]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/cone/cone.py
README: rewrite it, it was rather out-of-date
[sage.d.git] / mjo / cone / cone.py
index 7d919e452a103433639507cef5fb5123d59685c8..b7456e21abc170d6479f9010a2b7ccdd5ab9438d 100644 (file)
-# Sage doesn't load ~/.sage/init.sage during testing (sage -t), so we
-# have to explicitly mangle our sitedir here so that "mjo.cone"
-# resolves.
-from os.path import abspath
-from site import addsitedir
-addsitedir(abspath('../../'))
-
 from sage.all import *
 
-
-def _basically_the_same(K1, K2):
-    r"""
-    Test whether or not ``K1`` and ``K2`` are "basically the same."
-
-    This is a hack to get around the fact that it's difficult to tell
-    when two cones are linearly isomorphic. We have a proposition that
-    equates two cones, but represented over `\mathbb{Q}`, they are
-    merely linearly isomorphic (not equal). So rather than test for
-    equality, we test a list of properties that should be preserved
-    under an invertible linear transformation.
-
-    OUTPUT:
-
-    ``True`` if ``K1`` and ``K2`` are basically the same, and ``False``
-    otherwise.
-
-    EXAMPLES:
-
-    Any proper cone with three generators in `\mathbb{R}^{3}` is
-    basically the same as the nonnegative orthant::
-
-        sage: K1 = Cone([(1,0,0), (0,1,0), (0,0,1)])
-        sage: K2 = Cone([(1,2,3), (3, 18, 4), (66, 51, 0)])
-        sage: _basically_the_same(K1, K2)
-        True
-
-    Negating a cone gives you another cone that is basically the same::
-
-        sage: K = Cone([(0,2,-5), (-6, 2, 4), (0, 51, 0)])
-        sage: _basically_the_same(K, -K)
-        True
-
-    TESTS:
-
-    Any cone is basically the same as itself::
-
-        sage: K = random_cone(max_ambient_dim = 8)
-        sage: _basically_the_same(K, K)
-        True
-
-    After applying an invertible matrix to the rows of a cone, the
-    result should be basically the same as the cone we started with::
-
-        sage: K1 = random_cone(max_ambient_dim = 8)
-        sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular')
-        sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice())
-        sage: _basically_the_same(K1, K2)
-        True
-
-    """
-    if K1.lattice_dim() != K2.lattice_dim():
-        return False
-
-    if K1.nrays() != K2.nrays():
-        return False
-
-    if K1.dim() != K2.dim():
-        return False
-
-    if K1.lineality() != K2.lineality():
-        return False
-
-    if K1.is_solid() != K2.is_solid():
-        return False
-
-    if K1.is_strictly_convex() != K2.is_strictly_convex():
-        return False
-
-    if len(K1.LL()) != len(K2.LL()):
-        return False
-
-    C_of_K1 = K1.discrete_complementarity_set()
-    C_of_K2 = K2.discrete_complementarity_set()
-    if len(C_of_K1) != len(C_of_K2):
-        return False
-
-    if len(K1.facets()) != len(K2.facets()):
-        return False
-
-    return True
-
-
-
-def _restrict_to_space(K, W):
-    r"""
-    Restrict this cone a subspace of its ambient space.
-
-    INPUT:
-
-    - ``W`` -- The subspace into which this cone will be restricted.
-
-    OUTPUT:
-
-    A new cone in a sublattice corresponding to ``W``.
-
-    EXAMPLES:
-
-    When this cone is solid, restricting it into its own span should do
-    nothing::
-
-        sage: K = Cone([(1,)])
-        sage: _restrict_to_space(K, K.span()) == K
-        True
-
-    A single ray restricted into its own span gives the same output
-    regardless of the ambient space::
-
-        sage: K2 = Cone([(1,0)])
-        sage: K2_S = _restrict_to_space(K2, K2.span()).rays()
-        sage: K2_S
-        N(1)
-        in 1-d lattice N
-        sage: K3 = Cone([(1,0,0)])
-        sage: K3_S = _restrict_to_space(K3, K3.span()).rays()
-        sage: K3_S
-        N(1)
-        in 1-d lattice N
-        sage: K2_S == K3_S
-        True
-
-    TESTS:
-
-    The projected cone should always be solid::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim = 8)
-        sage: _restrict_to_space(K, K.span()).is_solid()
-        True
-
-    And the resulting cone should live in a space having the same
-    dimension as the space we restricted it to::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim = 8)
-        sage: K_P = _restrict_to_space(K, K.dual().span())
-        sage: K_P.lattice_dim() == K.dual().dim()
-        True
-
-    This function should not affect the dimension of a cone::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim = 8)
-        sage: K.dim() == _restrict_to_space(K,K.span()).dim()
-        True
-
-    Nor should it affect the lineality of a cone::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim = 8)
-        sage: K.lineality() == _restrict_to_space(K, K.span()).lineality()
-        True
-
-    No matter which space we restrict to, the lineality should not
-    increase::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim = 8)
-        sage: S = K.span(); P = K.dual().span()
-        sage: K.lineality() >= _restrict_to_space(K,S).lineality()
-        True
-        sage: K.lineality() >= _restrict_to_space(K,P).lineality()
-        True
-
-    If we do this according to our paper, then the result is proper::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim = 8)
-        sage: K_S = _restrict_to_space(K, K.span())
-        sage: K_SP = _restrict_to_space(K_S.dual(), K_S.dual().span()).dual()
-        sage: K_SP.is_proper()
-        True
-        sage: K_SP = _restrict_to_space(K_S, K_S.dual().span())
-        sage: K_SP.is_proper()
-        True
-
-    Test the proposition in our paper concerning the duals and
-    restrictions. Generate a random cone, then create a subcone of
-    it. The operation of dual-taking should then commute with
-    _restrict_to_space::
-
-        sage: set_random_seed()
-        sage: J = random_cone(max_ambient_dim = 8)
-        sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice())
-        sage: K_W_star = _restrict_to_space(K, J.span()).dual()
-        sage: K_star_W = _restrict_to_space(K.dual(), J.span())
-        sage: _basically_the_same(K_W_star, K_star_W)
-        True
-
-    """
-    # First we want to intersect ``K`` with ``W``. The easiest way to
-    # do this is via cone intersection, so we turn the subspace ``W``
-    # into a cone.
-    W_cone = Cone(W.basis() + [-b for b in W.basis()], lattice=K.lattice())
-    K = K.intersection(W_cone)
-
-    # We've already intersected K with the span of K2, so every
-    # generator of K should belong to W now.
-    K_W_rays = [ W.coordinate_vector(r) for r in K.rays() ]
-
-    L = ToricLattice(W.dimension())
-    return Cone(K_W_rays, lattice=L)
-
-
-def lyapunov_rank(K):
-    r"""
-    Compute the Lyapunov rank (or bilinearity rank) of this cone.
-
-    The Lyapunov rank of a cone can be thought of in (mainly) two ways:
-
-    1. The dimension of the Lie algebra of the automorphism group of the
-       cone.
-
-    2. The dimension of the linear space of all Lyapunov-like
-       transformations on the cone.
-
-    INPUT:
-
-    A closed, convex polyhedral cone.
-
-    OUTPUT:
-
-    An integer representing the Lyapunov rank of the cone. If the
-    dimension of the ambient vector space is `n`, then the Lyapunov rank
-    will be between `1` and `n` inclusive; however a rank of `n-1` is
-    not possible (see [Orlitzky/Gowda]_).
-
-    ALGORITHM:
-
-    The codimension formula from the second reference is used. We find
-    all pairs `(x,s)` in the complementarity set of `K` such that `x`
-    and `s` are rays of our cone. It is known that these vectors are
-    sufficient to apply the codimension formula. Once we have all such
-    pairs, we "brute force" the codimension formula by finding all
-    linearly-independent `xs^{T}`.
-
-    REFERENCES:
-
-    .. [Gowda/Tao] M.S. Gowda and J. Tao. On the bilinearity rank of a proper
-       cone and Lyapunov-like transformations, Mathematical Programming, 147
-       (2014) 155-170.
-
-    .. [Orlitzky/Gowda] M. Orlitzky and M. S. Gowda. The Lyapunov Rank of an
-       Improper Cone. Work in-progress.
-
-    .. [Rudolf et al.] G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh, Bilinear
-       optimality constraints for the cone of positive polynomials,
-       Mathematical Programming, Series B, 129 (2011) 5-31.
-
-    EXAMPLES:
-
-    The nonnegative orthant in `\mathbb{R}^{n}` always has rank `n`
-    [Rudolf et al.]_::
-
-        sage: positives = Cone([(1,)])
-        sage: lyapunov_rank(positives)
-        1
-        sage: quadrant = Cone([(1,0), (0,1)])
-        sage: lyapunov_rank(quadrant)
-        2
-       sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
-        sage: lyapunov_rank(octant)
-        3
-
-    The full space `\mathbb{R}^{n}` has Lyapunov rank `n^{2}`
-    [Orlitzky/Gowda]_::
-
-        sage: R5 = VectorSpace(QQ, 5)
-        sage: gs = R5.basis() + [ -r for r in R5.basis() ]
-        sage: K = Cone(gs)
-        sage: lyapunov_rank(K)
-        25
-
-    The `L^{3}_{1}` cone is known to have a Lyapunov rank of one
-    [Rudolf et al.]_::
-
-        sage: L31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
-        sage: lyapunov_rank(L31)
-        1
-
-    Likewise for the `L^{3}_{\infty}` cone [Rudolf et al.]_::
-
-        sage: L3infty = Cone([(0,1,1), (1,0,1), (0,-1,1), (-1,0,1)])
-        sage: lyapunov_rank(L3infty)
-        1
-
-    A single ray in `n` dimensions should have Lyapunov rank `n^{2} - n
-    + 1` [Orlitzky/Gowda]_::
-
-        sage: K = Cone([(1,0,0,0,0)])
-        sage: lyapunov_rank(K)
-        21
-        sage: K.lattice_dim()**2 - K.lattice_dim() + 1
-        21
-
-    A subspace (of dimension `m`) in `n` dimensions should have a
-    Lyapunov rank of `n^{2} - m\left(n - m)` [Orlitzky/Gowda]_::
-
-        sage: e1 = (1,0,0,0,0)
-        sage: neg_e1 = (-1,0,0,0,0)
-        sage: e2 = (0,1,0,0,0)
-        sage: neg_e2 = (0,-1,0,0,0)
-        sage: z = (0,0,0,0,0)
-        sage: K = Cone([e1, neg_e1, e2, neg_e2, z, z, z])
-        sage: lyapunov_rank(K)
-        19
-        sage: K.lattice_dim()**2 - K.dim()*K.codim()
-        19
-
-    The Lyapunov rank should be additive on a product of proper cones
-    [Rudolf et al.]_::
-
-        sage: L31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
-        sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
-        sage: K = L31.cartesian_product(octant)
-        sage: lyapunov_rank(K) == lyapunov_rank(L31) + lyapunov_rank(octant)
-        True
-
-    Two isomorphic cones should have the same Lyapunov rank [Rudolf et al.]_.
-    The cone ``K`` in the following example is isomorphic to the nonnegative
-    octant in `\mathbb{R}^{3}`::
-
-        sage: K = Cone([(1,2,3), (-1,1,0), (1,0,6)])
-        sage: lyapunov_rank(K)
-        3
-
-    The dual cone `K^{*}` of ``K`` should have the same Lyapunov rank as ``K``
-    itself [Rudolf et al.]_::
-
-        sage: K = Cone([(2,2,4), (-1,9,0), (2,0,6)])
-        sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
-        True
-
-    TESTS:
-
-    The Lyapunov rank should be additive on a product of proper cones
-    [Rudolf et al.]_::
-
-        sage: set_random_seed()
-        sage: K1 = random_cone(max_ambient_dim=8,
-        ....:                  strictly_convex=True,
-        ....:                  solid=True)
-        sage: K2 = random_cone(max_ambient_dim=8,
-        ....:                  strictly_convex=True,
-        ....:                  solid=True)
-        sage: K = K1.cartesian_product(K2)
-        sage: lyapunov_rank(K) == lyapunov_rank(K1) + lyapunov_rank(K2)
-        True
-
-    The Lyapunov rank is invariant under a linear isomorphism
-    [Orlitzky/Gowda]_::
-
-        sage: K1 = random_cone(max_ambient_dim = 8)
-        sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular')
-        sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice())
-        sage: lyapunov_rank(K1) == lyapunov_rank(K2)
-        True
-
-    The dual cone `K^{*}` of ``K`` should have the same Lyapunov rank as ``K``
-    itself [Rudolf et al.]_::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8)
-        sage: lyapunov_rank(K) == lyapunov_rank(K.dual())
-        True
-
-    The Lyapunov rank of a proper polyhedral cone in `n` dimensions can
-    be any number between `1` and `n` inclusive, excluding `n-1`
-    [Gowda/Tao]_. By accident, the `n-1` restriction will hold for the
-    trivial cone in a trivial space as well. However, in zero dimensions,
-    the Lyapunov rank of the trivial cone will be zero::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8,
-        ....:                 strictly_convex=True,
-        ....:                 solid=True)
-        sage: b = lyapunov_rank(K)
-        sage: n = K.lattice_dim()
-        sage: (n == 0 or 1 <= b) and b <= n
-        True
-        sage: b == n-1
-        False
-
-    In fact [Orlitzky/Gowda]_, no closed convex polyhedral cone can have
-    Lyapunov rank `n-1` in `n` dimensions::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8)
-        sage: b = lyapunov_rank(K)
-        sage: n = K.lattice_dim()
-        sage: b == n-1
-        False
-
-    The calculation of the Lyapunov rank of an improper cone can be
-    reduced to that of a proper cone [Orlitzky/Gowda]_::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8)
-        sage: actual = lyapunov_rank(K)
-        sage: K_S = _restrict_to_space(K, K.span())
-        sage: K_SP = _restrict_to_space(K_S.dual(), K_S.dual().span()).dual()
-        sage: l = K.lineality()
-        sage: c = K.codim()
-        sage: expected = lyapunov_rank(K_SP) + K.dim()*(l + c) + c**2
-        sage: actual == expected
-        True
-
-    The Lyapunov rank of any cone is just the dimension of ``K.LL()``::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8)
-        sage: lyapunov_rank(K) == len(K.LL())
-        True
-
-    We can make an imperfect cone perfect by adding a slack variable
-    (a Theorem in [Orlitzky/Gowda]_)::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8,
-        ....:                 strictly_convex=True,
-        ....:                 solid=True)
-        sage: L = ToricLattice(K.lattice_dim() + 1)
-        sage: K = Cone([ r.list() + [0] for r in K.rays() ], lattice=L)
-        sage: lyapunov_rank(K) >= K.lattice_dim()
-        True
-
-    """
-    beta = 0
-
-    m = K.dim()
-    n = K.lattice_dim()
-    l = K.lineality()
-
-    if m < n:
-        # K is not solid, restrict to its span.
-        K = _restrict_to_space(K, K.span())
-
-        # Non-solid reduction lemma.
-        beta += (n - m)*n
-
-    if l > 0:
-        # K is not pointed, restrict to the span of its dual. Uses a
-        # proposition from our paper, i.e. this is equivalent to K =
-        # _rho(K.dual()).dual().
-        K = _restrict_to_space(K, K.dual().span())
-
-        # Non-pointed reduction lemma.
-        beta += l * m
-
-    beta += len(K.LL())
-    return beta
-
-
-
-def is_lyapunov_like(L,K):
-    r"""
-    Determine whether or not ``L`` is Lyapunov-like on ``K``.
-
-    We say that ``L`` is Lyapunov-like on ``K`` if `\left\langle
-    L\left\lparenx\right\rparen,s\right\rangle = 0` for all pairs
-    `\left\langle x,s \right\rangle` in the complementarity set of
-    ``K``. It is known [Orlitzky]_ that this property need only be
-    checked for generators of ``K`` and its dual.
-
-    INPUT:
-
-    - ``L`` -- A linear transformation or matrix.
-
-    - ``K`` -- A polyhedral closed convex cone.
-
-    OUTPUT:
-
-    ``True`` if it can be proven that ``L`` is Lyapunov-like on ``K``,
-    and ``False`` otherwise.
-
-    .. WARNING::
-
-        If this function returns ``True``, then ``L`` is Lyapunov-like
-        on ``K``. However, if ``False`` is returned, that could mean one
-        of two things. The first is that ``L`` is definitely not
-        Lyapunov-like on ``K``. The second is more of an "I don't know"
-        answer, returned (for example) if we cannot prove that an inner
-        product is zero.
-
-    REFERENCES:
-
-    .. [Orlitzky] M. Orlitzky. The Lyapunov rank of an
-       improper cone (preprint).
-
-    EXAMPLES:
-
-    The identity is always Lyapunov-like in a nontrivial space::
-
-        sage: set_random_seed()
-        sage: K = random_cone(min_ambient_dim = 1, max_rays = 8)
-        sage: L = identity_matrix(K.lattice_dim())
-        sage: is_lyapunov_like(L,K)
-        True
-
-    As is the "zero" transformation::
-
-        sage: K = random_cone(min_ambient_dim = 1, max_rays = 5)
-        sage: R = K.lattice().vector_space().base_ring()
-        sage: L = zero_matrix(R, K.lattice_dim())
-        sage: is_lyapunov_like(L,K)
-        True
-
-    Everything in ``K.LL()`` should be Lyapunov-like on ``K``::
-
-        sage: K = random_cone(min_ambient_dim = 1, max_rays = 5)
-        sage: all([is_lyapunov_like(L,K) for L in K.LL()])
-        True
-
-    """
-    return all([(L*x).inner_product(s) == 0
-                for (x,s) in K.discrete_complementarity_set()])
-
-
-def random_element(K):
-    r"""
-    Return a random element of ``K`` from its ambient vector space.
-
-    ALGORITHM:
-
-    The cone ``K`` is specified in terms of its generators, so that
-    ``K`` is equal to the convex conic combination of those generators.
-    To choose a random element of ``K``, we assign random nonnegative
-    coefficients to each generator of ``K`` and construct a new vector
-    from the scaled rays.
-
-    A vector, rather than a ray, is returned so that the element may
-    have non-integer coordinates. Thus the element may have an
-    arbitrarily small norm.
-
-    EXAMPLES:
-
-    A random element of the trivial cone is zero::
-
-        sage: set_random_seed()
-        sage: K = Cone([], ToricLattice(0))
-        sage: random_element(K)
-        ()
-        sage: K = Cone([(0,)])
-        sage: random_element(K)
-        (0)
-        sage: K = Cone([(0,0)])
-        sage: random_element(K)
-        (0, 0)
-        sage: K = Cone([(0,0,0)])
-        sage: random_element(K)
-        (0, 0, 0)
-
-    TESTS:
-
-    Any cone should contain an element of itself::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_rays = 8)
-        sage: K.contains(random_element(K))
-        True
-
-    """
-    V = K.lattice().vector_space()
-    F = V.base_ring()
-    coefficients = [ F.random_element().abs() for i in range(K.nrays()) ]
-    vector_gens  = map(V, K.rays())
-    scaled_gens  = [ coefficients[i]*vector_gens[i]
-                         for i in range(len(vector_gens)) ]
-
-    # Make sure we return a vector. Without the coercion, we might
-    # return ``0`` when ``K`` has no rays.
-    v = V(sum(scaled_gens))
-    return v
-
-
-def positive_operators(K):
-    r"""
-    Compute generators of the cone of positive operators on this cone.
-
-    OUTPUT:
-
-    A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
-    Each matrix ``P`` in the list should have the property that ``P*x``
-    is an element of ``K`` whenever ``x`` is an element of
-    ``K``. Moreover, any nonnegative linear combination of these
-    matrices shares the same property.
-
-    EXAMPLES:
-
-    The trivial cone in a trivial space has no positive operators::
-
-        sage: K = Cone([], ToricLattice(0))
-        sage: positive_operators(K)
-        []
-
-    Positive operators on the nonnegative orthant are nonnegative matrices::
-
-        sage: K = Cone([(1,)])
-        sage: positive_operators(K)
-        [[1]]
-
-        sage: K = Cone([(1,0),(0,1)])
-        sage: positive_operators(K)
-        [
-        [1 0]  [0 1]  [0 0]  [0 0]
-        [0 0], [0 0], [1 0], [0 1]
-        ]
-
-    Every operator is positive on the ambient vector space::
-
-        sage: K = Cone([(1,),(-1,)])
-        sage: K.is_full_space()
-        True
-        sage: positive_operators(K)
-        [[1], [-1]]
-
-        sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
-        sage: K.is_full_space()
-        True
-        sage: positive_operators(K)
-        [
-        [1 0]  [-1  0]  [0 1]  [ 0 -1]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
-        [0 0], [ 0  0], [0 0], [ 0  0], [1 0], [-1  0], [0 1], [ 0 -1]
-        ]
-
-    TESTS:
-
-    A positive operator on a cone should send its generators into the cone::
-
-        sage: K = random_cone(max_ambient_dim = 6)
-        sage: pi_of_K = positive_operators(K)
-        sage: all([K.contains(p*x) for p in pi_of_K for x in K.rays()])
-        True
-
-    """
-    # Sage doesn't think matrices are vectors, so we have to convert
-    # our matrices to vectors explicitly before we can figure out how
-    # many are linearly-indepenedent.
-    #
-    # The space W has the same base ring as V, but dimension
-    # dim(V)^2. So it has the same dimension as the space of linear
-    # transformations on V. In other words, it's just the right size
-    # to create an isomorphism between it and our matrices.
-    V = K.lattice().vector_space()
-    W = VectorSpace(V.base_ring(), V.dimension()**2)
-
-    tensor_products = [ s.tensor_product(x) for x in K for s in K.dual() ]
-
-    # Turn our matrices into long vectors...
-    vectors = [ W(m.list()) for m in tensor_products ]
-
-    # Create the *dual* cone of the positive operators, expressed as
-    # long vectors..
-    L = ToricLattice(W.dimension())
-    pi_dual = Cone(vectors, lattice=L)
-
-    # Now compute the desired cone from its dual...
-    pi_cone = pi_dual.dual()
-
-    # And finally convert its rays back to matrix representations.
-    M = MatrixSpace(V.base_ring(), V.dimension())
-
-    return [ M(v.list()) for v in pi_cone.rays() ]
-
-
-def Z_transformations(K):
-    r"""
-    Compute generators of the cone of Z-transformations on this cone.
-
-    OUTPUT:
-
-    A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
-    Each matrix ``L`` in the list should have the property that
-    ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element the
-    discrete complementarity set of ``K``. Moreover, any nonnegative
-    linear combination of these matrices shares the same property.
-
-    EXAMPLES:
-
-    The trivial cone in a trivial space has no Z-transformations::
-
-        sage: K = Cone([], ToricLattice(0))
-        sage: Z_transformations(K)
-        []
-
-    Z-transformations on a subspace are Lyapunov-like and vice-versa::
-
-        sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
-        sage: K.is_full_space()
-        True
-        sage: llvs = span([ vector(l.list()) for l in K.LL() ])
-        sage: zvs  = span([ vector(z.list()) for z in Z_transformations(K) ])
-        sage: zvs == llvs
-        True
-
-    TESTS:
-
-    The Z-property is possessed by every Z-transformation::
-
-        sage: K = random_cone(max_ambient_dim = 6)
-        sage: Z_of_K = Z_transformations(K)
-        sage: dcs = K.discrete_complementarity_set()
-        sage: all([z(x).inner_product(s) <= 0 for z in Z_of_K
-        ....:                                 for (x,s) in dcs])
-        True
-
-    The lineality space of Z is LL::
-
-        sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 6)
-        sage: llvs = span([ vector(l.list()) for l in K.LL() ])
-        sage: z_cone  = Cone([ z.list() for z in Z_transformations(K) ])
-        sage: z_cone.linear_subspace() == llvs
-        True
-
-    """
-    # Sage doesn't think matrices are vectors, so we have to convert
-    # our matrices to vectors explicitly before we can figure out how
-    # many are linearly-indepenedent.
-    #
-    # The space W has the same base ring as V, but dimension
-    # dim(V)^2. So it has the same dimension as the space of linear
-    # transformations on V. In other words, it's just the right size
-    # to create an isomorphism between it and our matrices.
-    V = K.lattice().vector_space()
-    W = VectorSpace(V.base_ring(), V.dimension()**2)
-
-    C_of_K = K.discrete_complementarity_set()
-    tensor_products = [ s.tensor_product(x) for (x,s) in C_of_K ]
-
-    # Turn our matrices into long vectors...
-    vectors = [ W(m.list()) for m in tensor_products ]
-
-    # Create the *dual* cone of the positive operators, expressed as
-    # long vectors..
-    L = ToricLattice(W.dimension())
-    Z_dual = Cone(vectors, lattice=L)
-
-    # Now compute the desired cone from its dual...
-    Z_cone = Z_dual.dual()
-
-    # And finally convert its rays back to matrix representations.
-    M = MatrixSpace(V.base_ring(), V.dimension())
-
-    return [ M(v.list()) for v in Z_cone.rays() ]
+def LL_cone(K):
+    gens = K.lyapunov_like_basis()
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone(( g.list() for g in gens ), lattice=L, check=False)
+
+def Sigma_cone(K):
+    gens = K.cross_positive_operators_gens()
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone(( g.list() for g in gens ), lattice=L, check=False)
+
+def Z_cone(K):
+    gens = K.Z_operators_gens()
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone(( g.list() for g in gens ), lattice=L, check=False)
+
+def pi_cone(K1, K2=None):
+    if K2 is None:
+        K2 = K1
+    gens = K1.positive_operators_gens(K2)
+    L = ToricLattice(K1.lattice_dim()*K2.lattice_dim())
+    return Cone(( g.list() for g in gens ), lattice=L, check=False)