]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: replace monomial(i) with gens()[i] most places.
[sage.d.git] / mjo / eja / eja_algebra.py
index 814f357c140e0e535e73071838ed445e9d5e6b58..3390df7545bb41257ee58c68f04154ce7a18d462 100644 (file)
@@ -311,9 +311,9 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         return ``True``, unless this algebra was constructed with
         ``check_axioms=False`` and passed an invalid multiplication table.
         """
-        return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
+        return all( (self.gens()[i]**2)*(self.gens()[i]*self.gens()[j])
                     ==
-                    (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
+                    (self.gens()[i])*((self.gens()[i]**2)*self.gens()[j])
                     for i in range(self.dimension())
                     for j in range(self.dimension()) )
 
@@ -335,9 +335,9 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         for i in range(self.dimension()):
             for j in range(self.dimension()):
                 for k in range(self.dimension()):
-                    x = self.monomial(i)
-                    y = self.monomial(j)
-                    z = self.monomial(k)
+                    x = self.gens()[i]
+                    y = self.gens()[j]
+                    z = self.gens()[k]
                     diff = (x*y).inner_product(z) - x.inner_product(y*z)
 
                     if self.base_ring().is_exact():
@@ -660,8 +660,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         # And to each subsequent row, prepend an entry that belongs to
         # the left-side "header column."
-        M += [ [self.monomial(i)] + [ self.product_on_basis(i,j)
-                                      for j in range(n) ]
+        M += [ [self.gens()[i]] + [ self.product_on_basis(i,j)
+                                    for j in range(n) ]
                for i in range(n) ]
 
         return table(M, header_row=True, header_column=True, frame=True)
@@ -1129,7 +1129,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         def L_x_i_j(i,j):
             # From a result in my book, these are the entries of the
             # basis representation of L_x.
-            return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
+            return sum( vars[k]*self.gens()[k].operator().matrix()[i,j]
                         for k in range(n) )
 
         L_x = matrix(F, n, n, L_x_i_j)
@@ -2690,7 +2690,8 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import (CartesianProductEJA,
+        sage: from mjo.eja.eja_algebra import (random_eja,
+        ....:                                  CartesianProductEJA,
         ....:                                  HadamardEJA,
         ....:                                  JordanSpinEJA,
         ....:                                  RealSymmetricEJA)
@@ -2729,6 +2730,33 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         Real Field (+) Euclidean Jordan algebra of dimension 6 over
         Algebraic Real Field
 
+    Rank is additive on a Cartesian product::
+
+        sage: J1 = HadamardEJA(1)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: J = cartesian_product([J1,J2])
+        sage: J1.rank.clear_cache()
+        sage: J2.rank.clear_cache()
+        sage: J.rank.clear_cache()
+        sage: J.rank()
+        3
+        sage: J.rank() == J1.rank() + J2.rank()
+        True
+
+    The same rank computation works over the rationals, with whatever
+    basis you like::
+
+        sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
+        sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
+        sage: J = cartesian_product([J1,J2])
+        sage: J1.rank.clear_cache()
+        sage: J2.rank.clear_cache()
+        sage: J.rank.clear_cache()
+        sage: J.rank()
+        3
+        sage: J.rank() == J1.rank() + J2.rank()
+        True
+
     TESTS:
 
     All factors must share the same base field::
@@ -2740,6 +2768,18 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         ...
         ValueError: all factors must share the same base field
 
+    The "cached" Jordan and inner products are the componentwise
+    ones::
+
+        sage: set_random_seed()
+        sage: J1 = random_eja()
+        sage: J2 = random_eja()
+        sage: J = cartesian_product([J1,J2])
+        sage: x,y = J.random_elements(2)
+        sage: x*y == J.cartesian_jordan_product(x,y)
+        True
+        sage: x.inner_product(y) == J.cartesian_inner_product(x,y)
+        True
     """
     def __init__(self, modules, **kwargs):
         CombinatorialFreeModule_CartesianProduct.__init__(self,
@@ -2762,6 +2802,13 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             y = self.from_vector(_mat2vec(y_mat))
             return self.cartesian_inner_product(x,y)
 
+        # Use whatever category the superclass came up with. Usually
+        # some join of the EJA and Cartesian product
+        # categories. There's no need to check the field since it
+        # already came from an EJA.
+        #
+        # If you want the basis to be orthonormalized, orthonormalize
+        # the factors.
         FiniteDimensionalEJA.__init__(self,
                                       basis,
                                       jordan_product,
@@ -2771,16 +2818,6 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
                                       check_field=False,
                                       check_axioms=False,
                                       category=self.category())
-        # TODO:
-        #
-        # Initialize the FDEJA class, too. Does this override the
-        # initialization that we did for the
-        # CombinatorialFreeModule_CartesianProduct class? If not, we
-        # will probably have to duplicate some of the work (i.e. one
-        # of the constructors).  Since the CartesianProduct one is
-        # smaller, that makes the most sense to copy/paste if it comes
-        # down to that.
-        #
 
         self.rank.set_cache(sum(J.rank() for J in modules))
 
@@ -2790,10 +2827,15 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
             ....:                                  HadamardEJA,
-            ....:                                  RealSymmetricEJA)
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        The projection morphisms are Euclidean Jordan algebra
+        operators::
 
             sage: J1 = HadamardEJA(2)
             sage: J2 = RealSymmetricEJA(2)
@@ -2820,6 +2862,21 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
             Real Field
 
+        The projections work the way you'd expect on the vector
+        representation of an element::
+
+            sage: J1 = JordanSpinEJA(2)
+            sage: J2 = ComplexHermitianEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: pi_left = J.cartesian_projection(0)
+            sage: pi_right = J.cartesian_projection(1)
+            sage: pi_left(J.one()).to_vector()
+            (1, 0)
+            sage: pi_right(J.one()).to_vector()
+            (1, 0, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 1, 0, 0, 1)
+
         TESTS:
 
         The answer never changes::
@@ -2835,12 +2892,8 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
 
         """
         Ji = self.cartesian_factors()[i]
-        # We reimplement the CombinatorialFreeModule superclass method
-        # because if we don't, something gets messed up with the caching
-        # and the answer changes the second time you run it. See the TESTS.
-        Pi = self._module_morphism(lambda j_t: Ji.monomial(j_t[1])
-                                   if i == j_t[0] else Ji.zero(),
-                                   codomain=Ji)
+        # Requires the fix on Trac 31421/31422 to work!
+        Pi = super().cartesian_projection(i)
         return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
 
     @cached_method
@@ -2849,10 +2902,14 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
             ....:                                  HadamardEJA,
             ....:                                  RealSymmetricEJA)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        The embedding morphisms are Euclidean Jordan algebra
+        operators::
 
             sage: J1 = HadamardEJA(2)
             sage: J2 = RealSymmetricEJA(2)
@@ -2884,6 +2941,29 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             Algebraic Real Field (+) Euclidean Jordan algebra of
             dimension 3 over Algebraic Real Field
 
+        The embeddings work the way you'd expect on the vector
+        representation of an element::
+
+            sage: J1 = JordanSpinEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: iota_left = J.cartesian_embedding(0)
+            sage: iota_right = J.cartesian_embedding(1)
+            sage: iota_left(J1.zero()) == J.zero()
+            True
+            sage: iota_right(J2.zero()) == J.zero()
+            True
+            sage: J1.one().to_vector()
+            (1, 0, 0)
+            sage: iota_left(J1.one()).to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: J2.one().to_vector()
+            (1, 0, 1)
+            sage: iota_right(J2.one()).to_vector()
+            (0, 0, 0, 1, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 0, 1, 0, 1)
+
         TESTS:
 
         The answer never changes::
@@ -2897,12 +2977,31 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             sage: E0 == E1
             True
 
+        Composing a projection with the corresponding inclusion should
+        produce the identity map, and mismatching them should produce
+        the zero map::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: iota_left = J.cartesian_embedding(0)
+            sage: iota_right = J.cartesian_embedding(1)
+            sage: pi_left = J.cartesian_projection(0)
+            sage: pi_right = J.cartesian_projection(1)
+            sage: pi_left*iota_left == J1.one().operator()
+            True
+            sage: pi_right*iota_right == J2.one().operator()
+            True
+            sage: (pi_left*iota_right).is_zero()
+            True
+            sage: (pi_right*iota_left).is_zero()
+            True
+
         """
         Ji = self.cartesian_factors()[i]
-        # We reimplement the CombinatorialFreeModule superclass method
-        # because if we don't, something gets messed up with the caching
-        # and the answer changes the second time you run it. See the TESTS.
-        Ei = Ji._module_morphism(lambda t: self.monomial((i, t)), codomain=self)
+        # Requires the fix on Trac 31421/31422 to work!
+        Ei = super().cartesian_embedding(i)
         return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
 
 
@@ -2982,114 +3081,8 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         return sum( P(x).inner_product(P(y)) for P in projections )
 
 
-FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
-
-
-#     def projections(self):
-#         r"""
-#         Return a pair of projections onto this algebra's factors.
-
-#         SETUP::
-
-#             sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-#             ....:                                  ComplexHermitianEJA,
-#             ....:                                  DirectSumEJA)
-
-#         EXAMPLES::
-
-#             sage: J1 = JordanSpinEJA(2)
-#             sage: J2 = ComplexHermitianEJA(2)
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: (pi_left, pi_right) = J.projections()
-#             sage: J.one().to_vector()
-#             (1, 0, 1, 0, 0, 1)
-#             sage: pi_left(J.one()).to_vector()
-#             (1, 0)
-#             sage: pi_right(J.one()).to_vector()
-#             (1, 0, 0, 1)
-
-#         """
-#         (J1,J2) = self.factors()
-#         m = J1.dimension()
-#         n = J2.dimension()
-#         V_basis = self.vector_space().basis()
-#         # Need to specify the dimensions explicitly so that we don't
-#         # wind up with a zero-by-zero matrix when we want e.g. a
-#         # zero-by-two matrix (important for composing things).
-#         P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
-#         P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
-#         pi_left = FiniteDimensionalEJAOperator(self,J1,P1)
-#         pi_right = FiniteDimensionalEJAOperator(self,J2,P2)
-#         return (pi_left, pi_right)
-
-#     def inclusions(self):
-#         r"""
-#         Return the pair of inclusion maps from our factors into us.
-
-#         SETUP::
-
-#             sage: from mjo.eja.eja_algebra import (random_eja,
-#             ....:                                  JordanSpinEJA,
-#             ....:                                  RealSymmetricEJA,
-#             ....:                                  DirectSumEJA)
-
-#         EXAMPLES::
-
-#             sage: J1 = JordanSpinEJA(3)
-#             sage: J2 = RealSymmetricEJA(2)
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: (iota_left, iota_right) = J.inclusions()
-#             sage: iota_left(J1.zero()) == J.zero()
-#             True
-#             sage: iota_right(J2.zero()) == J.zero()
-#             True
-#             sage: J1.one().to_vector()
-#             (1, 0, 0)
-#             sage: iota_left(J1.one()).to_vector()
-#             (1, 0, 0, 0, 0, 0)
-#             sage: J2.one().to_vector()
-#             (1, 0, 1)
-#             sage: iota_right(J2.one()).to_vector()
-#             (0, 0, 0, 1, 0, 1)
-#             sage: J.one().to_vector()
-#             (1, 0, 0, 1, 0, 1)
-
-#         TESTS:
-
-#         Composing a projection with the corresponding inclusion should
-#         produce the identity map, and mismatching them should produce
-#         the zero map::
-
-#             sage: set_random_seed()
-#             sage: J1 = random_eja()
-#             sage: J2 = random_eja()
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: (iota_left, iota_right) = J.inclusions()
-#             sage: (pi_left, pi_right) = J.projections()
-#             sage: pi_left*iota_left == J1.one().operator()
-#             True
-#             sage: pi_right*iota_right == J2.one().operator()
-#             True
-#             sage: (pi_left*iota_right).is_zero()
-#             True
-#             sage: (pi_right*iota_left).is_zero()
-#             True
-
-#         """
-#         (J1,J2) = self.factors()
-#         m = J1.dimension()
-#         n = J2.dimension()
-#         V_basis = self.vector_space().basis()
-#         # Need to specify the dimensions explicitly so that we don't
-#         # wind up with a zero-by-zero matrix when we want e.g. a
-#         # two-by-zero matrix (important for composing things).
-#         I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
-#         I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
-#         iota_left = FiniteDimensionalEJAOperator(J1,self,I1)
-#         iota_right = FiniteDimensionalEJAOperator(J2,self,I2)
-#         return (iota_left, iota_right)
-
-
+    Element = FiniteDimensionalEJAElement
 
 
+FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
 random_eja = ConcreteEJA.random_instance