]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/cone/cone.py
Update max_ambient_dim parameter name for random_cone().
[sage.d.git] / mjo / cone / cone.py
index e9d0f1e643e3a0d40d8a754faf551ac317e36f37..e40579fa634dc51afc8eaf83ff5b3e68025180b5 100644 (file)
@@ -8,12 +8,55 @@ addsitedir(abspath('../../'))
 from sage.all import *
 
 
-def basically_the_same(K1,K2):
+def _basically_the_same(K1, K2):
     r"""
+    Test whether or not ``K1`` and ``K2`` are "basically the same."
+
+    This is a hack to get around the fact that it's difficult to tell
+    when two cones are linearly isomorphic. We have a proposition that
+    equates two cones, but represented over `\mathbb{Q}`, they are
+    merely linearly isomorphic (not equal). So rather than test for
+    equality, we test a list of properties that should be preserved
+    under an invertible linear transformation.
+
+    OUTPUT:
+
     ``True`` if ``K1`` and ``K2`` are basically the same, and ``False``
-    otherwise. This is intended as a lazy way to check whether or not
-    ``K1`` and ``K2`` are linearly isomorphic (i.e. ``A(K1) == K2`` for
-    some invertible linear transformation ``A``).
+    otherwise.
+
+    EXAMPLES:
+
+    Any proper cone with three generators in `\mathbb{R}^{3}` is
+    basically the same as the nonnegative orthant::
+
+        sage: K1 = Cone([(1,0,0), (0,1,0), (0,0,1)])
+        sage: K2 = Cone([(1,2,3), (3, 18, 4), (66, 51, 0)])
+        sage: _basically_the_same(K1, K2)
+        True
+
+    Negating a cone gives you another cone that is basically the same::
+
+        sage: K = Cone([(0,2,-5), (-6, 2, 4), (0, 51, 0)])
+        sage: _basically_the_same(K, -K)
+        True
+
+    TESTS:
+
+    Any cone is basically the same as itself::
+
+        sage: K = random_cone(max_ambient_dim = 8)
+        sage: _basically_the_same(K, K)
+        True
+
+    After applying an invertible matrix to the rows of a cone, the
+    result should be basically the same as the cone we started with::
+
+        sage: K1 = random_cone(max_ambient_dim = 8)
+        sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular')
+        sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice())
+        sage: _basically_the_same(K1, K2)
+        True
+
     """
     if K1.lattice_dim() != K2.lattice_dim():
         return False
@@ -48,7 +91,7 @@ def basically_the_same(K1,K2):
 
 
 
-def rho(K, K2=None):
+def _rho(K, K2=None):
     r"""
     Restrict ``K`` into its own span, or the span of another cone.
 
@@ -64,18 +107,18 @@ def rho(K, K2=None):
     EXAMPLES::
 
         sage: K = Cone([(1,)])
-        sage: rho(K) == K
+        sage: _rho(K) == K
         True
 
         sage: K2 = Cone([(1,0)])
-        sage: rho(K2).rays()
+        sage: _rho(K2).rays()
         N(1)
         in 1-d lattice N
         sage: K3 = Cone([(1,0,0)])
-        sage: rho(K3).rays()
+        sage: _rho(K3).rays()
         N(1)
         in 1-d lattice N
-        sage: rho(K2) == rho(K3)
+        sage: _rho(K2) == _rho(K3)
         True
 
     TESTS:
@@ -83,8 +126,8 @@ def rho(K, K2=None):
     The projected cone should always be solid::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim = 8)
-        sage: K_S = rho(K)
+        sage: K = random_cone(max_ambient_dim = 8)
+        sage: K_S = _rho(K)
         sage: K_S.is_solid()
         True
 
@@ -92,123 +135,139 @@ def rho(K, K2=None):
     dimension as the space we restricted it to::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim = 8)
-        sage: K_S = rho(K, K.dual() )
+        sage: K = random_cone(max_ambient_dim = 8)
+        sage: K_S = _rho(K, K.dual() )
         sage: K_S.lattice_dim() == K.dual().dim()
         True
 
     This function should not affect the dimension of a cone::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim = 8)
-        sage: K.dim() == rho(K).dim()
+        sage: K = random_cone(max_ambient_dim = 8)
+        sage: K.dim() == _rho(K).dim()
         True
 
     Nor should it affect the lineality of a cone::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim = 8)
-        sage: K.lineality() == rho(K).lineality()
+        sage: K = random_cone(max_ambient_dim = 8)
+        sage: K.lineality() == _rho(K).lineality()
         True
 
     No matter which space we restrict to, the lineality should not
     increase::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim = 8)
-        sage: K.lineality() >= rho(K).lineality()
+        sage: K = random_cone(max_ambient_dim = 8)
+        sage: K.lineality() >= _rho(K).lineality()
         True
-        sage: K.lineality() >= rho(K, K.dual()).lineality()
+        sage: K.lineality() >= _rho(K, K.dual()).lineality()
         True
 
     If we do this according to our paper, then the result is proper::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim = 8, strictly_convex=False, solid=False)
-        sage: K_S = rho(K)
-        sage: K_SP = rho(K_S.dual()).dual()
+        sage: K = random_cone(max_ambient_dim = 8,
+        ....:                 strictly_convex=False,
+        ....:                 solid=False)
+        sage: K_S = _rho(K)
+        sage: K_SP = _rho(K_S.dual()).dual()
         sage: K_SP.is_proper()
         True
-        sage: K_SP = rho(K_S, K_S.dual())
+        sage: K_SP = _rho(K_S, K_S.dual())
         sage: K_SP.is_proper()
         True
 
     ::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim = 8, strictly_convex=True, solid=False)
-        sage: K_S = rho(K)
-        sage: K_SP = rho(K_S.dual()).dual()
+        sage: K = random_cone(max_ambient_dim = 8,
+        ....:                 strictly_convex=True,
+        ....:                 solid=False)
+        sage: K_S = _rho(K)
+        sage: K_SP = _rho(K_S.dual()).dual()
         sage: K_SP.is_proper()
         True
-        sage: K_SP = rho(K_S, K_S.dual())
+        sage: K_SP = _rho(K_S, K_S.dual())
         sage: K_SP.is_proper()
         True
 
     ::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim = 8, strictly_convex=False, solid=True)
-        sage: K_S = rho(K)
-        sage: K_SP = rho(K_S.dual()).dual()
+        sage: K = random_cone(max_ambient_dim = 8,
+        ....:                 strictly_convex=False,
+        ....:                 solid=True)
+        sage: K_S = _rho(K)
+        sage: K_SP = _rho(K_S.dual()).dual()
         sage: K_SP.is_proper()
         True
-        sage: K_SP = rho(K_S, K_S.dual())
+        sage: K_SP = _rho(K_S, K_S.dual())
         sage: K_SP.is_proper()
         True
 
     ::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim = 8, strictly_convex=True, solid=True)
-        sage: K_S = rho(K)
-        sage: K_SP = rho(K_S.dual()).dual()
+        sage: K = random_cone(max_ambient_dim = 8,
+        ....:                 strictly_convex=True,
+        ....:                 solid=True)
+        sage: K_S = _rho(K)
+        sage: K_SP = _rho(K_S.dual()).dual()
         sage: K_SP.is_proper()
         True
-        sage: K_SP = rho(K_S, K_S.dual())
+        sage: K_SP = _rho(K_S, K_S.dual())
         sage: K_SP.is_proper()
         True
 
-    Test the proposition in our paper concerning the duals and
+    Test Proposition 7 in our paper concerning the duals and
     restrictions. Generate a random cone, then create a subcone of
     it. The operation of dual-taking should then commute with rho::
 
         sage: set_random_seed()
-        sage: J = random_cone(max_dim = 8, solid=False, strictly_convex=False)
+        sage: J = random_cone(max_ambient_dim = 8,
+        ....:                 solid=False,
+        ....:                 strictly_convex=False)
         sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice())
-        sage: K_W = rho(K, J)
-        sage: K_star_W_star = rho(K.dual(), J).dual()
-        sage: basically_the_same(K_W, K_star_W_star)
+        sage: K_W_star = _rho(K, J).dual()
+        sage: K_star_W = _rho(K.dual(), J)
+        sage: _basically_the_same(K_W_star, K_star_W)
         True
 
     ::
 
         sage: set_random_seed()
-        sage: J = random_cone(max_dim = 8, solid=True, strictly_convex=False)
+        sage: J = random_cone(max_ambient_dim = 8,
+        ....:                 solid=True,
+        ....:                 strictly_convex=False)
         sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice())
-        sage: K_W = rho(K, J)
-        sage: K_star_W_star = rho(K.dual(), J).dual()
-        sage: basically_the_same(K_W, K_star_W_star)
+        sage: K_W_star = _rho(K, J).dual()
+        sage: K_star_W = _rho(K.dual(), J)
+        sage: _basically_the_same(K_W_star, K_star_W)
         True
 
     ::
 
         sage: set_random_seed()
-        sage: J = random_cone(max_dim = 8, solid=False, strictly_convex=True)
+        sage: J = random_cone(max_ambient_dim = 8,
+        ....:                 solid=False,
+        ....:                 strictly_convex=True)
         sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice())
-        sage: K_W = rho(K, J)
-        sage: K_star_W_star = rho(K.dual(), J).dual()
-        sage: basically_the_same(K_W, K_star_W_star)
+        sage: K_W_star = _rho(K, J).dual()
+        sage: K_star_W = _rho(K.dual(), J)
+        sage: _basically_the_same(K_W_star, K_star_W)
         True
 
     ::
 
         sage: set_random_seed()
-        sage: J = random_cone(max_dim = 8, solid=True, strictly_convex=True)
+        sage: J = random_cone(max_ambient_dim = 8,
+        ....:                 solid=True,
+        ....:                 strictly_convex=True)
         sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice())
-        sage: K_W = rho(K, J)
-        sage: K_star_W_star = rho(K.dual(), J).dual()
-        sage: basically_the_same(K_W, K_star_W_star)
+        sage: K_W_star = _rho(K, J).dual()
+        sage: K_star_W = _rho(K.dual(), J)
+        sage: _basically_the_same(K_W_star, K_star_W)
         True
 
     """
@@ -239,19 +298,29 @@ def discrete_complementarity_set(K):
     r"""
     Compute the discrete complementarity set of this cone.
 
-    The complementarity set of this cone is the set of all orthogonal
-    pairs `(x,s)` such that `x` is in this cone, and `s` is in its
-    dual. The discrete complementarity set restricts `x` and `s` to be
-    generators of their respective cones.
+    The complementarity set of a cone is the set of all orthogonal pairs
+    `(x,s)` such that `x` is in the cone, and `s` is in its dual. The
+    discrete complementarity set is a subset of the complementarity set
+    where `x` and `s` are required to be generators of their respective
+    cones.
+
+    For polyhedral cones, the discrete complementarity set is always
+    finite.
 
     OUTPUT:
 
     A list of pairs `(x,s)` such that,
 
+      * Both `x` and `s` are vectors (not rays).
       * `x` is a generator of this cone.
       * `s` is a generator of this cone's dual.
       * `x` and `s` are orthogonal.
 
+    REFERENCES:
+
+    .. [Orlitzky/Gowda] M. Orlitzky and M. S. Gowda. The Lyapunov Rank of an
+       Improper Cone. Work in-progress.
+
     EXAMPLES:
 
     The discrete complementarity set of the nonnegative orthant consists
@@ -282,25 +351,43 @@ def discrete_complementarity_set(K):
         sage: discrete_complementarity_set(K)
         []
 
+    Likewise when this cone is trivial (its dual is the entire space)::
+
+        sage: L = ToricLattice(0)
+        sage: K = Cone([], ToricLattice(0))
+        sage: discrete_complementarity_set(K)
+        []
+
     TESTS:
 
     The complementarity set of the dual can be obtained by switching the
     components of the complementarity set of the original cone::
 
         sage: set_random_seed()
-        sage: K1 = random_cone(max_dim=6)
+        sage: K1 = random_cone(max_ambient_dim=6)
         sage: K2 = K1.dual()
         sage: expected = [(x,s) for (s,x) in discrete_complementarity_set(K2)]
         sage: actual = discrete_complementarity_set(K1)
         sage: sorted(actual) == sorted(expected)
         True
 
+    The pairs in the discrete complementarity set are in fact
+    complementary::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=6)
+        sage: dcs = discrete_complementarity_set(K)
+        sage: sum([x.inner_product(s).abs() for (x,s) in dcs])
+        0
+
     """
     V = K.lattice().vector_space()
 
-    # Convert the rays to vectors so that we can compute inner
-    # products.
+    # Convert rays to vectors so that we can compute inner products.
     xs = [V(x) for x in K.rays()]
+
+    # We also convert the generators of the dual cone so that we
+    # return pairs of vectors and not (vector, ray) pairs.
     ss = [V(s) for s in K.dual().rays()]
 
     return [(x,s) for x in xs for s in ss if x.inner_product(s) == 0]
@@ -381,7 +468,7 @@ def LL(K):
     of the cone::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8)
+        sage: K = random_cone(max_ambient_dim=8)
         sage: C_of_K = discrete_complementarity_set(K)
         sage: l = [ (L*x).inner_product(s) for (x,s) in C_of_K for L in LL(K) ]
         sage: sum(map(abs, l))
@@ -393,7 +480,7 @@ def LL(K):
     \right)`
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8)
+        sage: K = random_cone(max_ambient_dim=8)
         sage: LL2 = [ L.transpose() for L in LL(K.dual()) ]
         sage: V = VectorSpace( K.lattice().base_field(), K.lattice_dim()^2)
         sage: LL1_vecs = [ V(m.list()) for m in LL(K) ]
@@ -579,45 +666,106 @@ def lyapunov_rank(K):
     [Rudolf et al.]_::
 
         sage: set_random_seed()
-        sage: K1 = random_cone(max_dim=8, strictly_convex=True, solid=True)
-        sage: K2 = random_cone(max_dim=8, strictly_convex=True, solid=True)
+        sage: K1 = random_cone(max_ambient_dim=8,
+        ....:                  strictly_convex=True,
+        ....:                  solid=True)
+        sage: K2 = random_cone(max_ambient_dim=8,
+        ....:                  strictly_convex=True,
+        ....:                  solid=True)
         sage: K = K1.cartesian_product(K2)
         sage: lyapunov_rank(K) == lyapunov_rank(K1) + lyapunov_rank(K2)
         True
 
+    The Lyapunov rank is invariant under a linear isomorphism
+    [Orlitzky/Gowda]_::
+
+        sage: K1 = random_cone(max_ambient_dim = 8)
+        sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular')
+        sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice())
+        sage: lyapunov_rank(K1) == lyapunov_rank(K2)
+        True
+
+    Just to be sure, test a few more::
+
+        sage: K1 = random_cone(max_ambient_dim=8,
+        ....:                  strictly_convex=True,
+        ....:                  solid=True)
+        sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular')
+        sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice())
+        sage: lyapunov_rank(K1) == lyapunov_rank(K2)
+        True
+
+    ::
+
+        sage: K1 = random_cone(max_ambient_dim=8,
+        ....:                  strictly_convex=True,
+        ....:                  solid=False)
+        sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular')
+        sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice())
+        sage: lyapunov_rank(K1) == lyapunov_rank(K2)
+        True
+
+    ::
+
+        sage: K1 = random_cone(max_ambient_dim=8,
+        ....:                  strictly_convex=False,
+        ....:                  solid=True)
+        sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular')
+        sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice())
+        sage: lyapunov_rank(K1) == lyapunov_rank(K2)
+        True
+
+    ::
+
+        sage: K1 = random_cone(max_ambient_dim=8,
+        ....:                  strictly_convex=False,
+        ....:                  solid=False)
+        sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular')
+        sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice())
+        sage: lyapunov_rank(K1) == lyapunov_rank(K2)
+        True
+
     The dual cone `K^{*}` of ``K`` should have the same Lyapunov rank as ``K``
     itself [Rudolf et al.]_::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8)
+        sage: K = random_cone(max_ambient_dim=8)
         sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
         True
 
     Make sure we exercise the non-strictly-convex/non-solid case::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8, strictly_convex=False, solid=False)
+        sage: K = random_cone(max_ambient_dim=8,
+        ....:                 strictly_convex=False,
+        ....:                 solid=False)
         sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
         True
 
     Let's check the other permutations as well, just to be sure::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8, strictly_convex=False, solid=True)
+        sage: K = random_cone(max_ambient_dim=8,
+        ....:                 strictly_convex=False,
+        ....:                 solid=True)
         sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
         True
 
     ::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8, strictly_convex=True, solid=False)
+        sage: K = random_cone(max_ambient_dim=8,
+        ....:                 strictly_convex=True,
+        ....:                 solid=False)
         sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
         True
 
     ::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8, strictly_convex=True, solid=True)
+        sage: K = random_cone(max_ambient_dim=8,
+        ....:                 strictly_convex=True,
+        ....:                 solid=True)
         sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
         True
 
@@ -628,7 +776,9 @@ def lyapunov_rank(K):
     the Lyapunov rank of the trivial cone will be zero::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8, strictly_convex=True, solid=True)
+        sage: K = random_cone(max_ambient_dim=8,
+        ....:                 strictly_convex=True,
+        ....:                 solid=True)
         sage: b = lyapunov_rank(K)
         sage: n = K.lattice_dim()
         sage: (n == 0 or 1 <= b) and b <= n
@@ -640,7 +790,7 @@ def lyapunov_rank(K):
     Lyapunov rank `n-1` in `n` dimensions::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8)
+        sage: K = random_cone(max_ambient_dim=8)
         sage: b = lyapunov_rank(K)
         sage: n = K.lattice_dim()
         sage: b == n-1
@@ -650,10 +800,10 @@ def lyapunov_rank(K):
     reduced to that of a proper cone [Orlitzky/Gowda]_::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8)
+        sage: K = random_cone(max_ambient_dim=8)
         sage: actual = lyapunov_rank(K)
-        sage: K_S = rho(K)
-        sage: K_SP = rho(K_S.dual()).dual()
+        sage: K_S = _rho(K)
+        sage: K_SP = _rho(K_S.dual()).dual()
         sage: l = K.lineality()
         sage: c = K.codim()
         sage: expected = lyapunov_rank(K_SP) + K.dim()*(l + c) + c**2
@@ -663,7 +813,9 @@ def lyapunov_rank(K):
     The Lyapunov rank of a proper cone is just the dimension of ``LL(K)``::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8, strictly_convex=True, solid=True)
+        sage: K = random_cone(max_ambient_dim=8,
+        ....:                 strictly_convex=True,
+        ....:                 solid=True)
         sage: lyapunov_rank(K) == len(LL(K))
         True
 
@@ -671,28 +823,36 @@ def lyapunov_rank(K):
     just increase our confidence that the reduction scheme works::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8, strictly_convex=True, solid=False)
+        sage: K = random_cone(max_ambient_dim=8,
+        ....:                 strictly_convex=True,
+        ....:                 solid=False)
         sage: lyapunov_rank(K) == len(LL(K))
         True
 
     ::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8, strictly_convex=False, solid=True)
+        sage: K = random_cone(max_ambient_dim=8,
+        ....:                 strictly_convex=False,
+        ....:                 solid=True)
         sage: lyapunov_rank(K) == len(LL(K))
         True
 
     ::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8, strictly_convex=False, solid=False)
+        sage: K = random_cone(max_ambient_dim=8,
+        ....:                 strictly_convex=False,
+        ....:                 solid=False)
         sage: lyapunov_rank(K) == len(LL(K))
         True
 
     Test Theorem 3 in [Orlitzky/Gowda]_::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_dim=8, strictly_convex=True, solid=True)
+        sage: K = random_cone(max_ambient_dim=8,
+        ....:                 strictly_convex=True,
+        ....:                 solid=True)
         sage: L = ToricLattice(K.lattice_dim() + 1)
         sage: K = Cone([ r.list() + [0] for r in K.rays() ], lattice=L)
         sage: lyapunov_rank(K) >= K.lattice_dim()
@@ -707,7 +867,7 @@ def lyapunov_rank(K):
 
     if m < n:
         # K is not solid, restrict to its span.
-        K = rho(K)
+        K = _rho(K)
 
         # Lemma 2
         beta += m*(n - m) + (n - m)**2
@@ -715,8 +875,8 @@ def lyapunov_rank(K):
     if l > 0:
         # K is not pointed, restrict to the span of its dual. Uses a
         # proposition from our paper, i.e. this is equivalent to K =
-        # rho(K.dual()).dual().
-        K = rho(K, K.dual())
+        # _rho(K.dual()).dual().
+        K = _rho(K, K.dual())
 
         # Lemma 3
         beta += m * l