]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: begin generalizing the charpoly-over-QQ optimizations.
[sage.d.git] / mjo / eja / eja_algebra.py
index 26fe1929be872b393fe41926eeda801dbd0a9436..1fc3618005eb0ac8be12e0e3e09849ab6f983819 100644 (file)
@@ -1007,81 +1007,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
     Element = FiniteDimensionalEuclideanJordanAlgebraElement
 
 
-class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
-    """
-    Return the Euclidean Jordan Algebra corresponding to the set
-    `R^n` under the Hadamard product.
-
-    Note: this is nothing more than the Cartesian product of ``n``
-    copies of the spin algebra. Once Cartesian product algebras
-    are implemented, this can go.
-
-    SETUP::
-
-        sage: from mjo.eja.eja_algebra import HadamardEJA
-
-    EXAMPLES:
-
-    This multiplication table can be verified by hand::
-
-        sage: J = HadamardEJA(3)
-        sage: e0,e1,e2 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e0*e1
-        0
-        sage: e0*e2
-        0
-        sage: e1*e1
-        e1
-        sage: e1*e2
-        0
-        sage: e2*e2
-        e2
-
-    TESTS:
-
-    We can change the generator prefix::
-
-        sage: HadamardEJA(3, prefix='r').gens()
-        (r0, r1, r2)
-
-    """
-    def __init__(self, n, field=AA, **kwargs):
-        V = VectorSpace(field, n)
-        mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
-                       for i in range(n) ]
-
-        super(HadamardEJA, self).__init__(field,
-                                          mult_table,
-                                          check_axioms=False,
-                                          **kwargs)
-        self.rank.set_cache(n)
-
-    def inner_product(self, x, y):
-        """
-        Faster to reimplement than to use natural representations.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import HadamardEJA
-
-        TESTS:
-
-        Ensure that this is the usual inner product for the algebras
-        over `R^n`::
-
-            sage: set_random_seed()
-            sage: J = HadamardEJA.random_instance()
-            sage: x,y = J.random_elements(2)
-            sage: X = x.natural_representation()
-            sage: Y = y.natural_representation()
-            sage: x.inner_product(y) == J.natural_inner_product(X,Y)
-            True
-
-        """
-        return x.to_vector().inner_product(y.to_vector())
-
 
 def random_eja(field=AA):
     """
@@ -1108,6 +1033,44 @@ def random_eja(field=AA):
 
 
 
+class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
+    r"""
+    Algebras whose basis consists of vectors with rational
+    entries. Equivalently, algebras whose multiplication tables
+    contain only rational coefficients.
+
+    When an EJA has a basis that can be made rational, we can speed up
+    the computation of its characteristic polynomial by doing it over
+    ``QQ``. All of the named EJA constructors that we provide fall
+    into this category.
+    """
+    @cached_method
+    def _charpoly_coefficients(self):
+        r"""
+        Override the parent method with something that tries to compute
+        over a faster (non-extension) field.
+        """
+        if self.base_ring() is QQ:
+            # There's no need to construct *another* algebra over the
+            # rationals if this one is already over the rationals.
+            superclass = super(RationalBasisEuclideanJordanAlgebra, self)
+            return superclass._charpoly_coefficients()
+
+        mult_table = tuple(
+            map(lambda x: x.to_vector(), ls)
+            for ls in self._multiplication_table
+        )
+
+        # Do the computation over the rationals. The answer will be
+        # the same, because our basis coordinates are (essentially)
+        # rational.
+        J = FiniteDimensionalEuclideanJordanAlgebra(QQ,
+                                                    mult_table,
+                                                    check_field=False,
+                                                    check_axioms=False)
+        return J._charpoly_coefficients()
+
+
 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
     @staticmethod
     def _max_test_case_size():
@@ -2021,7 +1984,83 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
         self.rank.set_cache(n)
 
 
-class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
+class HadamardEJA(RationalBasisEuclideanJordanAlgebra):
+    """
+    Return the Euclidean Jordan Algebra corresponding to the set
+    `R^n` under the Hadamard product.
+
+    Note: this is nothing more than the Cartesian product of ``n``
+    copies of the spin algebra. Once Cartesian product algebras
+    are implemented, this can go.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import HadamardEJA
+
+    EXAMPLES:
+
+    This multiplication table can be verified by hand::
+
+        sage: J = HadamardEJA(3)
+        sage: e0,e1,e2 = J.gens()
+        sage: e0*e0
+        e0
+        sage: e0*e1
+        0
+        sage: e0*e2
+        0
+        sage: e1*e1
+        e1
+        sage: e1*e2
+        0
+        sage: e2*e2
+        e2
+
+    TESTS:
+
+    We can change the generator prefix::
+
+        sage: HadamardEJA(3, prefix='r').gens()
+        (r0, r1, r2)
+
+    """
+    def __init__(self, n, field=AA, **kwargs):
+        V = VectorSpace(field, n)
+        mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
+                       for i in range(n) ]
+
+        super(HadamardEJA, self).__init__(field,
+                                          mult_table,
+                                          check_axioms=False,
+                                          **kwargs)
+        self.rank.set_cache(n)
+
+    def inner_product(self, x, y):
+        """
+        Faster to reimplement than to use natural representations.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import HadamardEJA
+
+        TESTS:
+
+        Ensure that this is the usual inner product for the algebras
+        over `R^n`::
+
+            sage: set_random_seed()
+            sage: J = HadamardEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: X = x.natural_representation()
+            sage: Y = y.natural_representation()
+            sage: x.inner_product(y) == J.natural_inner_product(X,Y)
+            True
+
+        """
+        return x.to_vector().inner_product(y.to_vector())
+
+
+class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra):
     r"""
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the half-trace inner product and jordan product ``x*y =