]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: split "check" args into check_field and check_axioms.
[sage.d.git] / mjo / eja / eja_algebra.py
index 4091d03fd6a40351e7d4c2789847d1db6fa0e807..26fe1929be872b393fe41926eeda801dbd0a9436 100644 (file)
@@ -57,11 +57,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
                  prefix='e',
                  category=None,
                  natural_basis=None,
-                 check=True):
+                 check_field=True,
+                 check_axioms=True):
         """
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja)
+            sage: from mjo.eja.eja_algebra import (
+            ....:   FiniteDimensionalEuclideanJordanAlgebra,
+            ....:   JordanSpinEJA,
+            ....:   random_eja)
 
         EXAMPLES:
 
@@ -75,20 +79,33 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
         TESTS:
 
-        The ``field`` we're given must be real::
+        The ``field`` we're given must be real with ``check_field=True``::
 
             sage: JordanSpinEJA(2,QQbar)
             Traceback (most recent call last):
             ...
-            ValueError: field is not real
+            ValueError: scalar field is not real
+
+        The multiplication table must be square with ``check_axioms=True``::
+
+            sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()))
+            Traceback (most recent call last):
+            ...
+            ValueError: multiplication table is not square
 
         """
-        if check:
+        if check_field:
             if not field.is_subring(RR):
                 # Note: this does return true for the real algebraic
-                # field, and any quadratic field where we've specified
-                # a real embedding.
-                raise ValueError('field is not real')
+                # field, the rationals, and any quadratic field where
+                # we've specified a real embedding.
+                raise ValueError("scalar field is not real")
+
+        # The multiplication table had better be square
+        n = len(mult_table)
+        if check_axioms:
+            if not all( len(l) == n for l in mult_table ):
+                raise ValueError("multiplication table is not square")
 
         self._natural_basis = natural_basis
 
@@ -98,7 +115,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
-                     range(len(mult_table)),
+                     range(n),
                      prefix=prefix,
                      category=category)
         self.print_options(bracket='')
@@ -114,6 +131,13 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             for ls in mult_table
         ]
 
+        if check_axioms:
+            if not self._is_commutative():
+                raise ValueError("algebra is not commutative")
+            if not self._is_jordanian():
+                raise ValueError("Jordan identity does not hold")
+            if not self._inner_product_is_associative():
+                raise ValueError("inner product is not associative")
 
     def _element_constructor_(self, elt):
         """
@@ -235,11 +259,74 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
     def product_on_basis(self, i, j):
         return self._multiplication_table[i][j]
 
+    def _is_commutative(self):
+        r"""
+        Whether or not this algebra's multiplication table is commutative.
+
+        This method should of course always return ``True``, unless
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid multiplication table.
+        """
+        return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
+                    for i in range(self.dimension())
+                    for j in range(self.dimension()) )
+
+    def _is_jordanian(self):
+        r"""
+        Whether or not this algebra's multiplication table respects the
+        Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
+
+        We only check one arrangement of `x` and `y`, so for a
+        ``True`` result to be truly true, you should also check
+        :meth:`_is_commutative`. This method should of course always
+        return ``True``, unless this algebra was constructed with
+        ``check_axioms=False`` and passed an invalid multiplication table.
+        """
+        return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
+                    ==
+                    (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
+                    for i in range(self.dimension())
+                    for j in range(self.dimension()) )
+
+    def _inner_product_is_associative(self):
+        r"""
+        Return whether or not this algebra's inner product `B` is
+        associative; that is, whether or not `B(xy,z) = B(x,yz)`.
+
+        This method should of course always return ``True``, unless
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid multiplication table.
+        """
+
+        # Used to check whether or not something is zero in an inexact
+        # ring. This number is sufficient to allow the construction of
+        # QuaternionHermitianEJA(2, RDF) with check_axioms=True.
+        epsilon = 1e-16
+
+        for i in range(self.dimension()):
+            for j in range(self.dimension()):
+                for k in range(self.dimension()):
+                    x = self.monomial(i)
+                    y = self.monomial(j)
+                    z = self.monomial(k)
+                    diff = (x*y).inner_product(z) - x.inner_product(y*z)
+
+                    if self.base_ring().is_exact():
+                        if diff != 0:
+                            return False
+                    else:
+                        if diff.abs() > epsilon:
+                            return False
+
+        return True
+
     @cached_method
-    def characteristic_polynomial(self):
+    def characteristic_polynomial_of(self):
         """
-        Return a characteristic polynomial that works for all elements
-        of this algebra.
+        Return the algebra's "characteristic polynomial of" function,
+        which is itself a multivariate polynomial that, when evaluated
+        at the coordinates of some algebra element, returns that
+        element's characteristic polynomial.
 
         The resulting polynomial has `n+1` variables, where `n` is the
         dimension of this algebra. The first `n` variables correspond to
@@ -259,7 +346,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         Alizadeh, Example 11.11::
 
             sage: J = JordanSpinEJA(3)
-            sage: p = J.characteristic_polynomial(); p
+            sage: p = J.characteristic_polynomial_of(); p
             X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
             sage: xvec = J.one().to_vector()
             sage: p(*xvec)
@@ -272,7 +359,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         any argument::
 
             sage: J = TrivialEJA()
-            sage: J.characteristic_polynomial()
+            sage: J.characteristic_polynomial_of()
             1
 
         """
@@ -438,8 +525,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         """
         Return the matrix space in which this algebra's natural basis
         elements live.
+
+        Generally this will be an `n`-by-`1` column-vector space,
+        except when the algebra is trivial. There it's `n`-by-`n`
+        (where `n` is zero), to ensure that two elements of the
+        natural basis space (empty matrices) can be multiplied.
         """
-        if self._natural_basis is None or len(self._natural_basis) == 0:
+        if self.is_trivial():
+            return MatrixSpace(self.base_ring(), 0)
+        elif self._natural_basis is None or len(self._natural_basis) == 0:
             return MatrixSpace(self.base_ring(), self.dimension(), 1)
         else:
             return self._natural_basis[0].matrix_space()
@@ -572,6 +666,25 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             Vector space of degree 6 and dimension 2...
             sage: J1
             Euclidean Jordan algebra of dimension 3...
+            sage: J0.one().natural_representation()
+            [0 0 0]
+            [0 0 0]
+            [0 0 1]
+            sage: orig_df = AA.options.display_format
+            sage: AA.options.display_format = 'radical'
+            sage: J.from_vector(J5.basis()[0]).natural_representation()
+            [          0           0 1/2*sqrt(2)]
+            [          0           0           0]
+            [1/2*sqrt(2)           0           0]
+            sage: J.from_vector(J5.basis()[1]).natural_representation()
+            [          0           0           0]
+            [          0           0 1/2*sqrt(2)]
+            [          0 1/2*sqrt(2)           0]
+            sage: AA.options.display_format = orig_df
+            sage: J1.one().natural_representation()
+            [1 0 0]
+            [0 1 0]
+            [0 0 0]
 
         TESTS:
 
@@ -586,9 +699,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
             True
 
-        The identity elements in the two subalgebras are the
-        projections onto their respective subspaces of the
-        superalgebra's identity element::
+        The decomposition is into eigenspaces, and its components are
+        therefore necessarily orthogonal. Moreover, the identity
+        elements in the two subalgebras are the projections onto their
+        respective subspaces of the superalgebra's identity element::
 
             sage: set_random_seed()
             sage: J = random_eja()
@@ -598,6 +712,16 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             ....:         x = J.random_element()
             sage: c = x.subalgebra_idempotent()
             sage: J0,J5,J1 = J.peirce_decomposition(c)
+            sage: ipsum = 0
+            sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
+            ....:     w = w.superalgebra_element()
+            ....:     y = J.from_vector(y)
+            ....:     z = z.superalgebra_element()
+            ....:     ipsum += w.inner_product(y).abs()
+            ....:     ipsum += w.inner_product(z).abs()
+            ....:     ipsum += y.inner_product(z).abs()
+            sage: ipsum
+            0
             sage: J1(c) == J1.one()
             True
             sage: J0(J.one() - c) == J0.one()
@@ -622,7 +746,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
                 J5 = eigspace
             else:
                 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
-                subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens)
+                subalg = FiniteDimensionalEuclideanJordanSubalgebra(self,
+                                                                    gens,
+                                                                    check_axioms=False)
                 if eigval == 0:
                     J0 = subalg
                 elif eigval == 1:
@@ -633,10 +759,61 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         return (J0, J5, J1)
 
 
-    def random_elements(self, count):
+    def random_element(self, thorough=False):
+        r"""
+        Return a random element of this algebra.
+
+        Our algebra superclass method only returns a linear
+        combination of at most two basis elements. We instead
+        want the vector space "random element" method that
+        returns a more diverse selection.
+
+        INPUT:
+
+        - ``thorough`` -- (boolean; default False) whether or not we
+          should generate irrational coefficients for the random
+          element when our base ring is irrational; this slows the
+          algebra operations to a crawl, but any truly random method
+          should include them
+
+        """
+        # For a general base ring... maybe we can trust this to do the
+        # right thing? Unlikely, but.
+        V = self.vector_space()
+        v = V.random_element()
+
+        if self.base_ring() is AA:
+            # The "random element" method of the algebraic reals is
+            # stupid at the moment, and only returns integers between
+            # -2 and 2, inclusive:
+            #
+            #   https://trac.sagemath.org/ticket/30875
+            #
+            # Instead, we implement our own "random vector" method,
+            # and then coerce that into the algebra. We use the vector
+            # space degree here instead of the dimension because a
+            # subalgebra could (for example) be spanned by only two
+            # vectors, each with five coordinates.  We need to
+            # generate all five coordinates.
+            if thorough:
+                v *= QQbar.random_element().real()
+            else:
+                v *= QQ.random_element()
+
+        return self.from_vector(V.coordinate_vector(v))
+
+    def random_elements(self, count, thorough=False):
         """
         Return ``count`` random elements as a tuple.
 
+        INPUT:
+
+        - ``thorough`` -- (boolean; default False) whether or not we
+          should generate irrational coefficients for the random
+          elements when our base ring is irrational; this slows the
+          algebra operations to a crawl, but any truly random method
+          should include them
+
         SETUP::
 
             sage: from mjo.eja.eja_algebra import JordanSpinEJA
@@ -651,7 +828,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             True
 
         """
-        return tuple( self.random_element() for idx in range(count) )
+        return tuple( self.random_element(thorough)
+                      for idx in range(count) )
 
     @classmethod
     def random_instance(cls, field=AA, **kwargs):
@@ -666,7 +844,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             # there's only one.
             return cls(field)
 
-        n = ZZ.random_element(cls._max_test_case_size()) + 1
+        n = ZZ.random_element(cls._max_test_case_size() + 1)
         return cls(n, field, **kwargs)
 
     @cached_method
@@ -874,8 +1052,10 @@ class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
         mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
                        for i in range(n) ]
 
-        fdeja = super(HadamardEJA, self)
-        fdeja.__init__(field, mult_table, **kwargs)
+        super(HadamardEJA, self).__init__(field,
+                                          mult_table,
+                                          check_axioms=False,
+                                          **kwargs)
         self.rank.set_cache(n)
 
     def inner_product(self, x, y):
@@ -903,7 +1083,7 @@ class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
         return x.to_vector().inner_product(y.to_vector())
 
 
-def random_eja(field=AA, nontrivial=False):
+def random_eja(field=AA):
     """
     Return a "random" finite-dimensional Euclidean Jordan Algebra.
 
@@ -917,21 +1097,17 @@ def random_eja(field=AA, nontrivial=False):
         Euclidean Jordan algebra of dimension...
 
     """
-    eja_classes = [HadamardEJA,
-                   JordanSpinEJA,
-                   RealSymmetricEJA,
-                   ComplexHermitianEJA,
-                   QuaternionHermitianEJA]
-    if not nontrivial:
-        eja_classes.append(TrivialEJA)
-    classname = choice(eja_classes)
+    classname = choice([TrivialEJA,
+                        HadamardEJA,
+                        JordanSpinEJA,
+                        RealSymmetricEJA,
+                        ComplexHermitianEJA,
+                        QuaternionHermitianEJA])
     return classname.random_instance(field=field)
 
 
 
 
-
-
 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
     @staticmethod
     def _max_test_case_size():
@@ -968,9 +1144,10 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
 
         Qs = self.multiplication_table_from_matrix_basis(basis)
 
-        fdeja = super(MatrixEuclideanJordanAlgebra, self)
-        fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
-        return
+        super(MatrixEuclideanJordanAlgebra, self).__init__(field,
+                                                           Qs,
+                                                           natural_basis=basis,
+                                                           **kwargs)
 
 
     @cached_method
@@ -989,10 +1166,14 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
 
             # Do this over the rationals and convert back at the end.
             # Only works because we know the entries of the basis are
-            # integers.
+            # integers. The argument ``check_axioms=False`` is required
+            # because the trace inner-product method for this
+            # class is a stub and can't actually be checked.
             J = MatrixEuclideanJordanAlgebra(QQ,
                                              basis,
-                                             normalize_basis=False)
+                                             normalize_basis=False,
+                                             check_field=False,
+                                             check_axioms=False)
             a = J._charpoly_coefficients()
 
             # Unfortunately, changing the basis does change the
@@ -1006,8 +1187,10 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
             # we simply undo the basis_normalizer scaling that we
             # performed earlier.
             #
-            # TODO: make this access safe.
-            XS = a[0].variables()
+            # The a[0] access here is safe because trivial algebras
+            # won't have any basis normalizers and therefore won't
+            # make it to this "else" branch.
+            XS = a[0].parent().gens()
             subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i]
                           for i in range(len(XS)) }
             return tuple( a_i.subs(subs_dict) for a_i in a )
@@ -1028,6 +1211,9 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
         # is supposed to hold the entire long vector, and the subspace W
         # of V will be spanned by the vectors that arise from symmetric
         # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
+        if len(basis) == 0:
+            return []
+
         field = basis[0].base_ring()
         dimension = basis[0].nrows()
 
@@ -1074,16 +1260,11 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
         Yu = cls.real_unembed(Y)
         tr = (Xu*Yu).trace()
 
-        if tr in RLF:
-            # It's real already.
-            return tr
-
-        # Otherwise, try the thing that works for complex numbers; and
-        # if that doesn't work, the thing that works for quaternions.
         try:
-            return tr.vector()[0] # real part, imag part is index 1
+            # Works in QQ, AA, RDF, et cetera.
+            return tr.real()
         except AttributeError:
-            # A quaternions doesn't have a vector() method, but does
+            # A quaternion doesn't have a real() method, but does
             # have coefficient_tuple() method that returns the
             # coefficients of 1, i, j, and k -- in that order.
             return tr.coefficient_tuple()[0]
@@ -1185,6 +1366,11 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
         sage: x.operator().matrix().is_symmetric()
         True
 
+    We can construct the (trivial) algebra of rank zero::
+
+        sage: RealSymmetricEJA(0)
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
+
     """
     @classmethod
     def _denormalized_basis(cls, n, field):
@@ -1225,7 +1411,10 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
 
     def __init__(self, n, field=AA, **kwargs):
         basis = self._denormalized_basis(n, field)
-        super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
+        super(RealSymmetricEJA, self).__init__(field,
+                                               basis,
+                                               check_axioms=False,
+                                               **kwargs)
         self.rank.set_cache(n)
 
 
@@ -1458,6 +1647,11 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
         sage: x.operator().matrix().is_symmetric()
         True
 
+    We can construct the (trivial) algebra of rank zero::
+
+        sage: ComplexHermitianEJA(0)
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
+
     """
 
     @classmethod
@@ -1516,7 +1710,10 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
 
     def __init__(self, n, field=AA, **kwargs):
         basis = self._denormalized_basis(n,field)
-        super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
+        super(ComplexHermitianEJA,self).__init__(field,
+                                                 basis,
+                                                 check_axioms=False,
+                                                 **kwargs)
         self.rank.set_cache(n)
 
 
@@ -1753,6 +1950,11 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
         sage: x.operator().matrix().is_symmetric()
         True
 
+    We can construct the (trivial) algebra of rank zero::
+
+        sage: QuaternionHermitianEJA(0)
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
+
     """
     @classmethod
     def _denormalized_basis(cls, n, field):
@@ -1812,7 +2014,10 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
 
     def __init__(self, n, field=AA, **kwargs):
         basis = self._denormalized_basis(n,field)
-        super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
+        super(QuaternionHermitianEJA,self).__init__(field,
+                                                    basis,
+                                                    check_axioms=False,
+                                                    **kwargs)
         self.rank.set_cache(n)
 
 
@@ -1895,8 +2100,10 @@ class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
         # The rank of this algebra is two, unless we're in a
         # one-dimensional ambient space (because the rank is bounded
         # by the ambient dimension).
-        fdeja = super(BilinearFormEJA, self)
-        fdeja.__init__(field, mult_table, **kwargs)
+        super(BilinearFormEJA, self).__init__(field,
+                                              mult_table,
+                                              check_axioms=False,
+                                              **kwargs)
         self.rank.set_cache(min(n,2))
 
     def inner_product(self, x, y):
@@ -1988,7 +2195,7 @@ class JordanSpinEJA(BilinearFormEJA):
     def __init__(self, n, field=AA, **kwargs):
         # This is a special case of the BilinearFormEJA with the identity
         # matrix as its bilinear form.
-        return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
+        super(JordanSpinEJA, self).__init__(n, field, **kwargs)
 
 
 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
@@ -2022,8 +2229,59 @@ class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     def __init__(self, field=AA, **kwargs):
         mult_table = []
-        fdeja = super(TrivialEJA, self)
+        super(TrivialEJA, self).__init__(field,
+                                         mult_table,
+                                         check_axioms=False,
+                                         **kwargs)
         # The rank is zero using my definition, namely the dimension of the
         # largest subalgebra generated by any element.
-        fdeja.__init__(field, mult_table, **kwargs)
         self.rank.set_cache(0)
+
+
+class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
+    r"""
+    The external (orthogonal) direct sum of two other Euclidean Jordan
+    algebras. Essentially the Cartesian product of its two factors.
+    Every Euclidean Jordan algebra decomposes into an orthogonal
+    direct sum of simple Euclidean Jordan algebras, so no generality
+    is lost by providing only this construction.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (HadamardEJA,
+        ....:                                  RealSymmetricEJA,
+        ....:                                  DirectSumEJA)
+
+    EXAMPLES::
+
+        sage: J1 = HadamardEJA(2)
+        sage: J2 = RealSymmetricEJA(3)
+        sage: J = DirectSumEJA(J1,J2)
+        sage: J.dimension()
+        8
+        sage: J.rank()
+        5
+
+    """
+    def __init__(self, J1, J2, field=AA, **kwargs):
+        n1 = J1.dimension()
+        n2 = J2.dimension()
+        n = n1+n2
+        V = VectorSpace(field, n)
+        mult_table = [ [ V.zero() for j in range(n) ]
+                       for i in range(n) ]
+        for i in range(n1):
+            for j in range(n1):
+                p = (J1.monomial(i)*J1.monomial(j)).to_vector()
+                mult_table[i][j] = V(p.list() + [field.zero()]*n2)
+
+        for i in range(n2):
+            for j in range(n2):
+                p = (J2.monomial(i)*J2.monomial(j)).to_vector()
+                mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
+
+        super(DirectSumEJA, self).__init__(field,
+                                           mult_table,
+                                           check_axioms=False,
+                                           **kwargs)
+        self.rank.set_cache(J1.rank() + J2.rank())