]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: factor out some common tests.
[sage.d.git] / mjo / eja / eja_algebra.py
index edba0987e946a23e193f45c62fec5288a416e617..3b5828fed55098dfd3f4c95bf2354ac4e38efc87 100644 (file)
@@ -3,78 +3,79 @@ Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
 are used in optimization, and have some additional nice methods beyond
 what can be supported in a general Jordan Algebra.
-"""
 
 
+SETUP::
+
+    sage: from mjo.eja.eja_algebra import random_eja
+
+EXAMPLES::
+
+    sage: random_eja()
+    Euclidean Jordan algebra of dimension...
+
+"""
+
+from itertools import repeat
 
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
-from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis
-from sage.functions.other import sqrt
+from sage.categories.magmatic_algebras import MagmaticAlgebras
+from sage.combinat.free_module import CombinatorialFreeModule
 from sage.matrix.constructor import matrix
+from sage.matrix.matrix_space import MatrixSpace
 from sage.misc.cachefunc import cached_method
-from sage.misc.prandom import choice
-from sage.modules.free_module import VectorSpace
-from sage.modules.free_module_element import vector
-from sage.rings.integer_ring import ZZ
-from sage.rings.number_field.number_field import QuadraticField
-from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
-from sage.rings.rational_field import QQ
-from sage.structure.element import is_Matrix
-from sage.structure.category_object import normalize_names
+from sage.misc.lazy_import import lazy_import
+from sage.misc.table import table
+from sage.modules.free_module import FreeModule, VectorSpace
+from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
+                            PolynomialRing,
+                            QuadraticField)
+from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
+lazy_import('mjo.eja.eja_subalgebra',
+            'FiniteDimensionalEuclideanJordanSubalgebra')
+from mjo.eja.eja_utils import _mat2vec
+
+class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
+
+    def _coerce_map_from_base_ring(self):
+        """
+        Disable the map from the base ring into the algebra.
 
-from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
+        Performing a nonsense conversion like this automatically
+        is counterpedagogical. The fallback is to try the usual
+        element constructor, which should also fail.
 
+        SETUP::
 
-class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
-    @staticmethod
-    def __classcall_private__(cls,
-                              field,
-                              mult_table,
-                              rank,
-                              names='e',
-                              assume_associative=False,
-                              category=None,
-                              natural_basis=None):
-        n = len(mult_table)
-        mult_table = [b.base_extend(field) for b in mult_table]
-        for b in mult_table:
-            b.set_immutable()
-            if not (is_Matrix(b) and b.dimensions() == (n, n)):
-                raise ValueError("input is not a multiplication table")
-        mult_table = tuple(mult_table)
-
-        cat = FiniteDimensionalAlgebrasWithBasis(field)
-        cat.or_subcategory(category)
-        if assume_associative:
-            cat = cat.Associative()
-
-        names = normalize_names(n, names)
-
-        fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
-        return fda.__classcall__(cls,
-                                 field,
-                                 mult_table,
-                                 rank=rank,
-                                 assume_associative=assume_associative,
-                                 names=names,
-                                 category=cat,
-                                 natural_basis=natural_basis)
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J(1)
+            Traceback (most recent call last):
+            ...
+            ValueError: not a naturally-represented algebra element
 
+        """
+        return None
 
     def __init__(self,
                  field,
                  mult_table,
-                 rank,
-                 names='e',
-                 assume_associative=False,
+                 prefix='e',
                  category=None,
-                 natural_basis=None):
+                 natural_basis=None,
+                 check_field=True,
+                 check_axioms=True):
         """
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import random_eja
+            sage: from mjo.eja.eja_algebra import (
+            ....:   FiniteDimensionalEuclideanJordanAlgebra,
+            ....:   JordanSpinEJA,
+            ....:   random_eja)
 
         EXAMPLES:
 
@@ -82,173 +83,241 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
+            sage: x,y = J.random_elements(2)
             sage: x*y == y*x
             True
 
+        TESTS:
+
+        The ``field`` we're given must be real with ``check_field=True``::
+
+            sage: JordanSpinEJA(2,QQbar)
+            Traceback (most recent call last):
+            ...
+            ValueError: scalar field is not real
+
+        The multiplication table must be square with ``check_axioms=True``::
+
+            sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()))
+            Traceback (most recent call last):
+            ...
+            ValueError: multiplication table is not square
+
         """
-        self._rank = rank
+        if check_field:
+            if not field.is_subring(RR):
+                # Note: this does return true for the real algebraic
+                # field, the rationals, and any quadratic field where
+                # we've specified a real embedding.
+                raise ValueError("scalar field is not real")
+
+        # The multiplication table had better be square
+        n = len(mult_table)
+        if check_axioms:
+            if not all( len(l) == n for l in mult_table ):
+                raise ValueError("multiplication table is not square")
+
         self._natural_basis = natural_basis
-        self._multiplication_table = mult_table
+
+        if category is None:
+            category = MagmaticAlgebras(field).FiniteDimensional()
+            category = category.WithBasis().Unital()
+
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
-                     mult_table,
-                     names=names,
+                     range(n),
+                     prefix=prefix,
                      category=category)
-
-
-    def _repr_(self):
+        self.print_options(bracket='')
+
+        # The multiplication table we're given is necessarily in terms
+        # of vectors, because we don't have an algebra yet for
+        # anything to be an element of. However, it's faster in the
+        # long run to have the multiplication table be in terms of
+        # algebra elements. We do this after calling the superclass
+        # constructor so that from_vector() knows what to do.
+        self._multiplication_table = [
+            list(map(lambda x: self.from_vector(x), ls))
+            for ls in mult_table
+        ]
+
+        if check_axioms:
+            if not self._is_commutative():
+                raise ValueError("algebra is not commutative")
+            if not self._is_jordanian():
+                raise ValueError("Jordan identity does not hold")
+            if not self._inner_product_is_associative():
+                raise ValueError("inner product is not associative")
+
+    def _element_constructor_(self, elt):
         """
-        Return a string representation of ``self``.
+        Construct an element of this algebra from its natural
+        representation.
+
+        This gets called only after the parent element _call_ method
+        fails to find a coercion for the argument.
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import JordanSpinEJA
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES:
+
+        The identity in `S^n` is converted to the identity in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: I = matrix.identity(QQ,3)
+            sage: J(I) == J.one()
+            True
+
+        This skew-symmetric matrix can't be represented in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: A = matrix(QQ,3, lambda i,j: i-j)
+            sage: J(A)
+            Traceback (most recent call last):
+            ...
+            ArithmeticError: vector is not in free module
 
         TESTS:
 
-        Ensure that it says what we think it says::
+        Ensure that we can convert any element of the two non-matrix
+        simple algebras (whose natural representations are their usual
+        vector representations) back and forth faithfully::
 
-            sage: JordanSpinEJA(2, field=QQ)
-            Euclidean Jordan algebra of degree 2 over Rational Field
-            sage: JordanSpinEJA(3, field=RDF)
-            Euclidean Jordan algebra of degree 3 over Real Double Field
+            sage: set_random_seed()
+            sage: J = HadamardEJA.random_instance()
+            sage: x = J.random_element()
+            sage: J(x.to_vector().column()) == x
+            True
+            sage: J = JordanSpinEJA.random_instance()
+            sage: x = J.random_element()
+            sage: J(x.to_vector().column()) == x
+            True
 
         """
-        fmt = "Euclidean Jordan algebra of degree {} over {}"
-        return fmt.format(self.degree(), self.base_ring())
+        msg = "not a naturally-represented algebra element"
+        if elt == 0:
+            # The superclass implementation of random_element()
+            # needs to be able to coerce "0" into the algebra.
+            return self.zero()
+        elif elt in self.base_ring():
+            # Ensure that no base ring -> algebra coercion is performed
+            # by this method. There's some stupidity in sage that would
+            # otherwise propagate to this method; for example, sage thinks
+            # that the integer 3 belongs to the space of 2-by-2 matrices.
+            raise ValueError(msg)
+
+        natural_basis = self.natural_basis()
+        basis_space = natural_basis[0].matrix_space()
+        if elt not in basis_space:
+            raise ValueError(msg)
+
+        # Thanks for nothing! Matrix spaces aren't vector spaces in
+        # Sage, so we have to figure out its natural-basis coordinates
+        # ourselves. We use the basis space's ring instead of the
+        # element's ring because the basis space might be an algebraic
+        # closure whereas the base ring of the 3-by-3 identity matrix
+        # could be QQ instead of QQbar.
+        V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
+        W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
+        coords =  W.coordinate_vector(_mat2vec(elt))
+        return self.from_vector(coords)
 
-
-    def _a_regular_element(self):
+    def _repr_(self):
         """
-        Guess a regular element. Needed to compute the basis for our
-        characteristic polynomial coefficients.
+        Return a string representation of ``self``.
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import random_eja
+            sage: from mjo.eja.eja_algebra import JordanSpinEJA
 
         TESTS:
 
-        Ensure that this hacky method succeeds for every algebra that we
-        know how to construct::
-
-            sage: set_random_seed()
-            sage: J = random_eja()
-            sage: J._a_regular_element().is_regular()
-            True
-
-        """
-        gs = self.gens()
-        z = self.sum( (i+1)*gs[i] for i in range(len(gs)) )
-        if not z.is_regular():
-            raise ValueError("don't know a regular element")
-        return z
+        Ensure that it says what we think it says::
 
+            sage: JordanSpinEJA(2, field=AA)
+            Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
+            sage: JordanSpinEJA(3, field=RDF)
+            Euclidean Jordan algebra of dimension 3 over Real Double Field
 
-    @cached_method
-    def _charpoly_basis_space(self):
         """
-        Return the vector space spanned by the basis used in our
-        characteristic polynomial coefficients. This is used not only to
-        compute those coefficients, but also any time we need to
-        evaluate the coefficients (like when we compute the trace or
-        determinant).
-        """
-        z = self._a_regular_element()
-        V = self.vector_space()
-        V1 = V.span_of_basis( (z**k).vector() for k in range(self.rank()) )
-        b =  (V1.basis() + V1.complement().basis())
-        return V.span_of_basis(b)
+        fmt = "Euclidean Jordan algebra of dimension {} over {}"
+        return fmt.format(self.dimension(), self.base_ring())
 
+    def product_on_basis(self, i, j):
+        return self._multiplication_table[i][j]
 
-    @cached_method
-    def _charpoly_coeff(self, i):
-        """
-        Return the coefficient polynomial "a_{i}" of this algebra's
-        general characteristic polynomial.
-
-        Having this be a separate cached method lets us compute and
-        store the trace/determinant (a_{r-1} and a_{0} respectively)
-        separate from the entire characteristic polynomial.
-        """
-        (A_of_x, x, xr, detA) = self._charpoly_matrix_system()
-        R = A_of_x.base_ring()
-        if i >= self.rank():
-            # Guaranteed by theory
-            return R.zero()
-
-        # Danger: the in-place modification is done for performance
-        # reasons (reconstructing a matrix with huge polynomial
-        # entries is slow), but I don't know how cached_method works,
-        # so it's highly possible that we're modifying some global
-        # list variable by reference, here. In other words, you
-        # probably shouldn't call this method twice on the same
-        # algebra, at the same time, in two threads
-        Ai_orig = A_of_x.column(i)
-        A_of_x.set_column(i,xr)
-        numerator = A_of_x.det()
-        A_of_x.set_column(i,Ai_orig)
-
-        # We're relying on the theory here to ensure that each a_i is
-        # indeed back in R, and the added negative signs are to make
-        # the whole charpoly expression sum to zero.
-        return R(-numerator/detA)
-
+    def _is_commutative(self):
+        r"""
+        Whether or not this algebra's multiplication table is commutative.
 
-    @cached_method
-    def _charpoly_matrix_system(self):
+        This method should of course always return ``True``, unless
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid multiplication table.
         """
-        Compute the matrix whose entries A_ij are polynomials in
-        X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector
-        corresponding to `x^r` and the determinent of the matrix A =
-        [A_ij]. In other words, all of the fixed (cachable) data needed
-        to compute the coefficients of the characteristic polynomial.
+        return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
+                    for i in range(self.dimension())
+                    for j in range(self.dimension()) )
+
+    def _is_jordanian(self):
+        r"""
+        Whether or not this algebra's multiplication table respects the
+        Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
+
+        We only check one arrangement of `x` and `y`, so for a
+        ``True`` result to be truly true, you should also check
+        :meth:`_is_commutative`. This method should of course always
+        return ``True``, unless this algebra was constructed with
+        ``check_axioms=False`` and passed an invalid multiplication table.
+        """
+        return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
+                    ==
+                    (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
+                    for i in range(self.dimension())
+                    for j in range(self.dimension()) )
+
+    def _inner_product_is_associative(self):
+        r"""
+        Return whether or not this algebra's inner product `B` is
+        associative; that is, whether or not `B(xy,z) = B(x,yz)`.
+
+        This method should of course always return ``True``, unless
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid multiplication table.
         """
-        r = self.rank()
-        n = self.dimension()
-
-        # Construct a new algebra over a multivariate polynomial ring...
-        names = ['X' + str(i) for i in range(1,n+1)]
-        R = PolynomialRing(self.base_ring(), names)
-        J = FiniteDimensionalEuclideanJordanAlgebra(R,
-                                                    self._multiplication_table,
-                                                    rank=r)
 
-        idmat = matrix.identity(J.base_ring(), n)
+        # Used to check whether or not something is zero in an inexact
+        # ring. This number is sufficient to allow the construction of
+        # QuaternionHermitianEJA(2, RDF) with check_axioms=True.
+        epsilon = 1e-16
 
-        W = self._charpoly_basis_space()
-        W = W.change_ring(R.fraction_field())
+        for i in range(self.dimension()):
+            for j in range(self.dimension()):
+                for k in range(self.dimension()):
+                    x = self.monomial(i)
+                    y = self.monomial(j)
+                    z = self.monomial(k)
+                    diff = (x*y).inner_product(z) - x.inner_product(y*z)
 
-        # Starting with the standard coordinates x = (X1,X2,...,Xn)
-        # and then converting the entries to W-coordinates allows us
-        # to pass in the standard coordinates to the charpoly and get
-        # back the right answer. Specifically, with x = (X1,X2,...,Xn),
-        # we have
-        #
-        #   W.coordinates(x^2) eval'd at (standard z-coords)
-        #     =
-        #   W-coords of (z^2)
-        #     =
-        #   W-coords of (standard coords of x^2 eval'd at std-coords of z)
-        #
-        # We want the middle equivalent thing in our matrix, but use
-        # the first equivalent thing instead so that we can pass in
-        # standard coordinates.
-        x = J(W(R.gens()))
-        l1 = [matrix.column(W.coordinates((x**k).vector())) for k in range(r)]
-        l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)]
-        A_of_x = matrix.block(R, 1, n, (l1 + l2))
-        xr = W.coordinates((x**r).vector())
-        return (A_of_x, x, xr, A_of_x.det())
+                    if self.base_ring().is_exact():
+                        if diff != 0:
+                            return False
+                    else:
+                        if diff.abs() > epsilon:
+                            return False
 
+        return True
 
     @cached_method
-    def characteristic_polynomial(self):
+    def characteristic_polynomial_of(self):
         """
-        Return a characteristic polynomial that works for all elements
-        of this algebra.
+        Return the algebra's "characteristic polynomial of" function,
+        which is itself a multivariate polynomial that, when evaluated
+        at the coordinates of some algebra element, returns that
+        element's characteristic polynomial.
 
         The resulting polynomial has `n+1` variables, where `n` is the
         dimension of this algebra. The first `n` variables correspond to
@@ -260,7 +329,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import JordanSpinEJA
+            sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
 
         EXAMPLES:
 
@@ -268,41 +337,41 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         Alizadeh, Example 11.11::
 
             sage: J = JordanSpinEJA(3)
-            sage: p = J.characteristic_polynomial(); p
+            sage: p = J.characteristic_polynomial_of(); p
             X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
-            sage: xvec = J.one().vector()
+            sage: xvec = J.one().to_vector()
             sage: p(*xvec)
             t^2 - 2*t + 1
 
+        By definition, the characteristic polynomial is a monic
+        degree-zero polynomial in a rank-zero algebra. Note that
+        Cayley-Hamilton is indeed satisfied since the polynomial
+        ``1`` evaluates to the identity element of the algebra on
+        any argument::
+
+            sage: J = TrivialEJA()
+            sage: J.characteristic_polynomial_of()
+            1
+
         """
         r = self.rank()
         n = self.dimension()
 
-        # The list of coefficient polynomials a_1, a_2, ..., a_n.
-        a = [ self._charpoly_coeff(i) for i in range(n) ]
+        # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
+        a = self._charpoly_coefficients()
 
         # We go to a bit of trouble here to reorder the
         # indeterminates, so that it's easier to evaluate the
         # characteristic polynomial at x's coordinates and get back
         # something in terms of t, which is what we want.
-        R = a[0].parent()
         S = PolynomialRing(self.base_ring(),'t')
         t = S.gen(0)
-        S = PolynomialRing(S, R.variable_names())
-        t = S(t)
-
-        # Note: all entries past the rth should be zero. The
-        # coefficient of the highest power (x^r) is 1, but it doesn't
-        # appear in the solution vector which contains coefficients
-        # for the other powers (to make them sum to x^r).
-        if (r < n):
-            a[r] = 1 # corresponds to x^r
-        else:
-            # When the rank is equal to the dimension, trying to
-            # assign a[r] goes out-of-bounds.
-            a.append(1) # corresponds to x^r
+        if r > 0:
+            R = a[0].parent()
+            S = PolynomialRing(S, R.variable_names())
+            t = S(t)
 
-        return sum( a[k]*(t**k) for k in range(len(a)) )
+        return (t**r + sum( a[k]*(t**k) for k in range(r) ))
 
 
     def inner_product(self, x, y):
@@ -319,21 +388,80 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         EXAMPLES:
 
-        The inner product must satisfy its axiom for this algebra to truly
-        be a Euclidean Jordan Algebra::
+        Our inner product is "associative," which means the following for
+        a symmetric bilinear form::
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
+            sage: x,y,z = J.random_elements(3)
             sage: (x*y).inner_product(z) == y.inner_product(x*z)
             True
 
         """
-        if (not x in self) or (not y in self):
-            raise TypeError("arguments must live in this algebra")
-        return x.trace_inner_product(y)
+        X = x.natural_representation()
+        Y = y.natural_representation()
+        return self.natural_inner_product(X,Y)
+
+
+    def is_trivial(self):
+        """
+        Return whether or not this algebra is trivial.
+
+        A trivial algebra contains only the zero element.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  TrivialEJA)
+
+        EXAMPLES::
+
+            sage: J = ComplexHermitianEJA(3)
+            sage: J.is_trivial()
+            False
+
+        ::
+
+            sage: J = TrivialEJA()
+            sage: J.is_trivial()
+            True
+
+        """
+        return self.dimension() == 0
+
+
+    def multiplication_table(self):
+        """
+        Return a visual representation of this algebra's multiplication
+        table (on basis elements).
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import JordanSpinEJA
+
+        EXAMPLES::
+
+            sage: J = JordanSpinEJA(4)
+            sage: J.multiplication_table()
+            +----++----+----+----+----+
+            | *  || e0 | e1 | e2 | e3 |
+            +====++====+====+====+====+
+            | e0 || e0 | e1 | e2 | e3 |
+            +----++----+----+----+----+
+            | e1 || e1 | e0 | 0  | 0  |
+            +----++----+----+----+----+
+            | e2 || e2 | 0  | e0 | 0  |
+            +----++----+----+----+----+
+            | e3 || e3 | 0  | 0  | e0 |
+            +----++----+----+----+----+
+
+        """
+        M = list(self._multiplication_table) # copy
+        for i in range(len(M)):
+            # M had better be "square"
+            M[i] = [self.monomial(i)] + M[i]
+        M = [["*"] + list(self.gens())] + M
+        return table(M, header_row=True, header_column=True, frame=True)
 
 
     def natural_basis(self):
@@ -358,18 +486,18 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             sage: J = RealSymmetricEJA(2)
             sage: J.basis()
-            Family (e0, e1, e2)
+            Finite family {0: e0, 1: e1, 2: e2}
             sage: J.natural_basis()
             (
-            [1 0]  [0 1]  [0 0]
-            [0 0], [1 0], [0 1]
+            [1 0]  [                  0 0.7071067811865475?]  [0 0]
+            [0 0], [0.7071067811865475?                   0], [0 1]
             )
 
         ::
 
             sage: J = JordanSpinEJA(2)
             sage: J.basis()
-            Family (e0, e1)
+            Finite family {0: e0, 1: e1}
             sage: J.natural_basis()
             (
             [1]  [0]
@@ -378,1816 +506,1412 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         """
         if self._natural_basis is None:
-            return tuple( b.vector().column() for b in self.basis() )
+            M = self.natural_basis_space()
+            return tuple( M(b.to_vector()) for b in self.basis() )
         else:
             return self._natural_basis
 
 
-    def rank(self):
+    def natural_basis_space(self):
         """
-        Return the rank of this EJA.
+        Return the matrix space in which this algebra's natural basis
+        elements live.
 
-        ALGORITHM:
+        Generally this will be an `n`-by-`1` column-vector space,
+        except when the algebra is trivial. There it's `n`-by-`n`
+        (where `n` is zero), to ensure that two elements of the
+        natural basis space (empty matrices) can be multiplied.
+        """
+        if self.is_trivial():
+            return MatrixSpace(self.base_ring(), 0)
+        elif self._natural_basis is None or len(self._natural_basis) == 0:
+            return MatrixSpace(self.base_ring(), self.dimension(), 1)
+        else:
+            return self._natural_basis[0].matrix_space()
 
-        The author knows of no algorithm to compute the rank of an EJA
-        where only the multiplication table is known. In lieu of one, we
-        require the rank to be specified when the algebra is created,
-        and simply pass along that number here.
 
-        SETUP::
+    @staticmethod
+    def natural_inner_product(X,Y):
+        """
+        Compute the inner product of two naturally-represented elements.
 
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-            ....:                                  RealSymmetricEJA,
-            ....:                                  ComplexHermitianEJA,
-            ....:                                  QuaternionHermitianEJA,
-            ....:                                  random_eja)
+        For example in the real symmetric matrix EJA, this will compute
+        the trace inner-product of two n-by-n symmetric matrices. The
+        default should work for the real cartesian product EJA, the
+        Jordan spin EJA, and the real symmetric matrices. The others
+        will have to be overridden.
+        """
+        return (X.conjugate_transpose()*Y).trace()
 
-        EXAMPLES:
 
-        The rank of the Jordan spin algebra is always two::
+    @cached_method
+    def one(self):
+        """
+        Return the unit element of this algebra.
 
-            sage: JordanSpinEJA(2).rank()
-            2
-            sage: JordanSpinEJA(3).rank()
-            2
-            sage: JordanSpinEJA(4).rank()
-            2
+        SETUP::
 
-        The rank of the `n`-by-`n` Hermitian real, complex, or
-        quaternion matrices is `n`::
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  random_eja)
 
-            sage: RealSymmetricEJA(2).rank()
-            2
-            sage: ComplexHermitianEJA(2).rank()
-            2
-            sage: QuaternionHermitianEJA(2).rank()
-            2
-            sage: RealSymmetricEJA(5).rank()
-            5
-            sage: ComplexHermitianEJA(5).rank()
-            5
-            sage: QuaternionHermitianEJA(5).rank()
-            5
+        EXAMPLES::
+
+            sage: J = HadamardEJA(5)
+            sage: J.one()
+            e0 + e1 + e2 + e3 + e4
 
         TESTS:
 
-        Ensure that every EJA that we know how to construct has a
-        positive integer rank::
+        The identity element acts like the identity::
 
             sage: set_random_seed()
-            sage: r = random_eja().rank()
-            sage: r in ZZ and r > 0
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: J.one()*x == x and x*J.one() == x
             True
 
-        """
-        return self._rank
+        The matrix of the unit element's operator is the identity::
 
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: actual = J.one().operator().matrix()
+            sage: expected = matrix.identity(J.base_ring(), J.dimension())
+            sage: actual == expected
+            True
 
-    def vector_space(self):
-        """
-        Return the vector space that underlies this algebra.
+        Ensure that the cached unit element (often precomputed by
+        hand) agrees with the computed one::
 
-        SETUP::
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: cached = J.one()
+            sage: J.one.clear_cache()
+            sage: J.one() == cached
+            True
 
-            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
+        """
+        # We can brute-force compute the matrices of the operators
+        # that correspond to the basis elements of this algebra.
+        # If some linear combination of those basis elements is the
+        # algebra identity, then the same linear combination of
+        # their matrices has to be the identity matrix.
+        #
+        # Of course, matrices aren't vectors in sage, so we have to
+        # appeal to the "long vectors" isometry.
+        oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
 
-        EXAMPLES::
+        # Now we use basic linear algebra to find the coefficients,
+        # of the matrices-as-vectors-linear-combination, which should
+        # work for the original algebra basis too.
+        A = matrix(self.base_ring(), oper_vecs)
 
-            sage: J = RealSymmetricEJA(2)
-            sage: J.vector_space()
-            Vector space of dimension 3 over Rational Field
+        # We used the isometry on the left-hand side already, but we
+        # still need to do it for the right-hand side. Recall that we
+        # wanted something that summed to the identity matrix.
+        b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
 
-        """
-        return self.zero().vector().parent().ambient_vector_space()
+        # Now if there's an identity element in the algebra, this
+        # should work. We solve on the left to avoid having to
+        # transpose the matrix "A".
+        return self.from_vector(A.solve_left(b))
 
 
-    class Element(FiniteDimensionalAlgebraElement):
+    def peirce_decomposition(self, c):
         """
-        An element of a Euclidean Jordan algebra.
-        """
-
-        def __dir__(self):
-            """
-            Oh man, I should not be doing this. This hides the "disabled"
-            methods ``left_matrix`` and ``matrix`` from introspection;
-            in particular it removes them from tab-completion.
-            """
-            return filter(lambda s: s not in ['left_matrix', 'matrix'],
-                          dir(self.__class__) )
+        The Peirce decomposition of this algebra relative to the
+        idempotent ``c``.
 
+        In the future, this can be extended to a complete system of
+        orthogonal idempotents.
 
-        def __init__(self, A, elt=None):
-            """
+        INPUT:
 
-            SETUP::
+          - ``c`` -- an idempotent of this algebra.
 
-                sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
-                ....:                                  random_eja)
+        OUTPUT:
 
-            EXAMPLES:
+        A triple (J0, J5, J1) containing two subalgebras and one subspace
+        of this algebra,
 
-            The identity in `S^n` is converted to the identity in the EJA::
+          - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
+            corresponding to the eigenvalue zero.
 
-                sage: J = RealSymmetricEJA(3)
-                sage: I = matrix.identity(QQ,3)
-                sage: J(I) == J.one()
-                True
+          - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
+            corresponding to the eigenvalue one-half.
 
-            This skew-symmetric matrix can't be represented in the EJA::
+          - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
+            corresponding to the eigenvalue one.
 
-                sage: J = RealSymmetricEJA(3)
-                sage: A = matrix(QQ,3, lambda i,j: i-j)
-                sage: J(A)
-                Traceback (most recent call last):
-                ...
-                ArithmeticError: vector is not in free module
+        These are the only possible eigenspaces for that operator, and this
+        algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
+        orthogonal, and are subalgebras of this algebra with the appropriate
+        restrictions.
 
-            TESTS:
+        SETUP::
 
-            Ensure that we can convert any element of the parent's
-            underlying vector space back into an algebra element whose
-            vector representation is what we started with::
+            sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: v = J.vector_space().random_element()
-                sage: J(v).vector() == v
-                True
+        EXAMPLES:
 
-            """
-            # Goal: if we're given a matrix, and if it lives in our
-            # parent algebra's "natural ambient space," convert it
-            # into an algebra element.
-            #
-            # The catch is, we make a recursive call after converting
-            # the given matrix into a vector that lives in the algebra.
-            # This we need to try the parent class initializer first,
-            # to avoid recursing forever if we're given something that
-            # already fits into the algebra, but also happens to live
-            # in the parent's "natural ambient space" (this happens with
-            # vectors in R^n).
-            try:
-                FiniteDimensionalAlgebraElement.__init__(self, A, elt)
-            except ValueError:
-                natural_basis = A.natural_basis()
-                if elt in natural_basis[0].matrix_space():
-                    # Thanks for nothing! Matrix spaces aren't vector
-                    # spaces in Sage, so we have to figure out its
-                    # natural-basis coordinates ourselves.
-                    V = VectorSpace(elt.base_ring(), elt.nrows()**2)
-                    W = V.span( _mat2vec(s) for s in natural_basis )
-                    coords =  W.coordinates(_mat2vec(elt))
-                    FiniteDimensionalAlgebraElement.__init__(self, A, coords)
-
-        def __pow__(self, n):
-            """
-            Return ``self`` raised to the power ``n``.
-
-            Jordan algebras are always power-associative; see for
-            example Faraut and Koranyi, Proposition II.1.2 (ii).
-
-            We have to override this because our superclass uses row
-            vectors instead of column vectors! We, on the other hand,
-            assume column vectors everywhere.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The definition of `x^2` is the unambiguous `x*x`::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x*x == (x^2)
-                True
-
-            A few examples of power-associativity::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x*(x*x)*(x*x) == x^5
-                True
-                sage: (x*x)*(x*x*x) == x^5
-                True
-
-            We also know that powers operator-commute (Koecher, Chapter
-            III, Corollary 1)::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: m = ZZ.random_element(0,10)
-                sage: n = ZZ.random_element(0,10)
-                sage: Lxm = (x^m).operator()
-                sage: Lxn = (x^n).operator()
-                sage: Lxm*Lxn == Lxn*Lxm
-                True
-
-            """
-            if n == 0:
-                return self.parent().one()
-            elif n == 1:
-                return self
-            else:
-                return (self.operator()**(n-1))(self)
+        The canonical example comes from the symmetric matrices, which
+        decompose into diagonal and off-diagonal parts::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: C = matrix(QQ, [ [1,0,0],
+            ....:                  [0,1,0],
+            ....:                  [0,0,0] ])
+            sage: c = J(C)
+            sage: J0,J5,J1 = J.peirce_decomposition(c)
+            sage: J0
+            Euclidean Jordan algebra of dimension 1...
+            sage: J5
+            Vector space of degree 6 and dimension 2...
+            sage: J1
+            Euclidean Jordan algebra of dimension 3...
+            sage: J0.one().natural_representation()
+            [0 0 0]
+            [0 0 0]
+            [0 0 1]
+            sage: orig_df = AA.options.display_format
+            sage: AA.options.display_format = 'radical'
+            sage: J.from_vector(J5.basis()[0]).natural_representation()
+            [          0           0 1/2*sqrt(2)]
+            [          0           0           0]
+            [1/2*sqrt(2)           0           0]
+            sage: J.from_vector(J5.basis()[1]).natural_representation()
+            [          0           0           0]
+            [          0           0 1/2*sqrt(2)]
+            [          0 1/2*sqrt(2)           0]
+            sage: AA.options.display_format = orig_df
+            sage: J1.one().natural_representation()
+            [1 0 0]
+            [0 1 0]
+            [0 0 0]
 
+        TESTS:
 
-        def apply_univariate_polynomial(self, p):
-            """
-            Apply the univariate polynomial ``p`` to this element.
+        Every algebra decomposes trivially with respect to its identity
+        element::
 
-            A priori, SageMath won't allow us to apply a univariate
-            polynomial to an element of an EJA, because we don't know
-            that EJAs are rings (they are usually not associative). Of
-            course, we know that EJAs are power-associative, so the
-            operation is ultimately kosher. This function sidesteps
-            the CAS to get the answer we want and expect.
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J0,J5,J1 = J.peirce_decomposition(J.one())
+            sage: J0.dimension() == 0 and J5.dimension() == 0
+            True
+            sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
+            True
 
-            SETUP::
+        The decomposition is into eigenspaces, and its components are
+        therefore necessarily orthogonal. Moreover, the identity
+        elements in the two subalgebras are the projections onto their
+        respective subspaces of the superalgebra's identity element::
 
-                sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
-                ....:                                  random_eja)
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: if not J.is_trivial():
+            ....:     while x.is_nilpotent():
+            ....:         x = J.random_element()
+            sage: c = x.subalgebra_idempotent()
+            sage: J0,J5,J1 = J.peirce_decomposition(c)
+            sage: ipsum = 0
+            sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
+            ....:     w = w.superalgebra_element()
+            ....:     y = J.from_vector(y)
+            ....:     z = z.superalgebra_element()
+            ....:     ipsum += w.inner_product(y).abs()
+            ....:     ipsum += w.inner_product(z).abs()
+            ....:     ipsum += y.inner_product(z).abs()
+            sage: ipsum
+            0
+            sage: J1(c) == J1.one()
+            True
+            sage: J0(J.one() - c) == J0.one()
+            True
 
-            EXAMPLES::
+        """
+        if not c.is_idempotent():
+            raise ValueError("element is not idempotent: %s" % c)
+
+        # Default these to what they should be if they turn out to be
+        # trivial, because eigenspaces_left() won't return eigenvalues
+        # corresponding to trivial spaces (e.g. it returns only the
+        # eigenspace corresponding to lambda=1 if you take the
+        # decomposition relative to the identity element).
+        trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
+        J0 = trivial                          # eigenvalue zero
+        J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
+        J1 = trivial                          # eigenvalue one
+
+        for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
+            if eigval == ~(self.base_ring()(2)):
+                J5 = eigspace
+            else:
+                gens = tuple( self.from_vector(b) for b in eigspace.basis() )
+                subalg = FiniteDimensionalEuclideanJordanSubalgebra(self,
+                                                                    gens,
+                                                                    check_axioms=False)
+                if eigval == 0:
+                    J0 = subalg
+                elif eigval == 1:
+                    J1 = subalg
+                else:
+                    raise ValueError("unexpected eigenvalue: %s" % eigval)
 
-                sage: R = PolynomialRing(QQ, 't')
-                sage: t = R.gen(0)
-                sage: p = t^4 - t^3 + 5*t - 2
-                sage: J = RealCartesianProductEJA(5)
-                sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
-                True
+        return (J0, J5, J1)
 
-            TESTS:
 
-            We should always get back an element of the algebra::
+    def random_element(self, thorough=False):
+        r"""
+        Return a random element of this algebra.
 
-                sage: set_random_seed()
-                sage: p = PolynomialRing(QQ, 't').random_element()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: x.apply_univariate_polynomial(p) in J
-                True
+        Our algebra superclass method only returns a linear
+        combination of at most two basis elements. We instead
+        want the vector space "random element" method that
+        returns a more diverse selection.
 
-            """
-            if len(p.variables()) > 1:
-                raise ValueError("not a univariate polynomial")
-            P = self.parent()
-            R = P.base_ring()
-            # Convert the coeficcients to the parent's base ring,
-            # because a priori they might live in an (unnecessarily)
-            # larger ring for which P.sum() would fail below.
-            cs = [ R(c) for c in p.coefficients(sparse=False) ]
-            return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
+        INPUT:
 
+        - ``thorough`` -- (boolean; default False) whether or not we
+          should generate irrational coefficients for the random
+          element when our base ring is irrational; this slows the
+          algebra operations to a crawl, but any truly random method
+          should include them
 
-        def characteristic_polynomial(self):
-            """
-            Return the characteristic polynomial of this element.
+        """
+        # For a general base ring... maybe we can trust this to do the
+        # right thing? Unlikely, but.
+        V = self.vector_space()
+        v = V.random_element()
 
-            SETUP::
+        if self.base_ring() is AA:
+            # The "random element" method of the algebraic reals is
+            # stupid at the moment, and only returns integers between
+            # -2 and 2, inclusive:
+            #
+            #   https://trac.sagemath.org/ticket/30875
+            #
+            # Instead, we implement our own "random vector" method,
+            # and then coerce that into the algebra. We use the vector
+            # space degree here instead of the dimension because a
+            # subalgebra could (for example) be spanned by only two
+            # vectors, each with five coordinates.  We need to
+            # generate all five coordinates.
+            if thorough:
+                v *= QQbar.random_element().real()
+            else:
+                v *= QQ.random_element()
 
-                sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
+        return self.from_vector(V.coordinate_vector(v))
 
-            EXAMPLES:
+    def random_elements(self, count, thorough=False):
+        """
+        Return ``count`` random elements as a tuple.
 
-            The rank of `R^3` is three, and the minimal polynomial of
-            the identity element is `(t-1)` from which it follows that
-            the characteristic polynomial should be `(t-1)^3`::
+        INPUT:
 
-                sage: J = RealCartesianProductEJA(3)
-                sage: J.one().characteristic_polynomial()
-                t^3 - 3*t^2 + 3*t - 1
+        - ``thorough`` -- (boolean; default False) whether or not we
+          should generate irrational coefficients for the random
+          elements when our base ring is irrational; this slows the
+          algebra operations to a crawl, but any truly random method
+          should include them
 
-            Likewise, the characteristic of the zero element in the
-            rank-three algebra `R^{n}` should be `t^{3}`::
+        SETUP::
 
-                sage: J = RealCartesianProductEJA(3)
-                sage: J.zero().characteristic_polynomial()
-                t^3
+            sage: from mjo.eja.eja_algebra import JordanSpinEJA
 
-            TESTS:
+        EXAMPLES::
 
-            The characteristic polynomial of an element should evaluate
-            to zero on that element::
+            sage: J = JordanSpinEJA(3)
+            sage: x,y,z = J.random_elements(3)
+            sage: all( [ x in J, y in J, z in J ])
+            True
+            sage: len( J.random_elements(10) ) == 10
+            True
 
-                sage: set_random_seed()
-                sage: x = RealCartesianProductEJA(3).random_element()
-                sage: p = x.characteristic_polynomial()
-                sage: x.apply_univariate_polynomial(p)
-                0
+        """
+        return tuple( self.random_element(thorough)
+                      for idx in range(count) )
 
-            """
-            p = self.parent().characteristic_polynomial()
-            return p(*self.vector())
 
+    @cached_method
+    def _charpoly_coefficients(self):
+        r"""
+        The `r` polynomial coefficients of the "characteristic polynomial
+        of" function.
+        """
+        n = self.dimension()
+        var_names = [ "X" + str(z) for z in range(1,n+1) ]
+        R = PolynomialRing(self.base_ring(), var_names)
+        vars = R.gens()
+        F = R.fraction_field()
+
+        def L_x_i_j(i,j):
+            # From a result in my book, these are the entries of the
+            # basis representation of L_x.
+            return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
+                        for k in range(n) )
+
+        L_x = matrix(F, n, n, L_x_i_j)
+
+        r = None
+        if self.rank.is_in_cache():
+            r = self.rank()
+            # There's no need to pad the system with redundant
+            # columns if we *know* they'll be redundant.
+            n = r
+
+        # Compute an extra power in case the rank is equal to
+        # the dimension (otherwise, we would stop at x^(r-1)).
+        x_powers = [ (L_x**k)*self.one().to_vector()
+                     for k in range(n+1) ]
+        A = matrix.column(F, x_powers[:n])
+        AE = A.extended_echelon_form()
+        E = AE[:,n:]
+        A_rref = AE[:,:n]
+        if r is None:
+            r = A_rref.rank()
+        b = x_powers[r]
+
+        # The theory says that only the first "r" coefficients are
+        # nonzero, and they actually live in the original polynomial
+        # ring and not the fraction field. We negate them because
+        # in the actual characteristic polynomial, they get moved
+        # to the other side where x^r lives.
+        return -A_rref.solve_right(E*b).change_ring(R)[:r]
 
-        def inner_product(self, other):
-            """
-            Return the parent algebra's inner product of myself and ``other``.
+    @cached_method
+    def rank(self):
+        r"""
+        Return the rank of this EJA.
 
-            SETUP::
+        This is a cached method because we know the rank a priori for
+        all of the algebras we can construct. Thus we can avoid the
+        expensive ``_charpoly_coefficients()`` call unless we truly
+        need to compute the whole characteristic polynomial.
 
-                sage: from mjo.eja.eja_algebra import (
-                ....:   ComplexHermitianEJA,
-                ....:   JordanSpinEJA,
-                ....:   QuaternionHermitianEJA,
-                ....:   RealSymmetricEJA,
-                ....:   random_eja)
+        SETUP::
 
-            EXAMPLES:
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  JordanSpinEJA,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  QuaternionHermitianEJA,
+            ....:                                  random_eja)
 
-            The inner product in the Jordan spin algebra is the usual
-            inner product on `R^n` (this example only works because the
-            basis for the Jordan algebra is the standard basis in `R^n`)::
+        EXAMPLES:
 
-                sage: J = JordanSpinEJA(3)
-                sage: x = vector(QQ,[1,2,3])
-                sage: y = vector(QQ,[4,5,6])
-                sage: x.inner_product(y)
-                32
-                sage: J(x).inner_product(J(y))
-                32
+        The rank of the Jordan spin algebra is always two::
 
-            The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
-            multiplication is the usual matrix multiplication in `S^n`,
-            so the inner product of the identity matrix with itself
-            should be the `n`::
-
-                sage: J = RealSymmetricEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
+            sage: JordanSpinEJA(2).rank()
+            2
+            sage: JordanSpinEJA(3).rank()
+            2
+            sage: JordanSpinEJA(4).rank()
+            2
 
-            Likewise, the inner product on `C^n` is `<X,Y> =
-            Re(trace(X*Y))`, where we must necessarily take the real
-            part because the product of Hermitian matrices may not be
-            Hermitian::
-
-                sage: J = ComplexHermitianEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            Ditto for the quaternions::
-
-                sage: J = QuaternionHermitianEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            TESTS:
-
-            Ensure that we can always compute an inner product, and that
-            it gives us back a real number::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: x.inner_product(y) in RR
-                True
-
-            """
-            P = self.parent()
-            if not other in P:
-                raise TypeError("'other' must live in the same algebra")
-
-            return P.inner_product(self, other)
-
-
-        def operator_commutes_with(self, other):
-            """
-            Return whether or not this element operator-commutes
-            with ``other``.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            EXAMPLES:
-
-            The definition of a Jordan algebra says that any element
-            operator-commutes with its square::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.operator_commutes_with(x^2)
-                True
-
-            TESTS:
-
-            Test Lemma 1 from Chapter III of Koecher::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: u = J.random_element()
-                sage: v = J.random_element()
-                sage: lhs = u.operator_commutes_with(u*v)
-                sage: rhs = v.operator_commutes_with(u^2)
-                sage: lhs == rhs
-                True
-
-            Test the first polarization identity from my notes, Koecher
-            Chapter III, or from Baes (2.3)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: Lx = x.operator()
-                sage: Ly = y.operator()
-                sage: Lxx = (x*x).operator()
-                sage: Lxy = (x*y).operator()
-                sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
-                True
-
-            Test the second polarization identity from my notes or from
-            Baes (2.4)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: Lx = x.operator()
-                sage: Ly = y.operator()
-                sage: Lz = z.operator()
-                sage: Lzy = (z*y).operator()
-                sage: Lxy = (x*y).operator()
-                sage: Lxz = (x*z).operator()
-                sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
-                True
-
-            Test the third polarization identity from my notes or from
-            Baes (2.5)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: u = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: Lu = u.operator()
-                sage: Ly = y.operator()
-                sage: Lz = z.operator()
-                sage: Lzy = (z*y).operator()
-                sage: Luy = (u*y).operator()
-                sage: Luz = (u*z).operator()
-                sage: Luyz = (u*(y*z)).operator()
-                sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
-                sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
-                sage: bool(lhs == rhs)
-                True
-
-            """
-            if not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            A = self.operator()
-            B = other.operator()
-            return (A*B == B*A)
-
-
-        def det(self):
-            """
-            Return my determinant, the product of my eigenvalues.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(2)
-                sage: e0,e1 = J.gens()
-                sage: x = sum( J.gens() )
-                sage: x.det()
-                0
-
-            ::
-
-                sage: J = JordanSpinEJA(3)
-                sage: e0,e1,e2 = J.gens()
-                sage: x = sum( J.gens() )
-                sage: x.det()
-                -1
-
-            TESTS:
-
-            An element is invertible if and only if its determinant is
-            non-zero::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.is_invertible() == (x.det() != 0)
-                True
-
-            """
-            P = self.parent()
-            r = P.rank()
-            p = P._charpoly_coeff(0)
-            # The _charpoly_coeff function already adds the factor of
-            # -1 to ensure that _charpoly_coeff(0) is really what
-            # appears in front of t^{0} in the charpoly. However,
-            # we want (-1)^r times THAT for the determinant.
-            return ((-1)**r)*p(*self.vector())
-
-
-        def inverse(self):
-            """
-            Return the Jordan-multiplicative inverse of this element.
-
-            ALGORITHM:
+        The rank of the `n`-by-`n` Hermitian real, complex, or
+        quaternion matrices is `n`::
 
-            We appeal to the quadratic representation as in Koecher's
-            Theorem 12 in Chapter III, Section 5.
-
-            SETUP::
+            sage: RealSymmetricEJA(4).rank()
+            4
+            sage: ComplexHermitianEJA(3).rank()
+            3
+            sage: QuaternionHermitianEJA(2).rank()
+            2
 
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
+        TESTS:
 
-            The inverse in the spin factor algebra is given in Alizadeh's
-            Example 11.11::
+        Ensure that every EJA that we know how to construct has a
+        positive integer rank, unless the algebra is trivial in
+        which case its rank will be zero::
 
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: while not x.is_invertible():
-                ....:     x = J.random_element()
-                sage: x_vec = x.vector()
-                sage: x0 = x_vec[0]
-                sage: x_bar = x_vec[1:]
-                sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
-                sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
-                sage: x_inverse = coeff*inv_vec
-                sage: x.inverse() == J(x_inverse)
-                True
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: r = J.rank()
+            sage: r in ZZ
+            True
+            sage: r > 0 or (r == 0 and J.is_trivial())
+            True
 
-            TESTS:
+        Ensure that computing the rank actually works, since the ranks
+        of all simple algebras are known and will be cached by default::
 
-            The identity element is its own inverse::
+            sage: J = HadamardEJA(4)
+            sage: J.rank.clear_cache()
+            sage: J.rank()
+            4
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().inverse() == J.one()
-                True
+        ::
 
-            If an element has an inverse, it acts like one::
+            sage: J = JordanSpinEJA(4)
+            sage: J.rank.clear_cache()
+            sage: J.rank()
+            2
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
-                True
+        ::
 
-            The inverse of the inverse is what we started with::
+            sage: J = RealSymmetricEJA(3)
+            sage: J.rank.clear_cache()
+            sage: J.rank()
+            3
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
-                True
+        ::
 
-            The zero element is never invertible::
+            sage: J = ComplexHermitianEJA(2)
+            sage: J.rank.clear_cache()
+            sage: J.rank()
+            2
 
-                sage: set_random_seed()
-                sage: J = random_eja().zero().inverse()
-                Traceback (most recent call last):
-                ...
-                ValueError: element is not invertible
+        ::
 
-            """
-            if not self.is_invertible():
-                raise ValueError("element is not invertible")
+            sage: J = QuaternionHermitianEJA(2)
+            sage: J.rank.clear_cache()
+            sage: J.rank()
+            2
+        """
+        return len(self._charpoly_coefficients())
 
-            return (~self.quadratic_representation())(self)
 
+    def vector_space(self):
+        """
+        Return the vector space that underlies this algebra.
 
-        def is_invertible(self):
-            """
-            Return whether or not this element is invertible.
+        SETUP::
 
-            ALGORITHM:
+            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
 
-            The usual way to do this is to check if the determinant is
-            zero, but we need the characteristic polynomial for the
-            determinant. The minimal polynomial is a lot easier to get,
-            so we use Corollary 2 in Chapter V of Koecher to check
-            whether or not the paren't algebra's zero element is a root
-            of this element's minimal polynomial.
+        EXAMPLES::
 
-            Beware that we can't use the superclass method, because it
-            relies on the algebra being associative.
+            sage: J = RealSymmetricEJA(2)
+            sage: J.vector_space()
+            Vector space of dimension 3 over...
 
-            SETUP::
+        """
+        return self.zero().to_vector().parent().ambient_vector_space()
 
-                sage: from mjo.eja.eja_algebra import random_eja
 
-            TESTS:
+    Element = FiniteDimensionalEuclideanJordanAlgebraElement
 
-            The identity element is always invertible::
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().is_invertible()
-                True
+class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
+    r"""
+    Algebras whose basis consists of vectors with rational
+    entries. Equivalently, algebras whose multiplication tables
+    contain only rational coefficients.
 
-            The zero element is never invertible::
+    When an EJA has a basis that can be made rational, we can speed up
+    the computation of its characteristic polynomial by doing it over
+    ``QQ``. All of the named EJA constructors that we provide fall
+    into this category.
+    """
+    @cached_method
+    def _charpoly_coefficients(self):
+        r"""
+        Override the parent method with something that tries to compute
+        over a faster (non-extension) field.
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.zero().is_invertible()
-                False
+        SETUP::
 
-            """
-            zero = self.parent().zero()
-            p = self.minimal_polynomial()
-            return not (p(zero) == zero)
+            sage: from mjo.eja.eja_algebra import JordanSpinEJA
 
+        EXAMPLES:
 
-        def is_nilpotent(self):
-            """
-            Return whether or not some power of this element is zero.
+        The base ring of the resulting polynomial coefficients is what
+        it should be, and not the rationals (unless the algebra was
+        already over the rationals)::
 
-            ALGORITHM:
+            sage: J = JordanSpinEJA(3)
+            sage: J._charpoly_coefficients()
+            (X1^2 - X2^2 - X3^2, -2*X1)
+            sage: a0 = J._charpoly_coefficients()[0]
+            sage: J.base_ring()
+            Algebraic Real Field
+            sage: a0.base_ring()
+            Algebraic Real Field
 
-            We use Theorem 5 in Chapter III of Koecher, which says that
-            an element ``x`` is nilpotent if and only if ``x.operator()``
-            is nilpotent. And it is a basic fact of linear algebra that
-            an operator on an `n`-dimensional space is nilpotent if and
-            only if, when raised to the `n`th power, it equals the zero
-            operator (for example, see Axler Corollary 8.8).
+        """
+        if self.base_ring() is QQ:
+            # There's no need to construct *another* algebra over the
+            # rationals if this one is already over the rationals.
+            superclass = super(RationalBasisEuclideanJordanAlgebra, self)
+            return superclass._charpoly_coefficients()
+
+        mult_table = tuple(
+            map(lambda x: x.to_vector(), ls)
+            for ls in self._multiplication_table
+        )
+
+        # Do the computation over the rationals. The answer will be
+        # the same, because our basis coordinates are (essentially)
+        # rational.
+        J = FiniteDimensionalEuclideanJordanAlgebra(QQ,
+                                                    mult_table,
+                                                    check_field=False,
+                                                    check_axioms=False)
+        a = J._charpoly_coefficients()
+        return tuple(map(lambda x: x.change_ring(self.base_ring()), a))
+
+
+class ConcreteEuclideanJordanAlgebra:
+    r"""
+    A class for the Euclidean Jordan algebras that we know by name.
+
+    These are the Jordan algebras whose basis, multiplication table,
+    rank, and so on are known a priori. More to the point, they are
+    the Euclidean Jordan algebras for which we are able to conjure up
+    a "random instance."
 
-            SETUP::
+    SETUP::
 
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
+        sage: from mjo.eja.eja_algebra import ConcreteEuclideanJordanAlgebra
 
-            EXAMPLES::
+    TESTS:
 
-                sage: J = JordanSpinEJA(3)
-                sage: x = sum(J.gens())
-                sage: x.is_nilpotent()
-                False
+    Our natural basis is normalized with respect to the natural inner
+    product unless we specify otherwise::
 
-            TESTS:
+        sage: set_random_seed()
+        sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
+        sage: all( b.norm() == 1 for b in J.gens() )
+        True
 
-            The identity element is never nilpotent::
+    Since our natural basis is normalized with respect to the natural
+    inner product, and since we know that this algebra is an EJA, any
+    left-multiplication operator's matrix will be symmetric because
+    natural->EJA basis representation is an isometry and within the EJA
+    the operator is self-adjoint by the Jordan axiom::
 
-                sage: set_random_seed()
-                sage: random_eja().one().is_nilpotent()
-                False
+        sage: set_random_seed()
+        sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
+        sage: x = J.random_element()
+        sage: x.operator().matrix().is_symmetric()
+        True
 
-            The additive identity is always nilpotent::
+    """
 
-                sage: set_random_seed()
-                sage: random_eja().zero().is_nilpotent()
-                True
+    @staticmethod
+    def _max_random_instance_size():
+        """
+        Return an integer "size" that is an upper bound on the size of
+        this algebra when it is used in a random test
+        case. Unfortunately, the term "size" is ambiguous -- when
+        dealing with `R^n` under either the Hadamard or Jordan spin
+        product, the "size" refers to the dimension `n`. When dealing
+        with a matrix algebra (real symmetric or complex/quaternion
+        Hermitian), it refers to the size of the matrix, which is far
+        less than the dimension of the underlying vector space.
+
+        This method must be implemented in each subclass.
+        """
+        raise NotImplementedError
 
-            """
-            P = self.parent()
-            zero_operator = P.zero().operator()
-            return self.operator()**P.dimension() == zero_operator
+    @classmethod
+    def random_instance(cls, field=AA, **kwargs):
+        """
+        Return a random instance of this type of algebra.
 
+        This method should be implemented in each subclass.
+        """
+        from sage.misc.prandom import choice
+        eja_class = choice(cls.__subclasses__())
+        return eja_class.random_instance(field)
 
-        def is_regular(self):
-            """
-            Return whether or not this is a regular element.
 
-            SETUP::
+class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
 
-                sage: from mjo.eja.eja_algebra import JordanSpinEJA
+    def __init__(self, field, basis, normalize_basis=True, **kwargs):
+        """
+        Compared to the superclass constructor, we take a basis instead of
+        a multiplication table because the latter can be computed in terms
+        of the former when the product is known (like it is here).
+        """
+        # Used in this class's fast _charpoly_coefficients() override.
+        self._basis_normalizers = None
+
+        # We're going to loop through this a few times, so now's a good
+        # time to ensure that it isn't a generator expression.
+        basis = tuple(basis)
+
+        algebra_dim = len(basis)
+        if algebra_dim > 1 and normalize_basis:
+            # We'll need sqrt(2) to normalize the basis, and this
+            # winds up in the multiplication table, so the whole
+            # algebra needs to be over the field extension.
+            R = PolynomialRing(field, 'z')
+            z = R.gen()
+            p = z**2 - 2
+            if p.is_irreducible():
+                field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
+                basis = tuple( s.change_ring(field) for s in basis )
+            self._basis_normalizers = tuple(
+                ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
+            basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
+
+        Qs = self.multiplication_table_from_matrix_basis(basis)
+
+        super(MatrixEuclideanJordanAlgebra, self).__init__(field,
+                                                           Qs,
+                                                           natural_basis=basis,
+                                                           **kwargs)
+
+        if algebra_dim == 0:
+            self.one.set_cache(self.zero())
+        else:
+            n = basis[0].nrows()
+            # The identity wrt (A,B) -> (AB + BA)/2 is independent of the
+            # details of this algebra.
+            self.one.set_cache(self(matrix.identity(field,n)))
 
-            EXAMPLES:
 
-            The identity element always has degree one, but any element
-            linearly-independent from it is regular::
+    @cached_method
+    def _charpoly_coefficients(self):
+        r"""
+        Override the parent method with something that tries to compute
+        over a faster (non-extension) field.
+        """
+        if self._basis_normalizers is None or self.base_ring() is QQ:
+            # We didn't normalize, or the basis we started with had
+            # entries in a nice field already. Just compute the thing.
+            return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coefficients()
+
+        basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
+                                         self._basis_normalizers) )
+
+        # Do this over the rationals and convert back at the end.
+        # Only works because we know the entries of the basis are
+        # integers. The argument ``check_axioms=False`` is required
+        # because the trace inner-product method for this
+        # class is a stub and can't actually be checked.
+        J = MatrixEuclideanJordanAlgebra(QQ,
+                                         basis,
+                                         normalize_basis=False,
+                                         check_field=False,
+                                         check_axioms=False)
+        a = J._charpoly_coefficients()
+
+        # Unfortunately, changing the basis does change the
+        # coefficients of the characteristic polynomial, but since
+        # these are really the coefficients of the "characteristic
+        # polynomial of" function, everything is still nice and
+        # unevaluated. It's therefore "obvious" how scaling the
+        # basis affects the coordinate variables X1, X2, et
+        # cetera. Scaling the first basis vector up by "n" adds a
+        # factor of 1/n into every "X1" term, for example. So here
+        # we simply undo the basis_normalizer scaling that we
+        # performed earlier.
+        #
+        # The a[0] access here is safe because trivial algebras
+        # won't have any basis normalizers and therefore won't
+        # make it to this "else" branch.
+        XS = a[0].parent().gens()
+        subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i]
+                      for i in range(len(XS)) }
+        return tuple( a_i.subs(subs_dict) for a_i in a )
 
-                sage: J = JordanSpinEJA(5)
-                sage: J.one().is_regular()
-                False
-                sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
-                sage: for x in J.gens():
-                ....:     (J.one() + x).is_regular()
-                False
-                True
-                True
-                True
-                True
 
-            """
-            return self.degree() == self.parent().rank()
+    @staticmethod
+    def multiplication_table_from_matrix_basis(basis):
+        """
+        At least three of the five simple Euclidean Jordan algebras have the
+        symmetric multiplication (A,B) |-> (AB + BA)/2, where the
+        multiplication on the right is matrix multiplication. Given a basis
+        for the underlying matrix space, this function returns a
+        multiplication table (obtained by looping through the basis
+        elements) for an algebra of those matrices.
+        """
+        # In S^2, for example, we nominally have four coordinates even
+        # though the space is of dimension three only. The vector space V
+        # is supposed to hold the entire long vector, and the subspace W
+        # of V will be spanned by the vectors that arise from symmetric
+        # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
+        if len(basis) == 0:
+            return []
 
+        field = basis[0].base_ring()
+        dimension = basis[0].nrows()
 
-        def degree(self):
-            """
-            Compute the degree of this element the straightforward way
-            according to the definition; by appending powers to a list
-            and figuring out its dimension (that is, whether or not
-            they're linearly dependent).
+        V = VectorSpace(field, dimension**2)
+        W = V.span_of_basis( _mat2vec(s) for s in basis )
+        n = len(basis)
+        mult_table = [[W.zero() for j in range(n)] for i in range(n)]
+        for i in range(n):
+            for j in range(n):
+                mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
+                mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
 
-            SETUP::
+        return mult_table
 
-                sage: from mjo.eja.eja_algebra import JordanSpinEJA
 
-            EXAMPLES::
+    @staticmethod
+    def real_embed(M):
+        """
+        Embed the matrix ``M`` into a space of real matrices.
 
-                sage: J = JordanSpinEJA(4)
-                sage: J.one().degree()
-                1
-                sage: e0,e1,e2,e3 = J.gens()
-                sage: (e0 - e1).degree()
-                2
+        The matrix ``M`` can have entries in any field at the moment:
+        the real numbers, complex numbers, or quaternions. And although
+        they are not a field, we can probably support octonions at some
+        point, too. This function returns a real matrix that "acts like"
+        the original with respect to matrix multiplication; i.e.
 
-            In the spin factor algebra (of rank two), all elements that
-            aren't multiples of the identity are regular::
+          real_embed(M*N) = real_embed(M)*real_embed(N)
 
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: x == x.coefficient(0)*J.one() or x.degree() == 2
-                True
+        """
+        raise NotImplementedError
 
-            """
-            return self.span_of_powers().dimension()
 
+    @staticmethod
+    def real_unembed(M):
+        """
+        The inverse of :meth:`real_embed`.
+        """
+        raise NotImplementedError
 
-        def left_matrix(self):
-            """
-            Our parent class defines ``left_matrix`` and ``matrix``
-            methods whose names are misleading. We don't want them.
-            """
-            raise NotImplementedError("use operator().matrix() instead")
 
-        matrix = left_matrix
+    @classmethod
+    def natural_inner_product(cls,X,Y):
+        Xu = cls.real_unembed(X)
+        Yu = cls.real_unembed(Y)
+        tr = (Xu*Yu).trace()
 
+        try:
+            # Works in QQ, AA, RDF, et cetera.
+            return tr.real()
+        except AttributeError:
+            # A quaternion doesn't have a real() method, but does
+            # have coefficient_tuple() method that returns the
+            # coefficients of 1, i, j, and k -- in that order.
+            return tr.coefficient_tuple()[0]
 
-        def minimal_polynomial(self):
-            """
-            Return the minimal polynomial of this element,
-            as a function of the variable `t`.
 
-            ALGORITHM:
+class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
+    @staticmethod
+    def real_embed(M):
+        """
+        The identity function, for embedding real matrices into real
+        matrices.
+        """
+        return M
 
-            We restrict ourselves to the associative subalgebra
-            generated by this element, and then return the minimal
-            polynomial of this element's operator matrix (in that
-            subalgebra). This works by Baes Proposition 2.3.16.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            TESTS:
-
-            The minimal polynomial of the identity and zero elements are
-            always the same::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().minimal_polynomial()
-                t - 1
-                sage: J.zero().minimal_polynomial()
-                t
-
-            The degree of an element is (by one definition) the degree
-            of its minimal polynomial::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
-                True
-
-            The minimal polynomial and the characteristic polynomial coincide
-            and are known (see Alizadeh, Example 11.11) for all elements of
-            the spin factor algebra that aren't scalar multiples of the
-            identity::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10)
-                sage: J = JordanSpinEJA(n)
-                sage: y = J.random_element()
-                sage: while y == y.coefficient(0)*J.one():
-                ....:     y = J.random_element()
-                sage: y0 = y.vector()[0]
-                sage: y_bar = y.vector()[1:]
-                sage: actual = y.minimal_polynomial()
-                sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
-                sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
-                sage: bool(actual == expected)
-                True
-
-            The minimal polynomial should always kill its element::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: p = x.minimal_polynomial()
-                sage: x.apply_univariate_polynomial(p)
-                0
-
-            """
-            V = self.span_of_powers()
-            assoc_subalg = self.subalgebra_generated_by()
-            # Mis-design warning: the basis used for span_of_powers()
-            # and subalgebra_generated_by() must be the same, and in
-            # the same order!
-            elt = assoc_subalg(V.coordinates(self.vector()))
-            return elt.operator().minimal_polynomial()
-
-
-
-        def natural_representation(self):
-            """
-            Return a more-natural representation of this element.
-
-            Every finite-dimensional Euclidean Jordan Algebra is a
-            direct sum of five simple algebras, four of which comprise
-            Hermitian matrices. This method returns the original
-            "natural" representation of this element as a Hermitian
-            matrix, if it has one. If not, you get the usual representation.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-                ....:                                  QuaternionHermitianEJA)
-
-            EXAMPLES::
-
-                sage: J = ComplexHermitianEJA(3)
-                sage: J.one()
-                e0 + e5 + e8
-                sage: J.one().natural_representation()
-                [1 0 0 0 0 0]
-                [0 1 0 0 0 0]
-                [0 0 1 0 0 0]
-                [0 0 0 1 0 0]
-                [0 0 0 0 1 0]
-                [0 0 0 0 0 1]
-
-            ::
-
-                sage: J = QuaternionHermitianEJA(3)
-                sage: J.one()
-                e0 + e9 + e14
-                sage: J.one().natural_representation()
-                [1 0 0 0 0 0 0 0 0 0 0 0]
-                [0 1 0 0 0 0 0 0 0 0 0 0]
-                [0 0 1 0 0 0 0 0 0 0 0 0]
-                [0 0 0 1 0 0 0 0 0 0 0 0]
-                [0 0 0 0 1 0 0 0 0 0 0 0]
-                [0 0 0 0 0 1 0 0 0 0 0 0]
-                [0 0 0 0 0 0 1 0 0 0 0 0]
-                [0 0 0 0 0 0 0 1 0 0 0 0]
-                [0 0 0 0 0 0 0 0 1 0 0 0]
-                [0 0 0 0 0 0 0 0 0 1 0 0]
-                [0 0 0 0 0 0 0 0 0 0 1 0]
-                [0 0 0 0 0 0 0 0 0 0 0 1]
-
-            """
-            B = self.parent().natural_basis()
-            W = B[0].matrix_space()
-            return W.linear_combination(zip(self.vector(), B))
-
-
-        def operator(self):
-            """
-            Return the left-multiplication-by-this-element
-            operator on the ambient algebra.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: x.operator()(y) == x*y
-                True
-                sage: y.operator()(x) == x*y
-                True
-
-            """
-            P = self.parent()
-            fda_elt = FiniteDimensionalAlgebraElement(P, self)
-            return FiniteDimensionalEuclideanJordanAlgebraOperator(
-                     P,
-                     P,
-                     fda_elt.matrix().transpose() )
-
-
-        def quadratic_representation(self, other=None):
-            """
-            Return the quadratic representation of this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
-
-            The explicit form in the spin factor algebra is given by
-            Alizadeh's Example 11.12::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: x_vec = x.vector()
-                sage: x0 = x_vec[0]
-                sage: x_bar = x_vec[1:]
-                sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
-                sage: B = 2*x0*x_bar.row()
-                sage: C = 2*x0*x_bar.column()
-                sage: D = matrix.identity(QQ, n-1)
-                sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
-                sage: D = D + 2*x_bar.tensor_product(x_bar)
-                sage: Q = matrix.block(2,2,[A,B,C,D])
-                sage: Q == x.quadratic_representation().matrix()
-                True
-
-            Test all of the properties from Theorem 11.2 in Alizadeh::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: Lx = x.operator()
-                sage: Lxx = (x*x).operator()
-                sage: Qx = x.quadratic_representation()
-                sage: Qy = y.quadratic_representation()
-                sage: Qxy = x.quadratic_representation(y)
-                sage: Qex = J.one().quadratic_representation(x)
-                sage: n = ZZ.random_element(10)
-                sage: Qxn = (x^n).quadratic_representation()
-
-            Property 1:
-
-                sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
-                True
-
-            Property 2 (multiply on the right for :trac:`28272`):
-
-                sage: alpha = QQ.random_element()
-                sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
-                True
-
-            Property 3:
-
-                sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
-                True
+    @staticmethod
+    def real_unembed(M):
+        """
+        The identity function, for unembedding real matrices from real
+        matrices.
+        """
+        return M
 
-                sage: not x.is_invertible() or (
-                ....:   ~Qx
-                ....:   ==
-                ....:   x.inverse().quadratic_representation() )
-                True
 
-                sage: Qxy(J.one()) == x*y
-                True
+class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra,
+                       ConcreteEuclideanJordanAlgebra):
+    """
+    The rank-n simple EJA consisting of real symmetric n-by-n
+    matrices, the usual symmetric Jordan product, and the trace inner
+    product. It has dimension `(n^2 + n)/2` over the reals.
 
-            Property 4:
-
-                sage: not x.is_invertible() or (
-                ....:   x.quadratic_representation(x.inverse())*Qx
-                ....:   == Qx*x.quadratic_representation(x.inverse()) )
-                True
+    SETUP::
 
-                sage: not x.is_invertible() or (
-                ....:   x.quadratic_representation(x.inverse())*Qx
-                ....:   ==
-                ....:   2*x.operator()*Qex - Qx )
-                True
-
-                sage: 2*x.operator()*Qex - Qx == Lxx
-                True
-
-            Property 5:
-
-                sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
-                True
-
-            Property 6:
+        sage: from mjo.eja.eja_algebra import RealSymmetricEJA
 
-                sage: Qxn == (Qx)^n
-                True
+    EXAMPLES::
 
-            Property 7:
+        sage: J = RealSymmetricEJA(2)
+        sage: e0, e1, e2 = J.gens()
+        sage: e0*e0
+        e0
+        sage: e1*e1
+        1/2*e0 + 1/2*e2
+        sage: e2*e2
+        e2
 
-                sage: not x.is_invertible() or (
-                ....:   Qx*x.inverse().operator() == Lx )
-                True
+    In theory, our "field" can be any subfield of the reals::
 
-            Property 8:
-
-                sage: not x.operator_commutes_with(y) or (
-                ....:   Qx(y)^n == Qxn(y^n) )
-                True
-
-            """
-            if other is None:
-                other=self
-            elif not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            L = self.operator()
-            M = other.operator()
-            return ( L*M + M*L - (self*other).operator() )
-
-
-        def span_of_powers(self):
-            """
-            Return the vector space spanned by successive powers of
-            this element.
-            """
-            # The dimension of the subalgebra can't be greater than
-            # the big algebra, so just put everything into a list
-            # and let span() get rid of the excess.
-            #
-            # We do the extra ambient_vector_space() in case we're messing
-            # with polynomials and the direct parent is a module.
-            V = self.parent().vector_space()
-            return V.span( (self**d).vector() for d in xrange(V.dimension()) )
-
-
-        def subalgebra_generated_by(self):
-            """
-            Return the associative subalgebra of the parent EJA generated
-            by this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.subalgebra_generated_by().is_associative()
-                True
-
-            Squaring in the subalgebra should work the same as in
-            the superalgebra::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: u = x.subalgebra_generated_by().random_element()
-                sage: u.operator()(u) == u^2
-                True
-
-            """
-            # First get the subspace spanned by the powers of myself...
-            V = self.span_of_powers()
-            F = self.base_ring()
-
-            # Now figure out the entries of the right-multiplication
-            # matrix for the successive basis elements b0, b1,... of
-            # that subspace.
-            mats = []
-            for b_right in V.basis():
-                eja_b_right = self.parent()(b_right)
-                b_right_rows = []
-                # The first row of the right-multiplication matrix by
-                # b1 is what we get if we apply that matrix to b1. The
-                # second row of the right multiplication matrix by b1
-                # is what we get when we apply that matrix to b2...
-                #
-                # IMPORTANT: this assumes that all vectors are COLUMN
-                # vectors, unlike our superclass (which uses row vectors).
-                for b_left in V.basis():
-                    eja_b_left = self.parent()(b_left)
-                    # Multiply in the original EJA, but then get the
-                    # coordinates from the subalgebra in terms of its
-                    # basis.
-                    this_row = V.coordinates((eja_b_left*eja_b_right).vector())
-                    b_right_rows.append(this_row)
-                b_right_matrix = matrix(F, b_right_rows)
-                mats.append(b_right_matrix)
-
-            # It's an algebra of polynomials in one element, and EJAs
-            # are power-associative.
-            #
-            # TODO: choose generator names intelligently.
-            #
-            # The rank is the highest possible degree of a minimal polynomial,
-            # and is bounded above by the dimension. We know in this case that
-            # there's an element whose minimal polynomial has the same degree
-            # as the space's dimension, so that must be its rank too.
-            return FiniteDimensionalEuclideanJordanAlgebra(
-                     F,
-                     mats,
-                     V.dimension(),
-                     assume_associative=True,
-                     names='f')
-
-
-        def subalgebra_idempotent(self):
-            """
-            Find an idempotent in the associative subalgebra I generate
-            using Proposition 2.3.5 in Baes.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: while x.is_nilpotent():
-                ....:     x = J.random_element()
-                sage: c = x.subalgebra_idempotent()
-                sage: c^2 == c
-                True
-
-            """
-            if self.is_nilpotent():
-                raise ValueError("this only works with non-nilpotent elements!")
-
-            V = self.span_of_powers()
-            J = self.subalgebra_generated_by()
-            # Mis-design warning: the basis used for span_of_powers()
-            # and subalgebra_generated_by() must be the same, and in
-            # the same order!
-            u = J(V.coordinates(self.vector()))
-
-            # The image of the matrix of left-u^m-multiplication
-            # will be minimal for some natural number s...
-            s = 0
-            minimal_dim = V.dimension()
-            for i in xrange(1, V.dimension()):
-                this_dim = (u**i).operator().matrix().image().dimension()
-                if this_dim < minimal_dim:
-                    minimal_dim = this_dim
-                    s = i
-
-            # Now minimal_matrix should correspond to the smallest
-            # non-zero subspace in Baes's (or really, Koecher's)
-            # proposition.
-            #
-            # However, we need to restrict the matrix to work on the
-            # subspace... or do we? Can't we just solve, knowing that
-            # A(c) = u^(s+1) should have a solution in the big space,
-            # too?
-            #
-            # Beware, solve_right() means that we're using COLUMN vectors.
-            # Our FiniteDimensionalAlgebraElement superclass uses rows.
-            u_next = u**(s+1)
-            A = u_next.operator().matrix()
-            c_coordinates = A.solve_right(u_next.vector())
-
-            # Now c_coordinates is the idempotent we want, but it's in
-            # the coordinate system of the subalgebra.
-            #
-            # We need the basis for J, but as elements of the parent algebra.
-            #
-            basis = [self.parent(v) for v in V.basis()]
-            return self.parent().linear_combination(zip(c_coordinates, basis))
+        sage: RealSymmetricEJA(2, RDF)
+        Euclidean Jordan algebra of dimension 3 over Real Double Field
+        sage: RealSymmetricEJA(2, RR)
+        Euclidean Jordan algebra of dimension 3 over Real Field with
+        53 bits of precision
 
+    TESTS:
 
-        def trace(self):
-            """
-            Return my trace, the sum of my eigenvalues.
+    The dimension of this algebra is `(n^2 + n) / 2`::
 
-            SETUP::
+        sage: set_random_seed()
+        sage: n_max = RealSymmetricEJA._max_random_instance_size()
+        sage: n = ZZ.random_element(1, n_max)
+        sage: J = RealSymmetricEJA(n)
+        sage: J.dimension() == (n^2 + n)/2
+        True
 
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  RealCartesianProductEJA,
-                ....:                                  random_eja)
+    The Jordan multiplication is what we think it is::
 
-            EXAMPLES::
+        sage: set_random_seed()
+        sage: J = RealSymmetricEJA.random_instance()
+        sage: x,y = J.random_elements(2)
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
 
-                sage: J = JordanSpinEJA(3)
-                sage: x = sum(J.gens())
-                sage: x.trace()
-                2
+    We can change the generator prefix::
 
-            ::
+        sage: RealSymmetricEJA(3, prefix='q').gens()
+        (q0, q1, q2, q3, q4, q5)
 
-                sage: J = RealCartesianProductEJA(5)
-                sage: J.one().trace()
-                5
+    We can construct the (trivial) algebra of rank zero::
 
-            TESTS:
+        sage: RealSymmetricEJA(0)
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
 
-            The trace of an element is a real number::
+    """
+    @classmethod
+    def _denormalized_basis(cls, n, field):
+        """
+        Return a basis for the space of real symmetric n-by-n matrices.
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.random_element().trace() in J.base_ring()
-                True
+        SETUP::
 
-            """
-            P = self.parent()
-            r = P.rank()
-            p = P._charpoly_coeff(r-1)
-            # The _charpoly_coeff function already adds the factor of
-            # -1 to ensure that _charpoly_coeff(r-1) is really what
-            # appears in front of t^{r-1} in the charpoly. However,
-            # we want the negative of THAT for the trace.
-            return -p(*self.vector())
+            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
 
+        TESTS::
 
-        def trace_inner_product(self, other):
-            """
-            Return the trace inner product of myself and ``other``.
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(1,5)
+            sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
+            sage: all( M.is_symmetric() for M in  B)
+            True
 
-            SETUP::
+        """
+        # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
+        # coordinates.
+        S = []
+        for i in range(n):
+            for j in range(i+1):
+                Eij = matrix(field, n, lambda k,l: k==i and l==j)
+                if i == j:
+                    Sij = Eij
+                else:
+                    Sij = Eij + Eij.transpose()
+                S.append(Sij)
+        return S
 
-                sage: from mjo.eja.eja_algebra import random_eja
 
-            TESTS:
+    @staticmethod
+    def _max_random_instance_size():
+        return 4 # Dimension 10
 
-            The trace inner product is commutative::
+    @classmethod
+    def random_instance(cls, field=AA, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        return cls(n, field, **kwargs)
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element(); y = J.random_element()
-                sage: x.trace_inner_product(y) == y.trace_inner_product(x)
-                True
+    def __init__(self, n, field=AA, **kwargs):
+        basis = self._denormalized_basis(n, field)
+        super(RealSymmetricEJA, self).__init__(field,
+                                               basis,
+                                               check_axioms=False,
+                                               **kwargs)
+        self.rank.set_cache(n)
 
-            The trace inner product is bilinear::
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: a = QQ.random_element();
-                sage: actual = (a*(x+z)).trace_inner_product(y)
-                sage: expected = ( a*x.trace_inner_product(y) +
-                ....:              a*z.trace_inner_product(y) )
-                sage: actual == expected
-                True
-                sage: actual = x.trace_inner_product(a*(y+z))
-                sage: expected = ( a*x.trace_inner_product(y) +
-                ....:              a*x.trace_inner_product(z) )
-                sage: actual == expected
-                True
+class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
+    @staticmethod
+    def real_embed(M):
+        """
+        Embed the n-by-n complex matrix ``M`` into the space of real
+        matrices of size 2n-by-2n via the map the sends each entry `z = a +
+        bi` to the block matrix ``[[a,b],[-b,a]]``.
 
-            The trace inner product satisfies the compatibility
-            condition in the definition of a Euclidean Jordan algebra::
+        SETUP::
 
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
-                True
+            sage: from mjo.eja.eja_algebra import \
+            ....:   ComplexMatrixEuclideanJordanAlgebra
 
-            """
-            if not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
+        EXAMPLES::
 
-            return (self*other).trace()
+            sage: F = QuadraticField(-1, 'I')
+            sage: x1 = F(4 - 2*i)
+            sage: x2 = F(1 + 2*i)
+            sage: x3 = F(-i)
+            sage: x4 = F(6)
+            sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
+            sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
+            [ 4 -2| 1  2]
+            [ 2  4|-2  1]
+            [-----+-----]
+            [ 0 -1| 6  0]
+            [ 1  0| 0  6]
 
+        TESTS:
 
-class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
-    """
-    Return the Euclidean Jordan Algebra corresponding to the set
-    `R^n` under the Hadamard product.
+        Embedding is a homomorphism (isomorphism, in fact)::
 
-    Note: this is nothing more than the Cartesian product of ``n``
-    copies of the spin algebra. Once Cartesian product algebras
-    are implemented, this can go.
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(3)
+            sage: F = QuadraticField(-1, 'I')
+            sage: X = random_matrix(F, n)
+            sage: Y = random_matrix(F, n)
+            sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
+            sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
+            sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
+            sage: Xe*Ye == XYe
+            True
 
-    SETUP::
+        """
+        n = M.nrows()
+        if M.ncols() != n:
+            raise ValueError("the matrix 'M' must be square")
 
-        sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
+        # We don't need any adjoined elements...
+        field = M.base_ring().base_ring()
 
-    EXAMPLES:
+        blocks = []
+        for z in M.list():
+            a = z.list()[0] # real part, I guess
+            b = z.list()[1] # imag part, I guess
+            blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
 
-    This multiplication table can be verified by hand::
+        return matrix.block(field, n, blocks)
 
-        sage: J = RealCartesianProductEJA(3)
-        sage: e0,e1,e2 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e0*e1
-        0
-        sage: e0*e2
-        0
-        sage: e1*e1
-        e1
-        sage: e1*e2
-        0
-        sage: e2*e2
-        e2
 
-    """
     @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        # The FiniteDimensionalAlgebra constructor takes a list of
-        # matrices, the ith representing right multiplication by the ith
-        # basis element in the vector space. So if e_1 = (1,0,0), then
-        # right (Hadamard) multiplication of x by e_1 picks out the first
-        # component of x; and likewise for the ith basis element e_i.
-        Qs = [ matrix(field, n, n, lambda k,j: 1*(k == j == i))
-               for i in xrange(n) ]
-
-        fdeja = super(RealCartesianProductEJA, cls)
-        return fdeja.__classcall_private__(cls, field, Qs, rank=n)
+    def real_unembed(M):
+        """
+        The inverse of _embed_complex_matrix().
 
-    def inner_product(self, x, y):
-        return _usual_ip(x,y)
+        SETUP::
 
+            sage: from mjo.eja.eja_algebra import \
+            ....:   ComplexMatrixEuclideanJordanAlgebra
 
-def random_eja():
-    """
-    Return a "random" finite-dimensional Euclidean Jordan Algebra.
+        EXAMPLES::
 
-    ALGORITHM:
+            sage: A = matrix(QQ,[ [ 1,  2,   3,  4],
+            ....:                 [-2,  1,  -4,  3],
+            ....:                 [ 9,  10, 11, 12],
+            ....:                 [-10, 9, -12, 11] ])
+            sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
+            [  2*I + 1   4*I + 3]
+            [ 10*I + 9 12*I + 11]
 
-    For now, we choose a random natural number ``n`` (greater than zero)
-    and then give you back one of the following:
+        TESTS:
 
-      * The cartesian product of the rational numbers ``n`` times; this is
-        ``QQ^n`` with the Hadamard product.
+        Unembedding is the inverse of embedding::
 
-      * The Jordan spin algebra on ``QQ^n``.
+            sage: set_random_seed()
+            sage: F = QuadraticField(-1, 'I')
+            sage: M = random_matrix(F, 3)
+            sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
+            sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
+            True
 
-      * The ``n``-by-``n`` rational symmetric matrices with the symmetric
-        product.
+        """
+        n = ZZ(M.nrows())
+        if M.ncols() != n:
+            raise ValueError("the matrix 'M' must be square")
+        if not n.mod(2).is_zero():
+            raise ValueError("the matrix 'M' must be a complex embedding")
+
+        # If "M" was normalized, its base ring might have roots
+        # adjoined and they can stick around after unembedding.
+        field = M.base_ring()
+        R = PolynomialRing(field, 'z')
+        z = R.gen()
+        if field is AA:
+            # Sage doesn't know how to embed AA into QQbar, i.e. how
+            # to adjoin sqrt(-1) to AA.
+            F = QQbar
+        else:
+            F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
+        i = F.gen()
+
+        # Go top-left to bottom-right (reading order), converting every
+        # 2-by-2 block we see to a single complex element.
+        elements = []
+        for k in range(n/2):
+            for j in range(n/2):
+                submat = M[2*k:2*k+2,2*j:2*j+2]
+                if submat[0,0] != submat[1,1]:
+                    raise ValueError('bad on-diagonal submatrix')
+                if submat[0,1] != -submat[1,0]:
+                    raise ValueError('bad off-diagonal submatrix')
+                z = submat[0,0] + submat[0,1]*i
+                elements.append(z)
+
+        return matrix(F, n/2, elements)
+
+
+    @classmethod
+    def natural_inner_product(cls,X,Y):
+        """
+        Compute a natural inner product in this algebra directly from
+        its real embedding.
 
-      * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
-        in the space of ``2n``-by-``2n`` real symmetric matrices.
+        SETUP::
 
-      * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
-        in the space of ``4n``-by-``4n`` real symmetric matrices.
+            sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
 
-    Later this might be extended to return Cartesian products of the
-    EJAs above.
+        TESTS:
 
-    SETUP::
+        This gives the same answer as the slow, default method implemented
+        in :class:`MatrixEuclideanJordanAlgebra`::
 
-        sage: from mjo.eja.eja_algebra import random_eja
+            sage: set_random_seed()
+            sage: J = ComplexHermitianEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: Xe = x.natural_representation()
+            sage: Ye = y.natural_representation()
+            sage: X = ComplexHermitianEJA.real_unembed(Xe)
+            sage: Y = ComplexHermitianEJA.real_unembed(Ye)
+            sage: expected = (X*Y).trace().real()
+            sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
+            sage: actual == expected
+            True
 
-    TESTS::
+        """
+        return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
 
-        sage: random_eja()
-        Euclidean Jordan algebra of degree...
 
+class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra,
+                          ConcreteEuclideanJordanAlgebra):
     """
+    The rank-n simple EJA consisting of complex Hermitian n-by-n
+    matrices over the real numbers, the usual symmetric Jordan product,
+    and the real-part-of-trace inner product. It has dimension `n^2` over
+    the reals.
 
-    # The max_n component lets us choose different upper bounds on the
-    # value "n" that gets passed to the constructor. This is needed
-    # because e.g. R^{10} is reasonable to test, while the Hermitian
-    # 10-by-10 quaternion matrices are not.
-    (constructor, max_n) = choice([(RealCartesianProductEJA, 6),
-                                   (JordanSpinEJA, 6),
-                                   (RealSymmetricEJA, 5),
-                                   (ComplexHermitianEJA, 4),
-                                   (QuaternionHermitianEJA, 3)])
-    n = ZZ.random_element(1, max_n)
-    return constructor(n, field=QQ)
+    SETUP::
 
+        sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
 
+    EXAMPLES:
 
-def _real_symmetric_basis(n, field=QQ):
-    """
-    Return a basis for the space of real symmetric n-by-n matrices.
-    """
-    # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
-    # coordinates.
-    S = []
-    for i in xrange(n):
-        for j in xrange(i+1):
-            Eij = matrix(field, n, lambda k,l: k==i and l==j)
-            if i == j:
-                Sij = Eij
-            else:
-                # Beware, orthogonal but not normalized!
-                Sij = Eij + Eij.transpose()
-            S.append(Sij)
-    return tuple(S)
+    In theory, our "field" can be any subfield of the reals::
 
+        sage: ComplexHermitianEJA(2, RDF)
+        Euclidean Jordan algebra of dimension 4 over Real Double Field
+        sage: ComplexHermitianEJA(2, RR)
+        Euclidean Jordan algebra of dimension 4 over Real Field with
+        53 bits of precision
 
-def _complex_hermitian_basis(n, field=QQ):
-    """
-    Returns a basis for the space of complex Hermitian n-by-n matrices.
+    TESTS:
 
-    SETUP::
+    The dimension of this algebra is `n^2`::
 
-        sage: from mjo.eja.eja_algebra import _complex_hermitian_basis
+        sage: set_random_seed()
+        sage: n_max = ComplexHermitianEJA._max_random_instance_size()
+        sage: n = ZZ.random_element(1, n_max)
+        sage: J = ComplexHermitianEJA(n)
+        sage: J.dimension() == n^2
+        True
 
-    TESTS::
+    The Jordan multiplication is what we think it is::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
+        sage: J = ComplexHermitianEJA.random_instance()
+        sage: x,y = J.random_elements(2)
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
         True
 
-    """
-    F = QuadraticField(-1, 'I')
-    I = F.gen()
-
-    # This is like the symmetric case, but we need to be careful:
-    #
-    #   * We want conjugate-symmetry, not just symmetry.
-    #   * The diagonal will (as a result) be real.
-    #
-    S = []
-    for i in xrange(n):
-        for j in xrange(i+1):
-            Eij = matrix(field, n, lambda k,l: k==i and l==j)
-            if i == j:
-                Sij = _embed_complex_matrix(Eij)
-                S.append(Sij)
-            else:
-                # Beware, orthogonal but not normalized! The second one
-                # has a minus because it's conjugated.
-                Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
-                S.append(Sij_real)
-                Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
-                S.append(Sij_imag)
-    return tuple(S)
+    We can change the generator prefix::
+
+        sage: ComplexHermitianEJA(2, prefix='z').gens()
+        (z0, z1, z2, z3)
+
+    We can construct the (trivial) algebra of rank zero::
 
+        sage: ComplexHermitianEJA(0)
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
 
-def _quaternion_hermitian_basis(n, field=QQ):
     """
-    Returns a basis for the space of quaternion Hermitian n-by-n matrices.
 
-    SETUP::
+    @classmethod
+    def _denormalized_basis(cls, n, field):
+        """
+        Returns a basis for the space of complex Hermitian n-by-n matrices.
 
-        sage: from mjo.eja.eja_algebra import _quaternion_hermitian_basis
+        Why do we embed these? Basically, because all of numerical linear
+        algebra assumes that you're working with vectors consisting of `n`
+        entries from a field and scalars from the same field. There's no way
+        to tell SageMath that (for example) the vectors contain complex
+        numbers, while the scalar field is real.
 
-    TESTS::
+        SETUP::
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: all( M.is_symmetric() for M in _quaternion_hermitian_basis(n) )
-        True
+            sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
 
-    """
-    Q = QuaternionAlgebra(QQ,-1,-1)
-    I,J,K = Q.gens()
-
-    # This is like the symmetric case, but we need to be careful:
-    #
-    #   * We want conjugate-symmetry, not just symmetry.
-    #   * The diagonal will (as a result) be real.
-    #
-    S = []
-    for i in xrange(n):
-        for j in xrange(i+1):
-            Eij = matrix(Q, n, lambda k,l: k==i and l==j)
-            if i == j:
-                Sij = _embed_quaternion_matrix(Eij)
-                S.append(Sij)
-            else:
-                # Beware, orthogonal but not normalized! The second,
-                # third, and fourth ones have a minus because they're
-                # conjugated.
-                Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
-                S.append(Sij_real)
-                Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
-                S.append(Sij_I)
-                Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
-                S.append(Sij_J)
-                Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
-                S.append(Sij_K)
-    return tuple(S)
-
-
-def _mat2vec(m):
-        return vector(m.base_ring(), m.list())
-
-def _vec2mat(v):
-        return matrix(v.base_ring(), sqrt(v.degree()), v.list())
-
-def _multiplication_table_from_matrix_basis(basis):
-    """
-    At least three of the five simple Euclidean Jordan algebras have the
-    symmetric multiplication (A,B) |-> (AB + BA)/2, where the
-    multiplication on the right is matrix multiplication. Given a basis
-    for the underlying matrix space, this function returns a
-    multiplication table (obtained by looping through the basis
-    elements) for an algebra of those matrices. A reordered copy
-    of the basis is also returned to work around the fact that
-    the ``span()`` in this function will change the order of the basis
-    from what we think it is, to... something else.
-    """
-    # In S^2, for example, we nominally have four coordinates even
-    # though the space is of dimension three only. The vector space V
-    # is supposed to hold the entire long vector, and the subspace W
-    # of V will be spanned by the vectors that arise from symmetric
-    # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
-    field = basis[0].base_ring()
-    dimension = basis[0].nrows()
-
-    V = VectorSpace(field, dimension**2)
-    W = V.span( _mat2vec(s) for s in basis )
-
-    # Taking the span above reorders our basis (thanks, jerk!) so we
-    # need to put our "matrix basis" in the same order as the
-    # (reordered) vector basis.
-    S = tuple( _vec2mat(b) for b in W.basis() )
-
-    Qs = []
-    for s in S:
-        # Brute force the multiplication-by-s matrix by looping
-        # through all elements of the basis and doing the computation
-        # to find out what the corresponding row should be. BEWARE:
-        # these multiplication tables won't be symmetric! It therefore
-        # becomes REALLY IMPORTANT that the underlying algebra
-        # constructor uses ROW vectors and not COLUMN vectors. That's
-        # why we're computing rows here and not columns.
-        Q_rows = []
-        for t in S:
-            this_row = _mat2vec((s*t + t*s)/2)
-            Q_rows.append(W.coordinates(this_row))
-        Q = matrix(field, W.dimension(), Q_rows)
-        Qs.append(Q)
-
-    return (Qs, S)
-
-
-def _embed_complex_matrix(M):
-    """
-    Embed the n-by-n complex matrix ``M`` into the space of real
-    matrices of size 2n-by-2n via the map the sends each entry `z = a +
-    bi` to the block matrix ``[[a,b],[-b,a]]``.
+        TESTS::
 
-    SETUP::
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(1,5)
+            sage: field = QuadraticField(2, 'sqrt2')
+            sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
+            sage: all( M.is_symmetric() for M in  B)
+            True
 
-        sage: from mjo.eja.eja_algebra import _embed_complex_matrix
+        """
+        R = PolynomialRing(field, 'z')
+        z = R.gen()
+        F = field.extension(z**2 + 1, 'I')
+        I = F.gen()
 
-    EXAMPLES::
+        # This is like the symmetric case, but we need to be careful:
+        #
+        #   * We want conjugate-symmetry, not just symmetry.
+        #   * The diagonal will (as a result) be real.
+        #
+        S = []
+        for i in range(n):
+            for j in range(i+1):
+                Eij = matrix(F, n, lambda k,l: k==i and l==j)
+                if i == j:
+                    Sij = cls.real_embed(Eij)
+                    S.append(Sij)
+                else:
+                    # The second one has a minus because it's conjugated.
+                    Sij_real = cls.real_embed(Eij + Eij.transpose())
+                    S.append(Sij_real)
+                    Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
+                    S.append(Sij_imag)
+
+        # Since we embedded these, we can drop back to the "field" that we
+        # started with instead of the complex extension "F".
+        return ( s.change_ring(field) for s in S )
+
+
+    def __init__(self, n, field=AA, **kwargs):
+        basis = self._denormalized_basis(n,field)
+        super(ComplexHermitianEJA,self).__init__(field,
+                                                 basis,
+                                                 check_axioms=False,
+                                                 **kwargs)
+        self.rank.set_cache(n)
 
-        sage: F = QuadraticField(-1,'i')
-        sage: x1 = F(4 - 2*i)
-        sage: x2 = F(1 + 2*i)
-        sage: x3 = F(-i)
-        sage: x4 = F(6)
-        sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
-        sage: _embed_complex_matrix(M)
-        [ 4 -2| 1  2]
-        [ 2  4|-2  1]
-        [-----+-----]
-        [ 0 -1| 6  0]
-        [ 1  0| 0  6]
+    @staticmethod
+    def _max_random_instance_size():
+        return 3 # Dimension 9
 
-    TESTS:
+    @classmethod
+    def random_instance(cls, field=AA, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        return cls(n, field, **kwargs)
 
-    Embedding is a homomorphism (isomorphism, in fact)::
+class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
+    @staticmethod
+    def real_embed(M):
+        """
+        Embed the n-by-n quaternion matrix ``M`` into the space of real
+        matrices of size 4n-by-4n by first sending each quaternion entry `z
+        = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
+        c+di],[-c + di, a-bi]]`, and then embedding those into a real
+        matrix.
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(5)
-        sage: F = QuadraticField(-1, 'i')
-        sage: X = random_matrix(F, n)
-        sage: Y = random_matrix(F, n)
-        sage: actual = _embed_complex_matrix(X) * _embed_complex_matrix(Y)
-        sage: expected = _embed_complex_matrix(X*Y)
-        sage: actual == expected
-        True
+        SETUP::
 
-    """
-    n = M.nrows()
-    if M.ncols() != n:
-        raise ValueError("the matrix 'M' must be square")
-    field = M.base_ring()
-    blocks = []
-    for z in M.list():
-        a = z.real()
-        b = z.imag()
-        blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
+            sage: from mjo.eja.eja_algebra import \
+            ....:   QuaternionMatrixEuclideanJordanAlgebra
 
-    # We can drop the imaginaries here.
-    return matrix.block(field.base_ring(), n, blocks)
+        EXAMPLES::
 
+            sage: Q = QuaternionAlgebra(QQ,-1,-1)
+            sage: i,j,k = Q.gens()
+            sage: x = 1 + 2*i + 3*j + 4*k
+            sage: M = matrix(Q, 1, [[x]])
+            sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
+            [ 1  2  3  4]
+            [-2  1 -4  3]
+            [-3  4  1 -2]
+            [-4 -3  2  1]
 
-def _unembed_complex_matrix(M):
-    """
-    The inverse of _embed_complex_matrix().
+        Embedding is a homomorphism (isomorphism, in fact)::
 
-    SETUP::
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(2)
+            sage: Q = QuaternionAlgebra(QQ,-1,-1)
+            sage: X = random_matrix(Q, n)
+            sage: Y = random_matrix(Q, n)
+            sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
+            sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
+            sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
+            sage: Xe*Ye == XYe
+            True
 
-        sage: from mjo.eja.eja_algebra import (_embed_complex_matrix,
-        ....:                                  _unembed_complex_matrix)
+        """
+        quaternions = M.base_ring()
+        n = M.nrows()
+        if M.ncols() != n:
+            raise ValueError("the matrix 'M' must be square")
 
-    EXAMPLES::
+        F = QuadraticField(-1, 'I')
+        i = F.gen()
 
-        sage: A = matrix(QQ,[ [ 1,  2,   3,  4],
-        ....:                 [-2,  1,  -4,  3],
-        ....:                 [ 9,  10, 11, 12],
-        ....:                 [-10, 9, -12, 11] ])
-        sage: _unembed_complex_matrix(A)
-        [  2*i + 1   4*i + 3]
-        [ 10*i + 9 12*i + 11]
+        blocks = []
+        for z in M.list():
+            t = z.coefficient_tuple()
+            a = t[0]
+            b = t[1]
+            c = t[2]
+            d = t[3]
+            cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
+                                 [-c + d*i, a - b*i]])
+            realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
+            blocks.append(realM)
 
-    TESTS:
+        # We should have real entries by now, so use the realest field
+        # we've got for the return value.
+        return matrix.block(quaternions.base_ring(), n, blocks)
 
-    Unembedding is the inverse of embedding::
 
-        sage: set_random_seed()
-        sage: F = QuadraticField(-1, 'i')
-        sage: M = random_matrix(F, 3)
-        sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
-        True
 
-    """
-    n = ZZ(M.nrows())
-    if M.ncols() != n:
-        raise ValueError("the matrix 'M' must be square")
-    if not n.mod(2).is_zero():
-        raise ValueError("the matrix 'M' must be a complex embedding")
-
-    F = QuadraticField(-1, 'i')
-    i = F.gen()
-
-    # Go top-left to bottom-right (reading order), converting every
-    # 2-by-2 block we see to a single complex element.
-    elements = []
-    for k in xrange(n/2):
-        for j in xrange(n/2):
-            submat = M[2*k:2*k+2,2*j:2*j+2]
-            if submat[0,0] != submat[1,1]:
-                raise ValueError('bad on-diagonal submatrix')
-            if submat[0,1] != -submat[1,0]:
-                raise ValueError('bad off-diagonal submatrix')
-            z = submat[0,0] + submat[0,1]*i
-            elements.append(z)
-
-    return matrix(F, n/2, elements)
-
-
-def _embed_quaternion_matrix(M):
-    """
-    Embed the n-by-n quaternion matrix ``M`` into the space of real
-    matrices of size 4n-by-4n by first sending each quaternion entry
-    `z = a + bi + cj + dk` to the block-complex matrix
-    ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
-    a real matrix.
+    @staticmethod
+    def real_unembed(M):
+        """
+        The inverse of _embed_quaternion_matrix().
 
-    SETUP::
+        SETUP::
 
-        sage: from mjo.eja.eja_algebra import _embed_quaternion_matrix
+            sage: from mjo.eja.eja_algebra import \
+            ....:   QuaternionMatrixEuclideanJordanAlgebra
 
-    EXAMPLES::
+        EXAMPLES::
 
-        sage: Q = QuaternionAlgebra(QQ,-1,-1)
-        sage: i,j,k = Q.gens()
-        sage: x = 1 + 2*i + 3*j + 4*k
-        sage: M = matrix(Q, 1, [[x]])
-        sage: _embed_quaternion_matrix(M)
-        [ 1  2  3  4]
-        [-2  1 -4  3]
-        [-3  4  1 -2]
-        [-4 -3  2  1]
+            sage: M = matrix(QQ, [[ 1,  2,  3,  4],
+            ....:                 [-2,  1, -4,  3],
+            ....:                 [-3,  4,  1, -2],
+            ....:                 [-4, -3,  2,  1]])
+            sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
+            [1 + 2*i + 3*j + 4*k]
 
-    Embedding is a homomorphism (isomorphism, in fact)::
+        TESTS:
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(5)
-        sage: Q = QuaternionAlgebra(QQ,-1,-1)
-        sage: X = random_matrix(Q, n)
-        sage: Y = random_matrix(Q, n)
-        sage: actual = _embed_quaternion_matrix(X)*_embed_quaternion_matrix(Y)
-        sage: expected = _embed_quaternion_matrix(X*Y)
-        sage: actual == expected
-        True
+        Unembedding is the inverse of embedding::
 
-    """
-    quaternions = M.base_ring()
-    n = M.nrows()
-    if M.ncols() != n:
-        raise ValueError("the matrix 'M' must be square")
-
-    F = QuadraticField(-1, 'i')
-    i = F.gen()
-
-    blocks = []
-    for z in M.list():
-        t = z.coefficient_tuple()
-        a = t[0]
-        b = t[1]
-        c = t[2]
-        d = t[3]
-        cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
-                                    [-c + d*i, a - b*i]])
-        blocks.append(_embed_complex_matrix(cplx_matrix))
-
-    # We should have real entries by now, so use the realest field
-    # we've got for the return value.
-    return matrix.block(quaternions.base_ring(), n, blocks)
-
-
-def _unembed_quaternion_matrix(M):
-    """
-    The inverse of _embed_quaternion_matrix().
+            sage: set_random_seed()
+            sage: Q = QuaternionAlgebra(QQ, -1, -1)
+            sage: M = random_matrix(Q, 3)
+            sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
+            sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
+            True
 
-    SETUP::
+        """
+        n = ZZ(M.nrows())
+        if M.ncols() != n:
+            raise ValueError("the matrix 'M' must be square")
+        if not n.mod(4).is_zero():
+            raise ValueError("the matrix 'M' must be a quaternion embedding")
+
+        # Use the base ring of the matrix to ensure that its entries can be
+        # multiplied by elements of the quaternion algebra.
+        field = M.base_ring()
+        Q = QuaternionAlgebra(field,-1,-1)
+        i,j,k = Q.gens()
+
+        # Go top-left to bottom-right (reading order), converting every
+        # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
+        # quaternion block.
+        elements = []
+        for l in range(n/4):
+            for m in range(n/4):
+                submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
+                    M[4*l:4*l+4,4*m:4*m+4] )
+                if submat[0,0] != submat[1,1].conjugate():
+                    raise ValueError('bad on-diagonal submatrix')
+                if submat[0,1] != -submat[1,0].conjugate():
+                    raise ValueError('bad off-diagonal submatrix')
+                z  = submat[0,0].real()
+                z += submat[0,0].imag()*i
+                z += submat[0,1].real()*j
+                z += submat[0,1].imag()*k
+                elements.append(z)
+
+        return matrix(Q, n/4, elements)
+
+
+    @classmethod
+    def natural_inner_product(cls,X,Y):
+        """
+        Compute a natural inner product in this algebra directly from
+        its real embedding.
 
-        sage: from mjo.eja.eja_algebra import (_embed_quaternion_matrix,
-        ....:                                  _unembed_quaternion_matrix)
+        SETUP::
 
-    EXAMPLES::
+            sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
 
-        sage: M = matrix(QQ, [[ 1,  2,  3,  4],
-        ....:                 [-2,  1, -4,  3],
-        ....:                 [-3,  4,  1, -2],
-        ....:                 [-4, -3,  2,  1]])
-        sage: _unembed_quaternion_matrix(M)
-        [1 + 2*i + 3*j + 4*k]
+        TESTS:
 
-    TESTS:
+        This gives the same answer as the slow, default method implemented
+        in :class:`MatrixEuclideanJordanAlgebra`::
 
-    Unembedding is the inverse of embedding::
+            sage: set_random_seed()
+            sage: J = QuaternionHermitianEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: Xe = x.natural_representation()
+            sage: Ye = y.natural_representation()
+            sage: X = QuaternionHermitianEJA.real_unembed(Xe)
+            sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
+            sage: expected = (X*Y).trace().coefficient_tuple()[0]
+            sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
+            sage: actual == expected
+            True
 
-        sage: set_random_seed()
-        sage: Q = QuaternionAlgebra(QQ, -1, -1)
-        sage: M = random_matrix(Q, 3)
-        sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
-        True
+        """
+        return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
 
-    """
-    n = ZZ(M.nrows())
-    if M.ncols() != n:
-        raise ValueError("the matrix 'M' must be square")
-    if not n.mod(4).is_zero():
-        raise ValueError("the matrix 'M' must be a complex embedding")
-
-    Q = QuaternionAlgebra(QQ,-1,-1)
-    i,j,k = Q.gens()
-
-    # Go top-left to bottom-right (reading order), converting every
-    # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
-    # quaternion block.
-    elements = []
-    for l in xrange(n/4):
-        for m in xrange(n/4):
-            submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
-            if submat[0,0] != submat[1,1].conjugate():
-                raise ValueError('bad on-diagonal submatrix')
-            if submat[0,1] != -submat[1,0].conjugate():
-                raise ValueError('bad off-diagonal submatrix')
-            z  = submat[0,0].real() + submat[0,0].imag()*i
-            z += submat[0,1].real()*j + submat[0,1].imag()*k
-            elements.append(z)
-
-    return matrix(Q, n/4, elements)
-
-
-# The usual inner product on R^n.
-def _usual_ip(x,y):
-    return x.vector().inner_product(y.vector())
-
-# The inner product used for the real symmetric simple EJA.
-# We keep it as a separate function because e.g. the complex
-# algebra uses the same inner product, except divided by 2.
-def _matrix_ip(X,Y):
-    X_mat = X.natural_representation()
-    Y_mat = Y.natural_representation()
-    return (X_mat*Y_mat).trace()
-
-
-class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
-    """
-    The rank-n simple EJA consisting of real symmetric n-by-n
-    matrices, the usual symmetric Jordan product, and the trace inner
-    product. It has dimension `(n^2 + n)/2` over the reals.
+
+class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra,
+                             ConcreteEuclideanJordanAlgebra):
+    r"""
+    The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
+    matrices, the usual symmetric Jordan product, and the
+    real-part-of-trace inner product. It has dimension `2n^2 - n` over
+    the reals.
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import RealSymmetricEJA
+        sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
 
-    EXAMPLES::
+    EXAMPLES:
 
-        sage: J = RealSymmetricEJA(2)
-        sage: e0, e1, e2 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e1*e1
-        e0 + e2
-        sage: e2*e2
-        e2
+    In theory, our "field" can be any subfield of the reals::
+
+        sage: QuaternionHermitianEJA(2, RDF)
+        Euclidean Jordan algebra of dimension 6 over Real Double Field
+        sage: QuaternionHermitianEJA(2, RR)
+        Euclidean Jordan algebra of dimension 6 over Real Field with
+        53 bits of precision
 
     TESTS:
 
-    The degree of this algebra is `(n^2 + n) / 2`::
+    The dimension of this algebra is `2*n^2 - n`::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = RealSymmetricEJA(n)
-        sage: J.degree() == (n^2 + n)/2
+        sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
+        sage: n = ZZ.random_element(1, n_max)
+        sage: J = QuaternionHermitianEJA(n)
+        sage: J.dimension() == 2*(n^2) - n
         True
 
     The Jordan multiplication is what we think it is::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = RealSymmetricEJA(n)
-        sage: x = J.random_element()
-        sage: y = J.random_element()
+        sage: J = QuaternionHermitianEJA.random_instance()
+        sage: x,y = J.random_elements(2)
         sage: actual = (x*y).natural_representation()
         sage: X = x.natural_representation()
         sage: Y = y.natural_representation()
@@ -2197,152 +1921,377 @@ class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
         sage: J(expected) == x*y
         True
 
+    We can change the generator prefix::
+
+        sage: QuaternionHermitianEJA(2, prefix='a').gens()
+        (a0, a1, a2, a3, a4, a5)
+
+    We can construct the (trivial) algebra of rank zero::
+
+        sage: QuaternionHermitianEJA(0)
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
+
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        S = _real_symmetric_basis(n, field=field)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    @classmethod
+    def _denormalized_basis(cls, n, field):
+        """
+        Returns a basis for the space of quaternion Hermitian n-by-n matrices.
 
-        fdeja = super(RealSymmetricEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+        Why do we embed these? Basically, because all of numerical
+        linear algebra assumes that you're working with vectors consisting
+        of `n` entries from a field and scalars from the same field. There's
+        no way to tell SageMath that (for example) the vectors contain
+        complex numbers, while the scalar field is real.
 
-    def inner_product(self, x, y):
-        return _matrix_ip(x,y)
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(1,5)
+            sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
+            sage: all( M.is_symmetric() for M in B )
+            True
+
+        """
+        Q = QuaternionAlgebra(QQ,-1,-1)
+        I,J,K = Q.gens()
+
+        # This is like the symmetric case, but we need to be careful:
+        #
+        #   * We want conjugate-symmetry, not just symmetry.
+        #   * The diagonal will (as a result) be real.
+        #
+        S = []
+        for i in range(n):
+            for j in range(i+1):
+                Eij = matrix(Q, n, lambda k,l: k==i and l==j)
+                if i == j:
+                    Sij = cls.real_embed(Eij)
+                    S.append(Sij)
+                else:
+                    # The second, third, and fourth ones have a minus
+                    # because they're conjugated.
+                    Sij_real = cls.real_embed(Eij + Eij.transpose())
+                    S.append(Sij_real)
+                    Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
+                    S.append(Sij_I)
+                    Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
+                    S.append(Sij_J)
+                    Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
+                    S.append(Sij_K)
+
+        # Since we embedded these, we can drop back to the "field" that we
+        # started with instead of the quaternion algebra "Q".
+        return ( s.change_ring(field) for s in S )
+
+
+    def __init__(self, n, field=AA, **kwargs):
+        basis = self._denormalized_basis(n,field)
+        super(QuaternionHermitianEJA,self).__init__(field,
+                                                    basis,
+                                                    check_axioms=False,
+                                                    **kwargs)
+        self.rank.set_cache(n)
+
+    @staticmethod
+    def _max_random_instance_size():
+        r"""
+        The maximum rank of a random QuaternionHermitianEJA.
+        """
+        return 2 # Dimension 6
+
+    @classmethod
+    def random_instance(cls, field=AA, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        return cls(n, field, **kwargs)
 
 
-class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
+class HadamardEJA(RationalBasisEuclideanJordanAlgebra,
+                  ConcreteEuclideanJordanAlgebra):
     """
-    The rank-n simple EJA consisting of complex Hermitian n-by-n
-    matrices over the real numbers, the usual symmetric Jordan product,
-    and the real-part-of-trace inner product. It has dimension `n^2` over
-    the reals.
+    Return the Euclidean Jordan Algebra corresponding to the set
+    `R^n` under the Hadamard product.
+
+    Note: this is nothing more than the Cartesian product of ``n``
+    copies of the spin algebra. Once Cartesian product algebras
+    are implemented, this can go.
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
+        sage: from mjo.eja.eja_algebra import HadamardEJA
 
-    TESTS:
+    EXAMPLES:
 
-    The degree of this algebra is `n^2`::
+    This multiplication table can be verified by hand::
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = ComplexHermitianEJA(n)
-        sage: J.degree() == n^2
-        True
+        sage: J = HadamardEJA(3)
+        sage: e0,e1,e2 = J.gens()
+        sage: e0*e0
+        e0
+        sage: e0*e1
+        0
+        sage: e0*e2
+        0
+        sage: e1*e1
+        e1
+        sage: e1*e2
+        0
+        sage: e2*e2
+        e2
 
-    The Jordan multiplication is what we think it is::
+    TESTS:
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = ComplexHermitianEJA(n)
-        sage: x = J.random_element()
-        sage: y = J.random_element()
-        sage: actual = (x*y).natural_representation()
-        sage: X = x.natural_representation()
-        sage: Y = y.natural_representation()
-        sage: expected = (X*Y + Y*X)/2
-        sage: actual == expected
-        True
-        sage: J(expected) == x*y
-        True
+    We can change the generator prefix::
+
+        sage: HadamardEJA(3, prefix='r').gens()
+        (r0, r1, r2)
 
     """
+    def __init__(self, n, field=AA, **kwargs):
+        V = VectorSpace(field, n)
+        mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
+                       for i in range(n) ]
+
+        super(HadamardEJA, self).__init__(field,
+                                          mult_table,
+                                          check_axioms=False,
+                                          **kwargs)
+        self.rank.set_cache(n)
+
+        if n == 0:
+            self.one.set_cache( self.zero() )
+        else:
+            self.one.set_cache( sum(self.gens()) )
+
     @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        S = _complex_hermitian_basis(n)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    def _max_random_instance_size():
+        r"""
+        The maximum dimension of a random HadamardEJA.
+        """
+        return 5
+
+    @classmethod
+    def random_instance(cls, field=AA, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        return cls(n, field, **kwargs)
 
-        fdeja = super(ComplexHermitianEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
 
     def inner_product(self, x, y):
-        # Since a+bi on the diagonal is represented as
-        #
-        #   a + bi  = [  a  b  ]
-        #             [ -b  a  ],
-        #
-        # we'll double-count the "a" entries if we take the trace of
-        # the embedding.
-        return _matrix_ip(x,y)/2
+        """
+        Faster to reimplement than to use natural representations.
 
+        SETUP::
 
-class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
-    """
-    The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
-    matrices, the usual symmetric Jordan product, and the
-    real-part-of-trace inner product. It has dimension `2n^2 - n` over
-    the reals.
+            sage: from mjo.eja.eja_algebra import HadamardEJA
+
+        TESTS:
+
+        Ensure that this is the usual inner product for the algebras
+        over `R^n`::
+
+            sage: set_random_seed()
+            sage: J = HadamardEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: X = x.natural_representation()
+            sage: Y = y.natural_representation()
+            sage: x.inner_product(y) == J.natural_inner_product(X,Y)
+            True
+
+        """
+        return x.to_vector().inner_product(y.to_vector())
+
+
+class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra,
+                      ConcreteEuclideanJordanAlgebra):
+    r"""
+    The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
+    with the half-trace inner product and jordan product ``x*y =
+    (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
+    a symmetric positive-definite "bilinear form" matrix. Its
+    dimension is the size of `B`, and it has rank two in dimensions
+    larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
+    the identity matrix of order ``n``.
+
+    We insist that the one-by-one upper-left identity block of `B` be
+    passed in as well so that we can be passed a matrix of size zero
+    to construct a trivial algebra.
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
+        sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
+        ....:                                  JordanSpinEJA)
 
-    TESTS:
+    EXAMPLES:
 
-    The degree of this algebra is `n^2`::
+    When no bilinear form is specified, the identity matrix is used,
+    and the resulting algebra is the Jordan spin algebra::
 
-        sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = QuaternionHermitianEJA(n)
-        sage: J.degree() == 2*(n^2) - n
+        sage: B = matrix.identity(AA,3)
+        sage: J0 = BilinearFormEJA(B)
+        sage: J1 = JordanSpinEJA(3)
+        sage: J0.multiplication_table() == J0.multiplication_table()
         True
 
-    The Jordan multiplication is what we think it is::
+    An error is raised if the matrix `B` does not correspond to a
+    positive-definite bilinear form::
+
+        sage: B = matrix.random(QQ,2,3)
+        sage: J = BilinearFormEJA(B)
+        Traceback (most recent call last):
+        ...
+        ValueError: bilinear form is not positive-definite
+        sage: B = matrix.zero(QQ,3)
+        sage: J = BilinearFormEJA(B)
+        Traceback (most recent call last):
+        ...
+        ValueError: bilinear form is not positive-definite
+
+    TESTS:
+
+    We can create a zero-dimensional algebra::
+
+        sage: B = matrix.identity(AA,0)
+        sage: J = BilinearFormEJA(B)
+        sage: J.basis()
+        Finite family {}
+
+    We can check the multiplication condition given in the Jordan, von
+    Neumann, and Wigner paper (and also discussed on my "On the
+    symmetry..." paper). Note that this relies heavily on the standard
+    choice of basis, as does anything utilizing the bilinear form matrix::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5)
-        sage: J = QuaternionHermitianEJA(n)
-        sage: x = J.random_element()
-        sage: y = J.random_element()
-        sage: actual = (x*y).natural_representation()
-        sage: X = x.natural_representation()
-        sage: Y = y.natural_representation()
-        sage: expected = (X*Y + Y*X)/2
+        sage: n = ZZ.random_element(5)
+        sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
+        sage: B11 = matrix.identity(QQ,1)
+        sage: B22 = M.transpose()*M
+        sage: B = block_matrix(2,2,[ [B11,0  ],
+        ....:                        [0, B22 ] ])
+        sage: J = BilinearFormEJA(B)
+        sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
+        sage: V = J.vector_space()
+        sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
+        ....:         for ei in eis ]
+        sage: actual = [ sis[i]*sis[j]
+        ....:            for i in range(n-1)
+        ....:            for j in range(n-1) ]
+        sage: expected = [ J.one() if i == j else J.zero()
+        ....:              for i in range(n-1)
+        ....:              for j in range(n-1) ]
         sage: actual == expected
         True
-        sage: J(expected) == x*y
-        True
-
     """
+    def __init__(self, B, field=AA, **kwargs):
+        self._B = B
+        n = B.nrows()
+
+        if not B.is_positive_definite():
+            raise ValueError("bilinear form is not positive-definite")
+
+        V = VectorSpace(field, n)
+        mult_table = [[V.zero() for j in range(n)] for i in range(n)]
+        for i in range(n):
+            for j in range(n):
+                x = V.gen(i)
+                y = V.gen(j)
+                x0 = x[0]
+                xbar = x[1:]
+                y0 = y[0]
+                ybar = y[1:]
+                z0 = (B*x).inner_product(y)
+                zbar = y0*xbar + x0*ybar
+                z = V([z0] + zbar.list())
+                mult_table[i][j] = z
+
+        # The rank of this algebra is two, unless we're in a
+        # one-dimensional ambient space (because the rank is bounded
+        # by the ambient dimension).
+        super(BilinearFormEJA, self).__init__(field,
+                                              mult_table,
+                                              check_axioms=False,
+                                              **kwargs)
+        self.rank.set_cache(min(n,2))
+
+        if n == 0:
+            self.one.set_cache( self.zero() )
+        else:
+            self.one.set_cache( self.monomial(0) )
+
     @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        S = _quaternion_hermitian_basis(n)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    def _max_random_instance_size():
+        r"""
+        The maximum dimension of a random BilinearFormEJA.
+        """
+        return 5
+
+    @classmethod
+    def random_instance(cls, field=AA, **kwargs):
+        """
+        Return a random instance of this algebra.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        if n.is_zero():
+            B = matrix.identity(field, n)
+            return cls(B, field, **kwargs)
+
+        B11 = matrix.identity(field,1)
+        M = matrix.random(field, n-1)
+        I = matrix.identity(field, n-1)
+        alpha = field.zero()
+        while alpha.is_zero():
+            alpha = field.random_element().abs()
+        B22 = M.transpose()*M + alpha*I
 
-        fdeja = super(QuaternionHermitianEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+        from sage.matrix.special import block_matrix
+        B = block_matrix(2,2, [ [B11,   ZZ(0) ],
+                                [ZZ(0), B22 ] ])
+
+        return cls(B, field, **kwargs)
 
     def inner_product(self, x, y):
-        # Since a+bi+cj+dk on the diagonal is represented as
-        #
-        #   a + bi +cj + dk = [  a  b  c  d]
-        #                     [ -b  a -d  c]
-        #                     [ -c  d  a -b]
-        #                     [ -d -c  b  a],
-        #
-        # we'll quadruple-count the "a" entries if we take the trace of
-        # the embedding.
-        return _matrix_ip(x,y)/4
+        r"""
+        Half of the trace inner product.
+
+        This is defined so that the special case of the Jordan spin
+        algebra gets the usual inner product.
 
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import BilinearFormEJA
+
+        TESTS:
 
-class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
+        Ensure that this is one-half of the trace inner-product when
+        the algebra isn't just the reals (when ``n`` isn't one). This
+        is in Faraut and Koranyi, and also my "On the symmetry..."
+        paper::
+
+            sage: set_random_seed()
+            sage: J = BilinearFormEJA.random_instance()
+            sage: n = J.dimension()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
+            True
+
+        """
+        return (self._B*x.to_vector()).inner_product(y.to_vector())
+
+
+class JordanSpinEJA(BilinearFormEJA):
     """
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the usual inner product and jordan product ``x*y =
-    (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
+    (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
     the reals.
 
     SETUP::
@@ -2370,27 +2319,277 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
         sage: e2*e3
         0
 
+    We can change the generator prefix::
+
+        sage: JordanSpinEJA(2, prefix='B').gens()
+        (B0, B1)
+
+    TESTS:
+
+        Ensure that we have the usual inner product on `R^n`::
+
+            sage: set_random_seed()
+            sage: J = JordanSpinEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: X = x.natural_representation()
+            sage: Y = y.natural_representation()
+            sage: x.inner_product(y) == J.natural_inner_product(X,Y)
+            True
+
     """
+    def __init__(self, n, field=AA, **kwargs):
+        # This is a special case of the BilinearFormEJA with the identity
+        # matrix as its bilinear form.
+        B = matrix.identity(field, n)
+        super(JordanSpinEJA, self).__init__(B, field, **kwargs)
+
     @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        Qs = []
-        id_matrix = matrix.identity(field, n)
-        for i in xrange(n):
-            ei = id_matrix.column(i)
-            Qi = matrix.zero(field, n)
-            Qi.set_row(0, ei)
-            Qi.set_column(0, ei)
-            Qi += matrix.diagonal(n, [ei[0]]*n)
-            # The addition of the diagonal matrix adds an extra ei[0] in the
-            # upper-left corner of the matrix.
-            Qi[0,0] = Qi[0,0] * ~field(2)
-            Qs.append(Qi)
-
-        # The rank of the spin algebra is two, unless we're in a
-        # one-dimensional ambient space (because the rank is bounded by
-        # the ambient dimension).
-        fdeja = super(JordanSpinEJA, cls)
-        return fdeja.__classcall_private__(cls, field, Qs, rank=min(n,2))
+    def _max_random_instance_size():
+        r"""
+        The maximum dimension of a random JordanSpinEJA.
+        """
+        return 5
+
+    @classmethod
+    def random_instance(cls, field=AA, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+
+        Needed here to override the implementation for ``BilinearFormEJA``.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        return cls(n, field, **kwargs)
+
+
+class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra,
+                 ConcreteEuclideanJordanAlgebra):
+    """
+    The trivial Euclidean Jordan algebra consisting of only a zero element.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import TrivialEJA
+
+    EXAMPLES::
+
+        sage: J = TrivialEJA()
+        sage: J.dimension()
+        0
+        sage: J.zero()
+        0
+        sage: J.one()
+        0
+        sage: 7*J.one()*12*J.one()
+        0
+        sage: J.one().inner_product(J.one())
+        0
+        sage: J.one().norm()
+        0
+        sage: J.one().subalgebra_generated_by()
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
+        sage: J.rank()
+        0
+
+    """
+    def __init__(self, field=AA, **kwargs):
+        mult_table = []
+        super(TrivialEJA, self).__init__(field,
+                                         mult_table,
+                                         check_axioms=False,
+                                         **kwargs)
+        # The rank is zero using my definition, namely the dimension of the
+        # largest subalgebra generated by any element.
+        self.rank.set_cache(0)
+        self.one.set_cache( self.zero() )
+
+    @classmethod
+    def random_instance(cls, field=AA, **kwargs):
+        # We don't take a "size" argument so the superclass method is
+        # inappropriate for us.
+        return cls(field, **kwargs)
+
+class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
+    r"""
+    The external (orthogonal) direct sum of two other Euclidean Jordan
+    algebras. Essentially the Cartesian product of its two factors.
+    Every Euclidean Jordan algebra decomposes into an orthogonal
+    direct sum of simple Euclidean Jordan algebras, so no generality
+    is lost by providing only this construction.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (HadamardEJA,
+        ....:                                  RealSymmetricEJA,
+        ....:                                  DirectSumEJA)
+
+    EXAMPLES::
+
+        sage: J1 = HadamardEJA(2)
+        sage: J2 = RealSymmetricEJA(3)
+        sage: J = DirectSumEJA(J1,J2)
+        sage: J.dimension()
+        8
+        sage: J.rank()
+        5
+
+    """
+    def __init__(self, J1, J2, field=AA, **kwargs):
+        self._factors = (J1, J2)
+        n1 = J1.dimension()
+        n2 = J2.dimension()
+        n = n1+n2
+        V = VectorSpace(field, n)
+        mult_table = [ [ V.zero() for j in range(n) ]
+                       for i in range(n) ]
+        for i in range(n1):
+            for j in range(n1):
+                p = (J1.monomial(i)*J1.monomial(j)).to_vector()
+                mult_table[i][j] = V(p.list() + [field.zero()]*n2)
+
+        for i in range(n2):
+            for j in range(n2):
+                p = (J2.monomial(i)*J2.monomial(j)).to_vector()
+                mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
+
+        super(DirectSumEJA, self).__init__(field,
+                                           mult_table,
+                                           check_axioms=False,
+                                           **kwargs)
+        self.rank.set_cache(J1.rank() + J2.rank())
+
+
+    def factors(self):
+        r"""
+        Return the pair of this algebra's factors.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  JordanSpinEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(2,QQ)
+            sage: J2 = JordanSpinEJA(3,QQ)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: J.factors()
+            (Euclidean Jordan algebra of dimension 2 over Rational Field,
+             Euclidean Jordan algebra of dimension 3 over Rational Field)
+
+        """
+        return self._factors
+
+    def projections(self):
+        r"""
+        Return a pair of projections onto this algebra's factors.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLES::
+
+            sage: J1 = JordanSpinEJA(2)
+            sage: J2 = ComplexHermitianEJA(2)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: (pi_left, pi_right) = J.projections()
+            sage: J.one().to_vector()
+            (1, 0, 1, 0, 0, 1)
+            sage: pi_left(J.one()).to_vector()
+            (1, 0)
+            sage: pi_right(J.one()).to_vector()
+            (1, 0, 0, 1)
+
+        """
+        (J1,J2) = self.factors()
+        n = J1.dimension()
+        pi_left  = lambda x: J1.from_vector(x.to_vector()[:n])
+        pi_right = lambda x: J2.from_vector(x.to_vector()[n:])
+        return (pi_left, pi_right)
+
+    def inclusions(self):
+        r"""
+        Return the pair of inclusion maps from our factors into us.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLES::
+
+            sage: J1 = JordanSpinEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: (iota_left, iota_right) = J.inclusions()
+            sage: iota_left(J1.zero()) == J.zero()
+            True
+            sage: iota_right(J2.zero()) == J.zero()
+            True
+            sage: J1.one().to_vector()
+            (1, 0, 0)
+            sage: iota_left(J1.one()).to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: J2.one().to_vector()
+            (1, 0, 1)
+            sage: iota_right(J2.one()).to_vector()
+            (0, 0, 0, 1, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 0, 1, 0, 1)
+
+        """
+        (J1,J2) = self.factors()
+        n = J1.dimension()
+        V_basis = self.vector_space().basis()
+        I1 = matrix.column(self.base_ring(), V_basis[:n])
+        I2 = matrix.column(self.base_ring(), V_basis[n:])
+        iota_left = lambda x: self.from_vector(I1*x.to_vector())
+        iota_right = lambda x: self.from_vector(I2*+x.to_vector())
+        return (iota_left, iota_right)
 
     def inner_product(self, x, y):
-        return _usual_ip(x,y)
+        r"""
+        The standard Cartesian inner-product.
+
+        We project ``x`` and ``y`` onto our factors, and add up the
+        inner-products from the subalgebras.
+
+        SETUP::
+
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  QuaternionHermitianEJA,
+            ....:                                  DirectSumEJA)
+
+        EXAMPLE::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = QuaternionHermitianEJA(2,QQ,normalize_basis=False)
+            sage: J = DirectSumEJA(J1,J2)
+            sage: x1 = J1.one()
+            sage: x2 = x1
+            sage: y1 = J2.one()
+            sage: y2 = y1
+            sage: x1.inner_product(x2)
+            3
+            sage: y1.inner_product(y2)
+            2
+            sage: J.one().inner_product(J.one())
+            5
+
+        """
+        (pi_left, pi_right) = self.projections()
+        x1 = pi_left(x)
+        x2 = pi_right(x)
+        y1 = pi_left(y)
+        y2 = pi_right(y)
+
+        return (x1.inner_product(y1) + x2.inner_product(y2))
+
+
+
+random_eja = ConcreteEuclideanJordanAlgebra.random_instance