]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: split "check" args into check_field and check_axioms.
[sage.d.git] / mjo / eja / eja_algebra.py
index 3846b83ad6d76674f9f82e5f3a662ea5a2aeea4c..26fe1929be872b393fe41926eeda801dbd0a9436 100644 (file)
@@ -57,7 +57,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
                  prefix='e',
                  category=None,
                  natural_basis=None,
-                 check=True):
+                 check_field=True,
+                 check_axioms=True):
         """
         SETUP::
 
@@ -78,14 +79,14 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
         TESTS:
 
-        The ``field`` we're given must be real with ``check=True``::
+        The ``field`` we're given must be real with ``check_field=True``::
 
             sage: JordanSpinEJA(2,QQbar)
             Traceback (most recent call last):
             ...
-            ValueError: field is not real
+            ValueError: scalar field is not real
 
-        The multiplication table must be square with ``check=True``::
+        The multiplication table must be square with ``check_axioms=True``::
 
             sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()))
             Traceback (most recent call last):
@@ -93,12 +94,18 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             ValueError: multiplication table is not square
 
         """
-        if check:
+        if check_field:
             if not field.is_subring(RR):
                 # Note: this does return true for the real algebraic
-                # field, and any quadratic field where we've specified
-                # a real embedding.
-                raise ValueError('field is not real')
+                # field, the rationals, and any quadratic field where
+                # we've specified a real embedding.
+                raise ValueError("scalar field is not real")
+
+        # The multiplication table had better be square
+        n = len(mult_table)
+        if check_axioms:
+            if not all( len(l) == n for l in mult_table ):
+                raise ValueError("multiplication table is not square")
 
         self._natural_basis = natural_basis
 
@@ -106,12 +113,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             category = MagmaticAlgebras(field).FiniteDimensional()
             category = category.WithBasis().Unital()
 
-        # The multiplication table had better be square
-        n = len(mult_table)
-        if check:
-            if not all( len(l) == n for l in mult_table ):
-                raise ValueError("multiplication table is not square")
-
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
                      range(n),
@@ -130,7 +131,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             for ls in mult_table
         ]
 
-        if check:
+        if check_axioms:
             if not self._is_commutative():
                 raise ValueError("algebra is not commutative")
             if not self._is_jordanian():
@@ -263,8 +264,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         Whether or not this algebra's multiplication table is commutative.
 
         This method should of course always return ``True``, unless
-        this algebra was constructed with ``check=False`` and passed
-        an invalid multiplication table.
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid multiplication table.
         """
         return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
                     for i in range(self.dimension())
@@ -279,7 +280,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         ``True`` result to be truly true, you should also check
         :meth:`_is_commutative`. This method should of course always
         return ``True``, unless this algebra was constructed with
-        ``check=False`` and passed an invalid multiplication table.
+        ``check_axioms=False`` and passed an invalid multiplication table.
         """
         return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
                     ==
@@ -293,17 +294,29 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         associative; that is, whether or not `B(xy,z) = B(x,yz)`.
 
         This method should of course always return ``True``, unless
-        this algebra was constructed with ``check=False`` and passed
-        an invalid multiplication table.
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid multiplication table.
         """
+
+        # Used to check whether or not something is zero in an inexact
+        # ring. This number is sufficient to allow the construction of
+        # QuaternionHermitianEJA(2, RDF) with check_axioms=True.
+        epsilon = 1e-16
+
         for i in range(self.dimension()):
             for j in range(self.dimension()):
                 for k in range(self.dimension()):
                     x = self.monomial(i)
                     y = self.monomial(j)
                     z = self.monomial(k)
-                    if (x*y).inner_product(z) != x.inner_product(y*z):
-                        return False
+                    diff = (x*y).inner_product(z) - x.inner_product(y*z)
+
+                    if self.base_ring().is_exact():
+                        if diff != 0:
+                            return False
+                    else:
+                        if diff.abs() > epsilon:
+                            return False
 
         return True
 
@@ -733,7 +746,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
                 J5 = eigspace
             else:
                 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
-                subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens)
+                subalg = FiniteDimensionalEuclideanJordanSubalgebra(self,
+                                                                    gens,
+                                                                    check_axioms=False)
                 if eigval == 0:
                     J0 = subalg
                 elif eigval == 1:
@@ -1037,8 +1052,10 @@ class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
         mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
                        for i in range(n) ]
 
-        fdeja = super(HadamardEJA, self)
-        fdeja.__init__(field, mult_table, **kwargs)
+        super(HadamardEJA, self).__init__(field,
+                                          mult_table,
+                                          check_axioms=False,
+                                          **kwargs)
         self.rank.set_cache(n)
 
     def inner_product(self, x, y):
@@ -1127,9 +1144,10 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
 
         Qs = self.multiplication_table_from_matrix_basis(basis)
 
-        fdeja = super(MatrixEuclideanJordanAlgebra, self)
-        fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
-        return
+        super(MatrixEuclideanJordanAlgebra, self).__init__(field,
+                                                           Qs,
+                                                           natural_basis=basis,
+                                                           **kwargs)
 
 
     @cached_method
@@ -1148,10 +1166,14 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
 
             # Do this over the rationals and convert back at the end.
             # Only works because we know the entries of the basis are
-            # integers.
+            # integers. The argument ``check_axioms=False`` is required
+            # because the trace inner-product method for this
+            # class is a stub and can't actually be checked.
             J = MatrixEuclideanJordanAlgebra(QQ,
                                              basis,
-                                             normalize_basis=False)
+                                             normalize_basis=False,
+                                             check_field=False,
+                                             check_axioms=False)
             a = J._charpoly_coefficients()
 
             # Unfortunately, changing the basis does change the
@@ -1238,16 +1260,11 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
         Yu = cls.real_unembed(Y)
         tr = (Xu*Yu).trace()
 
-        if tr in RLF:
-            # It's real already.
-            return tr
-
-        # Otherwise, try the thing that works for complex numbers; and
-        # if that doesn't work, the thing that works for quaternions.
         try:
-            return tr.vector()[0] # real part, imag part is index 1
+            # Works in QQ, AA, RDF, et cetera.
+            return tr.real()
         except AttributeError:
-            # A quaternions doesn't have a vector() method, but does
+            # A quaternion doesn't have a real() method, but does
             # have coefficient_tuple() method that returns the
             # coefficients of 1, i, j, and k -- in that order.
             return tr.coefficient_tuple()[0]
@@ -1394,7 +1411,10 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
 
     def __init__(self, n, field=AA, **kwargs):
         basis = self._denormalized_basis(n, field)
-        super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
+        super(RealSymmetricEJA, self).__init__(field,
+                                               basis,
+                                               check_axioms=False,
+                                               **kwargs)
         self.rank.set_cache(n)
 
 
@@ -1690,7 +1710,10 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
 
     def __init__(self, n, field=AA, **kwargs):
         basis = self._denormalized_basis(n,field)
-        super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
+        super(ComplexHermitianEJA,self).__init__(field,
+                                                 basis,
+                                                 check_axioms=False,
+                                                 **kwargs)
         self.rank.set_cache(n)
 
 
@@ -1991,7 +2014,10 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
 
     def __init__(self, n, field=AA, **kwargs):
         basis = self._denormalized_basis(n,field)
-        super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
+        super(QuaternionHermitianEJA,self).__init__(field,
+                                                    basis,
+                                                    check_axioms=False,
+                                                    **kwargs)
         self.rank.set_cache(n)
 
 
@@ -2074,8 +2100,10 @@ class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
         # The rank of this algebra is two, unless we're in a
         # one-dimensional ambient space (because the rank is bounded
         # by the ambient dimension).
-        fdeja = super(BilinearFormEJA, self)
-        fdeja.__init__(field, mult_table, **kwargs)
+        super(BilinearFormEJA, self).__init__(field,
+                                              mult_table,
+                                              check_axioms=False,
+                                              **kwargs)
         self.rank.set_cache(min(n,2))
 
     def inner_product(self, x, y):
@@ -2167,7 +2195,7 @@ class JordanSpinEJA(BilinearFormEJA):
     def __init__(self, n, field=AA, **kwargs):
         # This is a special case of the BilinearFormEJA with the identity
         # matrix as its bilinear form.
-        return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
+        super(JordanSpinEJA, self).__init__(n, field, **kwargs)
 
 
 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
@@ -2201,10 +2229,12 @@ class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     def __init__(self, field=AA, **kwargs):
         mult_table = []
-        fdeja = super(TrivialEJA, self)
+        super(TrivialEJA, self).__init__(field,
+                                         mult_table,
+                                         check_axioms=False,
+                                         **kwargs)
         # The rank is zero using my definition, namely the dimension of the
         # largest subalgebra generated by any element.
-        fdeja.__init__(field, mult_table, **kwargs)
         self.rank.set_cache(0)
 
 
@@ -2250,6 +2280,8 @@ class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
                 p = (J2.monomial(i)*J2.monomial(j)).to_vector()
                 mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
 
-        fdeja = super(DirectSumEJA, self)
-        fdeja.__init__(field, mult_table, **kwargs)
+        super(DirectSumEJA, self).__init__(field,
+                                           mult_table,
+                                           check_axioms=False,
+                                           **kwargs)
         self.rank.set_cache(J1.rank() + J2.rank())