_product(y)
+        if n == 0:
+            jordan_product = lambda x,y: x
+            inner_product = lambda x,y: x
+        else:
+            def jordan_product(x,y):
+                P = x.parent()
+                return P( xi*yi for (xi,yi) in zip(x,y) )
+
+            def inner_product(x,y):
+                return (x.T*y)[0,0]
 
         # New defaults for keyword arguments. Don't orthonormalize
         # because our basis is already orthonormal with respect to our
@@ -2320,12 +2202,8 @@ class HadamardEJA(ConcreteEuclideanJordanAlgebra):
         if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
-
-        standard_basis = FreeModule(ZZ, n).basis()
-        super(HadamardEJA, self).__init__(standard_basis,
-                                          jordan_product,
-                                          inner_product,
-                                          **kwargs)
+        column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() )
+        super().__init__(column_basis, jordan_product, inner_product, **kwargs)
         self.rank.set_cache(n)
 
         if n == 0:
@@ -2349,7 +2227,7 @@ class HadamardEJA(ConcreteEuclideanJordanAlgebra):
         return cls(n, **kwargs)
 
 
-class BilinearFormEJA(ConcreteEuclideanJordanAlgebra):
+class BilinearFormEJA(ConcreteEJA):
     r"""
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the half-trace inner product and jordan product ``x*y =
@@ -2429,31 +2307,38 @@ class BilinearFormEJA(ConcreteEuclideanJordanAlgebra):
         ....:              for j in range(n-1) ]
         sage: actual == expected
         True
+
     """
     def __init__(self, B, **kwargs):
-        if not B.is_positive_definite():
-            raise ValueError("bilinear form is not positive-definite")
+        # The matrix "B" is supplied by the user in most cases,
+        # so it makes sense to check whether or not its positive-
+        # definite unless we are specifically asked not to...
+        if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
+            if not B.is_positive_definite():
+                raise ValueError("bilinear form is not positive-definite")
+
+        # However, all of the other data for this EJA is computed
+        # by us in manner that guarantees the axioms are
+        # satisfied. So, again, unless we are specifically asked to
+        # verify things, we'll skip the rest of the checks.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
         def inner_product(x,y):
-            return (B*x).inner_product(y)
+            return (y.T*B*x)[0,0]
 
         def jordan_product(x,y):
             P = x.parent()
-            x0 = x[0]
-            xbar = x[1:]
-            y0 = y[0]
-            ybar = y[1:]
-            z0 = inner_product(x,y)
+            x0 = x[0,0]
+            xbar = x[1:,0]
+            y0 = y[0,0]
+            ybar = y[1:,0]
+            z0 = inner_product(y,x)
             zbar = y0*xbar + x0*ybar
-            return P((z0,) + tuple(zbar))
-
-        # We know this is a valid EJA, but will double-check
-        # if the user passes check_axioms=True.
-        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+            return P([z0] + zbar.list())
 
         n = B.nrows()
-        standard_basis = FreeModule(ZZ, n).basis()
-        super(BilinearFormEJA, self).__init__(standard_basis,
+        column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() )
+        super(BilinearFormEJA, self).__init__(column_basis,
                                               jordan_product,
                                               inner_product,
                                               **kwargs)
@@ -2581,7 +2466,7 @@ class JordanSpinEJA(BilinearFormEJA):
         return cls(n, **kwargs)
 
 
-class TrivialEJA(ConcreteEuclideanJordanAlgebra):
+class TrivialEJA(ConcreteEJA):
     """
     The trivial Euclidean Jordan algebra consisting of only a zero element.
 
@@ -2634,244 +2519,244 @@ class TrivialEJA(ConcreteEuclideanJordanAlgebra):
         # inappropriate for us.
         return cls(**kwargs)
 
-class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
-    r"""
-    The external (orthogonal) direct sum of two other Euclidean Jordan
-    algebras. Essentially the Cartesian product of its two factors.
-    Every Euclidean Jordan algebra decomposes into an orthogonal
-    direct sum of simple Euclidean Jordan algebras, so no generality
-    is lost by providing only this construction.
-
-    SETUP::
-
-        sage: from mjo.eja.eja_algebra import (random_eja,
-        ....:                                  HadamardEJA,
-        ....:                                  RealSymmetricEJA,
-        ....:                                  DirectSumEJA)
-
-    EXAMPLES::
-
-        sage: J1 = HadamardEJA(2)
-        sage: J2 = RealSymmetricEJA(3)
-        sage: J = DirectSumEJA(J1,J2)
-        sage: J.dimension()
-        8
-        sage: J.rank()
-        5
-
-    TESTS:
-
-    The external direct sum construction is only valid when the two factors
-    have the same base ring; an error is raised otherwise::
-
-        sage: set_random_seed()
-        sage: J1 = random_eja(field=AA)
-        sage: J2 = random_eja(field=QQ,orthonormalize=False)
-        sage: J = DirectSumEJA(J1,J2)
-        Traceback (most recent call last):
-        ...
-        ValueError: algebras must share the same base field
-
-    """
-    def __init__(self, J1, J2, **kwargs):
-        if J1.base_ring() != J2.base_ring():
-            raise ValueError("algebras must share the same base field")
-        field = J1.base_ring()
-
-        self._factors = (J1, J2)
-        n1 = J1.dimension()
-        n2 = J2.dimension()
-        n = n1+n2
-        V = VectorSpace(field, n)
-        mult_table = [ [ V.zero() for j in range(i+1) ]
-                       for i in range(n) ]
-        for i in range(n1):
-            for j in range(i+1):
-                p = (J1.monomial(i)*J1.monomial(j)).to_vector()
-                mult_table[i][j] = V(p.list() + [field.zero()]*n2)
-
-        for i in range(n2):
-            for j in range(i+1):
-                p = (J2.monomial(i)*J2.monomial(j)).to_vector()
-                mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
-
-        # TODO: build the IP table here from the two constituent IP
-        # matrices (it'll be block diagonal, I think).
-        ip_table = [ [ field.zero() for j in range(i+1) ]
-                       for i in range(n) ]
-        super(DirectSumEJA, self).__init__(field,
-                                           mult_table,
-                                           ip_table,
-                                           check_axioms=False,
-                                           **kwargs)
-        self.rank.set_cache(J1.rank() + J2.rank())
-
-
-    def factors(self):
-        r"""
-        Return the pair of this algebra's factors.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  JordanSpinEJA,
-            ....:                                  DirectSumEJA)
-
-        EXAMPLES::
-
-            sage: J1 = HadamardEJA(2, field=QQ)
-            sage: J2 = JordanSpinEJA(3, field=QQ)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: J.factors()
-            (Euclidean Jordan algebra of dimension 2 over Rational Field,
-             Euclidean Jordan algebra of dimension 3 over Rational Field)
-
-        """
-        return self._factors
-
-    def projections(self):
-        r"""
-        Return a pair of projections onto this algebra's factors.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-            ....:                                  ComplexHermitianEJA,
-            ....:                                  DirectSumEJA)
-
-        EXAMPLES::
-
-            sage: J1 = JordanSpinEJA(2)
-            sage: J2 = ComplexHermitianEJA(2)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: (pi_left, pi_right) = J.projections()
-            sage: J.one().to_vector()
-            (1, 0, 1, 0, 0, 1)
-            sage: pi_left(J.one()).to_vector()
-            (1, 0)
-            sage: pi_right(J.one()).to_vector()
-            (1, 0, 0, 1)
-
-        """
-        (J1,J2) = self.factors()
-        m = J1.dimension()
-        n = J2.dimension()
-        V_basis = self.vector_space().basis()
-        # Need to specify the dimensions explicitly so that we don't
-        # wind up with a zero-by-zero matrix when we want e.g. a
-        # zero-by-two matrix (important for composing things).
-        P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
-        P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
-        pi_left = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J1,P1)
-        pi_right = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J2,P2)
-        return (pi_left, pi_right)
-
-    def inclusions(self):
-        r"""
-        Return the pair of inclusion maps from our factors into us.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (random_eja,
-            ....:                                  JordanSpinEJA,
-            ....:                                  RealSymmetricEJA,
-            ....:                                  DirectSumEJA)
-
-        EXAMPLES::
-
-            sage: J1 = JordanSpinEJA(3)
-            sage: J2 = RealSymmetricEJA(2)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: (iota_left, iota_right) = J.inclusions()
-            sage: iota_left(J1.zero()) == J.zero()
-            True
-            sage: iota_right(J2.zero()) == J.zero()
-            True
-            sage: J1.one().to_vector()
-            (1, 0, 0)
-            sage: iota_left(J1.one()).to_vector()
-            (1, 0, 0, 0, 0, 0)
-            sage: J2.one().to_vector()
-            (1, 0, 1)
-            sage: iota_right(J2.one()).to_vector()
-            (0, 0, 0, 1, 0, 1)
-            sage: J.one().to_vector()
-            (1, 0, 0, 1, 0, 1)
-
-        TESTS:
-
-        Composing a projection with the corresponding inclusion should
-        produce the identity map, and mismatching them should produce
-        the zero map::
-
-            sage: set_random_seed()
-            sage: J1 = random_eja()
-            sage: J2 = random_eja()
-            sage: J = DirectSumEJA(J1,J2)
-            sage: (iota_left, iota_right) = J.inclusions()
-            sage: (pi_left, pi_right) = J.projections()
-            sage: pi_left*iota_left == J1.one().operator()
-            True
-            sage: pi_right*iota_right == J2.one().operator()
-            True
-            sage: (pi_left*iota_right).is_zero()
-            True
-            sage: (pi_right*iota_left).is_zero()
-            True
-
-        """
-        (J1,J2) = self.factors()
-        m = J1.dimension()
-        n = J2.dimension()
-        V_basis = self.vector_space().basis()
-        # Need to specify the dimensions explicitly so that we don't
-        # wind up with a zero-by-zero matrix when we want e.g. a
-        # two-by-zero matrix (important for composing things).
-        I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
-        I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
-        iota_left = FiniteDimensionalEuclideanJordanAlgebraOperator(J1,self,I1)
-        iota_right = FiniteDimensionalEuclideanJordanAlgebraOperator(J2,self,I2)
-        return (iota_left, iota_right)
-
-    def inner_product(self, x, y):
-        r"""
-        The standard Cartesian inner-product.
-
-        We project ``x`` and ``y`` onto our factors, and add up the
-        inner-products from the subalgebras.
-
-        SETUP::
-
-
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  QuaternionHermitianEJA,
-            ....:                                  DirectSumEJA)
-
-        EXAMPLE::
-
-            sage: J1 = HadamardEJA(3,field=QQ)
-            sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: x1 = J1.one()
-            sage: x2 = x1
-            sage: y1 = J2.one()
-            sage: y2 = y1
-            sage: x1.inner_product(x2)
-            3
-            sage: y1.inner_product(y2)
-            2
-            sage: J.one().inner_product(J.one())
-            5
-
-        """
-        (pi_left, pi_right) = self.projections()
-        x1 = pi_left(x)
-        x2 = pi_right(x)
-        y1 = pi_left(y)
-        y2 = pi_right(y)
-
-        return (x1.inner_product(y1) + x2.inner_product(y2))
-
-
-
-random_eja = ConcreteEuclideanJordanAlgebra.random_instance
+# class DirectSumEJA(ConcreteEJA):
+    r"""
+    The external (orthogonal) direct sum of two other Euclidean Jordan
+    algebras. Essentially the Cartesian product of its two factors.
+    Every Euclidean Jordan algebra decomposes into an orthogonal
+    direct sum of simple Euclidean Jordan algebras, so no generality
+    is lost by providing only this construction.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (random_eja,
+        ....:                                  HadamardEJA,
+        ....:                                  RealSymmetricEJA,
+        ....:                                  DirectSumEJA)
+
+    EXAMPLES::
+
+        sage: J1 = HadamardEJA(2)
+        sage: J2 = RealSymmetricEJA(3)
+        sage: J = DirectSumEJA(J1,J2)
+        sage: J.dimension()
+        8
+        sage: J.rank()
+        5
+
+    TESTS:
+
+    The external direct sum construction is only valid when the two factors
+    have the same base ring; an error is raised otherwise::
+
+        sage: set_random_seed()
+        sage: J1 = random_eja(field=AA)
+        sage: J2 = random_eja(field=QQ,orthonormalize=False)
+        sage: J = DirectSumEJA(J1,J2)
+        Traceback (most recent call last):
+        ...
+        ValueError: algebras must share the same base field
+
+    """
+    def __init__(self, J1, J2, **kwargs):
+        if J1.base_ring() != J2.base_ring():
+            raise ValueError("algebras must share the same base field")
+        field = J1.base_ring()
+
+        self._factors = (J1, J2)
+        n1 = J1.dimension()
+        n2 = J2.dimension()
+        n = n1+n2
+        V = VectorSpace(field, n)
+        mult_table = [ [ V.zero() for j in range(i+1) ]
+                       for i in range(n) ]
+        for i in range(n1):
+            for j in range(i+1):
+                p = (J1.monomial(i)*J1.monomial(j)).to_vector()
+                mult_table[i][j] = V(p.list() + [field.zero()]*n2)
+
+        for i in range(n2):
+            for j in range(i+1):
+                p = (J2.monomial(i)*J2.monomial(j)).to_vector()
+                mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
+
+        # TODO: build the IP table here from the two constituent IP
+        # matrices (it'll be block diagonal, I think).
+        ip_table = [ [ field.zero() for j in range(i+1) ]
+                       for i in range(n) ]
+        super(DirectSumEJA, self).__init__(field,
+                                           mult_table,
+                                           ip_table,
+                                           check_axioms=False,
+                                           **kwargs)
+        self.rank.set_cache(J1.rank() + J2.rank())
+
+
+    def factors(self):
+        r"""
+        Return the pair of this algebra's factors.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  JordanSpinEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(2, field=QQ)
+            sage: J2 = JordanSpinEJA(3, field=QQ)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: J.factors()
+            (Euclidean Jordan algebra of dimension 2 over Rational Field,
+             Euclidean Jordan algebra of dimension 3 over Rational Field)
+
+        """
+        return self._factors
+
+    def projections(self):
+        r"""
+        Return a pair of projections onto this algebra's factors.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLES::
+
+            sage: J1 = JordanSpinEJA(2)
+            sage: J2 = ComplexHermitianEJA(2)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: (pi_left, pi_right) = J.projections()
+            sage: J.one().to_vector()
+            (1, 0, 1, 0, 0, 1)
+            sage: pi_left(J.one()).to_vector()
+            (1, 0)
+            sage: pi_right(J.one()).to_vector()
+            (1, 0, 0, 1)
+
+        """
+        (J1,J2) = self.factors()
+        m = J1.dimension()
+        n = J2.dimension()
+        V_basis = self.vector_space().basis()
+        # Need to specify the dimensions explicitly so that we don't
+        # wind up with a zero-by-zero matrix when we want e.g. a
+        # zero-by-two matrix (important for composing things).
+        P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
+        P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
+#         pi_left = FiniteDimensionalEJAOperator(self,J1,P1)
+#         pi_right = FiniteDimensionalEJAOperator(self,J2,P2)
+        return (pi_left, pi_right)
+
+    def inclusions(self):
+        r"""
+        Return the pair of inclusion maps from our factors into us.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLES::
+
+            sage: J1 = JordanSpinEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: (iota_left, iota_right) = J.inclusions()
+            sage: iota_left(J1.zero()) == J.zero()
+            True
+            sage: iota_right(J2.zero()) == J.zero()
+            True
+            sage: J1.one().to_vector()
+            (1, 0, 0)
+            sage: iota_left(J1.one()).to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: J2.one().to_vector()
+            (1, 0, 1)
+            sage: iota_right(J2.one()).to_vector()
+            (0, 0, 0, 1, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 0, 1, 0, 1)
+
+        TESTS:
+
+        Composing a projection with the corresponding inclusion should
+        produce the identity map, and mismatching them should produce
+        the zero map::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = DirectSumEJA(J1,J2)
+            sage: (iota_left, iota_right) = J.inclusions()
+            sage: (pi_left, pi_right) = J.projections()
+            sage: pi_left*iota_left == J1.one().operator()
+            True
+            sage: pi_right*iota_right == J2.one().operator()
+            True
+            sage: (pi_left*iota_right).is_zero()
+            True
+            sage: (pi_right*iota_left).is_zero()
+            True
+
+        """
+        (J1,J2) = self.factors()
+        m = J1.dimension()
+        n = J2.dimension()
+        V_basis = self.vector_space().basis()
+        # Need to specify the dimensions explicitly so that we don't
+        # wind up with a zero-by-zero matrix when we want e.g. a
+        # two-by-zero matrix (important for composing things).
+        I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
+        I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
+#         iota_left = FiniteDimensionalEJAOperator(J1,self,I1)
+#         iota_right = FiniteDimensionalEJAOperator(J2,self,I2)
+        return (iota_left, iota_right)
+
+    def inner_product(self, x, y):
+        r"""
+        The standard Cartesian inner-product.
+
+        We project ``x`` and ``y`` onto our factors, and add up the
+        inner-products from the subalgebras.
+
+        SETUP::
+
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  QuaternionHermitianEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLE::
+
+            sage: J1 = HadamardEJA(3,field=QQ)
+            sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: x1 = J1.one()
+            sage: x2 = x1
+            sage: y1 = J2.one()
+            sage: y2 = y1
+            sage: x1.inner_product(x2)
+            3
+            sage: y1.inner_product(y2)
+            2
+            sage: J.one().inner_product(J.one())
+            5
+
+        """
+        (pi_left, pi_right) = self.projections()
+        x1 = pi_left(x)
+        x2 = pi_right(x)
+        y1 = pi_left(y)
+        y2 = pi_right(y)
+
+        return (x1.inner_product(y1) + x2.inner_product(y2))
+
+
+
+random_eja = ConcreteEJA.random_instance