]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: get rid of the KnownRankEJA class.
[sage.d.git] / mjo / eja / eja_algebra.py
index ff2b5d7a9c52ff5c13df7d7aa3682899b9a30559..01deb1b65140675ffbc81c9c673c21e6d4a2e77f 100644 (file)
@@ -54,7 +54,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
     def __init__(self,
                  field,
                  mult_table,
-                 rank,
                  prefix='e',
                  category=None,
                  natural_basis=None,
@@ -91,7 +90,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
                 # a real embedding.
                 raise ValueError('field is not real')
 
-        self._rank = rank
         self._natural_basis = natural_basis
 
         if category is None:
@@ -194,6 +192,24 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         coords =  W.coordinate_vector(_mat2vec(elt))
         return self.from_vector(coords)
 
+    @staticmethod
+    def _max_test_case_size():
+        """
+        Return an integer "size" that is an upper bound on the size of
+        this algebra when it is used in a random test
+        case. Unfortunately, the term "size" is quite vague -- when
+        dealing with `R^n` under either the Hadamard or Jordan spin
+        product, the "size" refers to the dimension `n`. When dealing
+        with a matrix algebra (real symmetric or complex/quaternion
+        Hermitian), it refers to the size of the matrix, which is
+        far less than the dimension of the underlying vector space.
+
+        We default to five in this class, which is safe in `R^n`. The
+        matrix algebra subclasses (or any class where the "size" is
+        interpreted to be far less than the dimension) should override
+        with a smaller number.
+        """
+        return 5
 
     def _repr_(self):
         """
@@ -793,6 +809,22 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         """
         return tuple( self.random_element() for idx in range(count) )
 
+    @classmethod
+    def random_instance(cls, field=AA, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+
+        Beware, this will crash for "most instances" because the
+        constructor below looks wrong.
+        """
+        if cls is TrivialEJA:
+            # The TrivialEJA class doesn't take an "n" argument because
+            # there's only one.
+            return cls(field)
+
+        n = ZZ.random_element(cls._max_test_case_size()) + 1
+        return cls(n, field, **kwargs)
+
     @cached_method
     def rank(self):
         """
@@ -809,7 +841,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  JordanSpinEJA,
             ....:                                  RealSymmetricEJA,
             ....:                                  ComplexHermitianEJA,
             ....:                                  QuaternionHermitianEJA,
@@ -947,61 +980,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
     Element = FiniteDimensionalEuclideanJordanAlgebraElement
 
 
-class KnownRankEJA(object):
-    """
-    A class for algebras that we actually know we can construct.  The
-    main issue is that, for most of our methods to make sense, we need
-    to know the rank of our algebra. Thus we can't simply generate a
-    "random" algebra, or even check that a given basis and product
-    satisfy the axioms; because even if everything looks OK, we wouldn't
-    know the rank we need to actuallty build the thing.
-
-    Not really a subclass of FDEJA because doing that causes method
-    resolution errors, e.g.
-
-      TypeError: Error when calling the metaclass bases
-      Cannot create a consistent method resolution
-      order (MRO) for bases FiniteDimensionalEuclideanJordanAlgebra,
-      KnownRankEJA
-
-    """
-    @staticmethod
-    def _max_test_case_size():
-        """
-        Return an integer "size" that is an upper bound on the size of
-        this algebra when it is used in a random test
-        case. Unfortunately, the term "size" is quite vague -- when
-        dealing with `R^n` under either the Hadamard or Jordan spin
-        product, the "size" refers to the dimension `n`. When dealing
-        with a matrix algebra (real symmetric or complex/quaternion
-        Hermitian), it refers to the size of the matrix, which is
-        far less than the dimension of the underlying vector space.
-
-        We default to five in this class, which is safe in `R^n`. The
-        matrix algebra subclasses (or any class where the "size" is
-        interpreted to be far less than the dimension) should override
-        with a smaller number.
-        """
-        return 5
-
-    @classmethod
-    def random_instance(cls, field=AA, **kwargs):
-        """
-        Return a random instance of this type of algebra.
-
-        Beware, this will crash for "most instances" because the
-        constructor below looks wrong.
-        """
-        if cls is TrivialEJA:
-            # The TrivialEJA class doesn't take an "n" argument because
-            # there's only one.
-            return cls(field)
-
-        n = ZZ.random_element(cls._max_test_case_size()) + 1
-        return cls(n, field, **kwargs)
-
-
-class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):
+class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
     `R^n` under the Hadamard product.
@@ -1047,7 +1026,8 @@ class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):
                        for i in range(n) ]
 
         fdeja = super(HadamardEJA, self)
-        return fdeja.__init__(field, mult_table, rank=n, **kwargs)
+        fdeja.__init__(field, mult_table, **kwargs)
+        self.rank.set_cache(n)
 
     def inner_product(self, x, y):
         """
@@ -1088,9 +1068,13 @@ def random_eja(field=AA, nontrivial=False):
         Euclidean Jordan algebra of dimension...
 
     """
-    eja_classes = KnownRankEJA.__subclasses__()
-    if nontrivial:
-        eja_classes.remove(TrivialEJA)
+    eja_classes = [HadamardEJA,
+                   JordanSpinEJA,
+                   RealSymmetricEJA,
+                   ComplexHermitianEJA,
+                   QuaternionHermitianEJA]
+    if not nontrivial:
+        eja_classes.append(TrivialEJA)
     classname = choice(eja_classes)
     return classname.random_instance(field=field)
 
@@ -1106,7 +1090,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
         # field can have dimension 4 (quaternions) too.
         return 2
 
-    def __init__(self, field, basis, rank, normalize_basis=True, **kwargs):
+    def __init__(self, field, basis, normalize_basis=True, **kwargs):
         """
         Compared to the superclass constructor, we take a basis instead of
         a multiplication table because the latter can be computed in terms
@@ -1119,7 +1103,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
         # time to ensure that it isn't a generator expression.
         basis = tuple(basis)
 
-        if rank > 1 and normalize_basis:
+        if len(basis) > 1 and normalize_basis:
             # We'll need sqrt(2) to normalize the basis, and this
             # winds up in the multiplication table, so the whole
             # algebra needs to be over the field extension.
@@ -1136,14 +1120,12 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
         Qs = self.multiplication_table_from_matrix_basis(basis)
 
         fdeja = super(MatrixEuclideanJordanAlgebra, self)
-        return fdeja.__init__(field,
-                              Qs,
-                              rank=rank,
-                              natural_basis=basis,
-                              **kwargs)
+        fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
+        return
 
 
-    def _rank_computation(self):
+    @cached_method
+    def rank(self):
         r"""
         Override the parent method with something that tries to compute
         over a faster (non-extension) field.
@@ -1151,7 +1133,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
         if self._basis_normalizers is None:
             # We didn't normalize, so assume that the basis we started
             # with had entries in a nice field.
-            return super(MatrixEuclideanJordanAlgebra, self)._rank_computation()
+            return super(MatrixEuclideanJordanAlgebra, self).rank()
         else:
             basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
                                              self._basis_normalizers) )
@@ -1161,9 +1143,8 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
             # integers.
             J = MatrixEuclideanJordanAlgebra(QQ,
                                              basis,
-                                             self.rank(),
                                              normalize_basis=False)
-            return J._rank_computation()
+            return J.rank()
 
     @cached_method
     def _charpoly_coeff(self, i):
@@ -1182,7 +1163,6 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
             # Do this over the rationals and convert back at the end.
             J = MatrixEuclideanJordanAlgebra(QQ,
                                              basis,
-                                             self.rank(),
                                              normalize_basis=False)
             (_,x,_,_) = J._charpoly_matrix_system()
             p = J._charpoly_coeff(i)
@@ -1293,7 +1273,7 @@ class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         return M
 
 
-class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra, KnownRankEJA):
+class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
@@ -1411,7 +1391,8 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra, KnownRankEJA):
 
     def __init__(self, n, field=AA, **kwargs):
         basis = self._denormalized_basis(n, field)
-        super(RealSymmetricEJA, self).__init__(field, basis, n, **kwargs)
+        super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
+        self.rank.set_cache(n)
 
 
 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
@@ -1573,7 +1554,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
 
 
-class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra, KnownRankEJA):
+class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
     """
     The rank-n simple EJA consisting of complex Hermitian n-by-n
     matrices over the real numbers, the usual symmetric Jordan product,
@@ -1701,7 +1682,8 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra, KnownRankEJA):
 
     def __init__(self, n, field=AA, **kwargs):
         basis = self._denormalized_basis(n,field)
-        super(ComplexHermitianEJA,self).__init__(field, basis, n, **kwargs)
+        super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
+        self.rank.set_cache(n)
 
 
 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
@@ -1867,8 +1849,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
         return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
 
 
-class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra,
-                             KnownRankEJA):
+class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
     """
     The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
     matrices, the usual symmetric Jordan product, and the
@@ -1997,10 +1978,11 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra,
 
     def __init__(self, n, field=AA, **kwargs):
         basis = self._denormalized_basis(n,field)
-        super(QuaternionHermitianEJA,self).__init__(field, basis, n, **kwargs)
+        super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
+        self.rank.set_cache(n)
 
 
-class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):
+class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
     r"""
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the half-trace inner product and jordan product ``x*y =
@@ -2080,7 +2062,8 @@ class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):
         # one-dimensional ambient space (because the rank is bounded
         # by the ambient dimension).
         fdeja = super(BilinearFormEJA, self)
-        return fdeja.__init__(field, mult_table, rank=min(n,2), **kwargs)
+        fdeja.__init__(field, mult_table, **kwargs)
+        self.rank.set_cache(min(n,2))
 
     def inner_product(self, x, y):
         r"""
@@ -2174,7 +2157,7 @@ class JordanSpinEJA(BilinearFormEJA):
         return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
 
 
-class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):
+class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The trivial Euclidean Jordan algebra consisting of only a zero element.
 
@@ -2208,4 +2191,5 @@ class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):
         fdeja = super(TrivialEJA, self)
         # The rank is zero using my definition, namely the dimension of the
         # largest subalgebra generated by any element.
-        return fdeja.__init__(field, mult_table, rank=0, **kwargs)
+        fdeja.__init__(field, mult_table, **kwargs)
+        self.rank.set_cache(0)