]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/cone/cone.py
Add SEEALSO blocks and inexact ring error tests.
[sage.d.git] / mjo / cone / cone.py
index 9358585c2fea0397c87b82726c2d01a6c8960509..aeec0c90b5f582c8ba858d4b616fff191fb6d529 100644 (file)
 from sage.all import *
+from sage.geometry.cone import is_Cone
 
-def is_lyapunov_like(L,K):
+def is_positive_on(L,K):
     r"""
-    Determine whether or not ``L`` is Lyapunov-like on ``K``.
+    Determine whether or not ``L`` is positive on ``K``.
+
+    We say that ``L`` is positive on a closed convex cone ``K`` if
+    `L\left\lparen x \right\rparen` belongs to ``K`` for all `x` in
+    ``K``. This property need only be checked for generators of ``K``.
 
-    We say that ``L`` is Lyapunov-like on ``K`` if `\left\langle
-    L\left\lparenx\right\rparen,s\right\rangle = 0` for all pairs
-    `\left\langle x,s \right\rangle` in the complementarity set of
-    ``K``. It is known [Orlitzky]_ that this property need only be
-    checked for generators of ``K`` and its dual.
+    To reliably check whether or not ``L`` is positive, its base ring
+    must be either exact (for example, the rationals) or ``SR``. An
+    exact ring is more reliable, but in some cases a matrix whose
+    entries contain symbolic constants like ``e`` and ``pi`` will work.
 
     INPUT:
 
-    - ``L`` -- A linear transformation or matrix.
+    - ``L`` -- A matrix over either an exact ring or ``SR``.
 
     - ``K`` -- A polyhedral closed convex cone.
 
     OUTPUT:
 
-    ``True`` if it can be proven that ``L`` is Lyapunov-like on ``K``,
-    and ``False`` otherwise.
+    If the base ring of ``L`` is exact, then ``True`` will be returned if
+    and only if ``L`` is positive on ``K``.
 
-    .. WARNING::
+    If the base ring of ``L`` is ``SR``, then the situation is more
+    complicated:
 
-        If this function returns ``True``, then ``L`` is Lyapunov-like
-        on ``K``. However, if ``False`` is returned, that could mean one
-        of two things. The first is that ``L`` is definitely not
-        Lyapunov-like on ``K``. The second is more of an "I don't know"
-        answer, returned (for example) if we cannot prove that an inner
-        product is zero.
+    - ``True`` will be returned if it can be proven that ``L``
+      is positive on ``K``.
+    - ``False`` will be returned if it can be proven that ``L``
+      is not positive on ``K``.
+    - ``False`` will also be returned if we can't decide; specifically
+      if we arrive at a symbolic inequality that cannot be resolved.
 
-    REFERENCES:
+    .. SEEALSO::
 
-    M. Orlitzky. The Lyapunov rank of an improper cone.
-    http://www.optimization-online.org/DB_HTML/2015/10/5135.html
+          :func:`is_cross_positive_on`,
+          :func:`is_Z_operator_on`,
+          :func:`is_lyapunov_like_on`
 
     EXAMPLES:
 
-    The identity is always Lyapunov-like in a nontrivial space::
+    Nonnegative matrices are positive operators on the nonnegative
+    orthant::
+
+        sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
+        sage: L = random_matrix(QQ,3).apply_map(abs)
+        sage: is_positive_on(L,K)
+        True
+
+    TESTS:
+
+    The identity operator is always positive::
 
         sage: set_random_seed()
-        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
+        sage: K = random_cone(max_ambient_dim=8)
         sage: L = identity_matrix(K.lattice_dim())
-        sage: is_lyapunov_like(L,K)
+        sage: is_positive_on(L,K)
         True
 
-    As is the "zero" transformation::
+    The "zero" operator is always positive::
 
-        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
+        sage: K = random_cone(max_ambient_dim=8)
         sage: R = K.lattice().vector_space().base_ring()
         sage: L = zero_matrix(R, K.lattice_dim())
-        sage: is_lyapunov_like(L,K)
+        sage: is_positive_on(L,K)
         True
 
-        Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like
-        on ``K``::
+    Everything in ``K.positive_operators_gens()`` should be
+    positive on ``K``::
 
-        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
-        sage: all([ is_lyapunov_like(L,K) for L in K.lyapunov_like_basis() ])
+        sage: K = random_cone(max_ambient_dim=5)
+        sage: all([ is_positive_on(L,K)                     # long time
+        ....:       for L in K.positive_operators_gens() ]) # long time
+        True
+        sage: all([ is_positive_on(L.change_ring(SR),K)     # long time
+        ....:       for L in K.positive_operators_gens() ]) # long time
         True
 
+    Technically we could test this, but for now only closed convex cones
+    are supported as our ``K`` argument::
+
+        sage: K = [ vector([1,2,3]), vector([5,-1,7]) ]
+        sage: L = identity_matrix(3)
+        sage: is_positive_on(L,K)
+        Traceback (most recent call last):
+        ...
+        TypeError: K must be a Cone.
+
+    We can't give reliable answers over inexact rings::
+
+        sage: K = Cone([(1,2,3), (4,5,6)])
+        sage: L = identity_matrix(RR,3)
+        sage: is_positive_on(L,K)
+        Traceback (most recent call last):
+        ...
+        ValueError: The base ring of L is neither SR nor exact.
+
     """
-    return all([(L*x).inner_product(s) == 0
-                for (x,s) in K.discrete_complementarity_set()])
 
+    if not is_Cone(K):
+        raise TypeError('K must be a Cone.')
+    if not L.base_ring().is_exact() and not L.base_ring() is SR:
+        raise ValueError('The base ring of L is neither SR nor exact.')
+
+    if L.base_ring().is_exact():
+        # This should be way faster than computing the dual and
+        # checking a bunch of inequalities, but it doesn't work if
+        # ``L*x`` is symbolic. For example, ``e in Cone([(1,)])``
+        # is true, but returns ``False``.
+        return all([ L*x in K for x in K ])
+    else:
+        # Fall back to inequality-checking when the entries of ``L``
+        # might be symbolic.
+        return all([ s*(L*x) >= 0 for x in K for s in K.dual() ])
 
-def motzkin_decomposition(K):
+
+def is_cross_positive_on(L,K):
     r"""
-    Return the pair of components in the Motzkin decomposition of this cone.
+    Determine whether or not ``L`` is cross-positive on ``K``.
 
-    Every convex cone is the direct sum of a strictly convex cone and a
-    linear subspace [Stoer-Witzgall]_. Return a pair ``(P,S)`` of cones
-    such that ``P`` is strictly convex, ``S`` is a subspace, and ``K``
-    is the direct sum of ``P`` and ``S``.
+    We say that ``L`` is cross-positive on a closed convex cone``K`` if
+    `\left\langle L\left\lparenx\right\rparen,s\right\rangle \ge 0` for
+    all pairs `\left\langle x,s \right\rangle` in the complementarity
+    set of ``K``. This property need only be checked for generators of
+    ``K`` and its dual.
 
-    OUTPUT:
+    To reliably check whether or not ``L`` is cross-positive, its base
+    ring must be either exact (for example, the rationals) or ``SR``. An
+    exact ring is more reliable, but in some cases a matrix whose
+    entries contain symbolic constants like ``e`` and ``pi`` will work.
 
-    An ordered pair ``(P,S)`` of closed convex polyhedral cones where
-    ``P`` is strictly convex, ``S`` is a subspace, and ``K`` is the
-    direct sum of ``P`` and ``S``.
+    INPUT:
 
-    REFERENCES:
+    - ``L`` -- A matrix over either an exact ring or ``SR``.
 
-    .. [Stoer-Witzgall] J. Stoer and C. Witzgall. Convexity and
-       Optimization in Finite Dimensions I. Springer-Verlag, New
-       York, 1970.
+    - ``K`` -- A polyhedral closed convex cone.
 
-    EXAMPLES:
+    OUTPUT:
 
-    The nonnegative orthant is strictly convex, so it is its own
-    strictly convex component and its subspace component is trivial::
+    If the base ring of ``L`` is exact, then ``True`` will be returned if
+    and only if ``L`` is cross-positive on ``K``.
 
-        sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
-        sage: (P,S) = motzkin_decomposition(K)
-        sage: K.is_equivalent(P)
-        True
-        sage: S.is_trivial()
-        True
+    If the base ring of ``L`` is ``SR``, then the situation is more
+    complicated:
 
-    Likewise, full spaces are their own subspace components::
+    - ``True`` will be returned if it can be proven that ``L``
+      is cross-positive on ``K``.
+    - ``False`` will be returned if it can be proven that ``L``
+      is not cross-positive on ``K``.
+    - ``False`` will also be returned if we can't decide; specifically
+      if we arrive at a symbolic inequality that cannot be resolved.
 
-        sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
-        sage: K.is_full_space()
-        True
-        sage: (P,S) = motzkin_decomposition(K)
-        sage: K.is_equivalent(S)
-        True
-        sage: P.is_trivial()
-        True
+    .. SEEALSO::
 
-    TESTS:
+          :func:`is_positive_on`,
+          :func:`is_Z_operator_on`,
+          :func:`is_lyapunov_like_on`
+
+    EXAMPLES:
 
-    A random point in the cone should belong to either the strictly
-    convex component or the subspace component. If the point is nonzero,
-    it cannot be in both::
+    The identity operator is always cross-positive::
 
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=8)
-        sage: (P,S) = motzkin_decomposition(K)
-        sage: x = K.random_element(ring=QQ)
-        sage: P.contains(x) or S.contains(x)
-        True
-        sage: x.is_zero() or (P.contains(x) != S.contains(x))
+        sage: L = identity_matrix(K.lattice_dim())
+        sage: is_cross_positive_on(L,K)
         True
 
-    The strictly convex component should always be strictly convex, and
-    the subspace component should always be a subspace::
+    The "zero" operator is always cross-positive::
 
-        sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=8)
-        sage: (P,S) = motzkin_decomposition(K)
-        sage: P.is_strictly_convex()
-        True
-        sage: S.lineality() == S.dim()
+        sage: R = K.lattice().vector_space().base_ring()
+        sage: L = zero_matrix(R, K.lattice_dim())
+        sage: is_cross_positive_on(L,K)
         True
 
-    A strictly convex cone should be equal to its strictly convex component::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8, strictly_convex=True)
-        sage: (P,_) = motzkin_decomposition(K)
-        sage: K.is_equivalent(P)
-        True
+    TESTS:
 
-    The generators of the components are obtained from orthogonal
-    projections of the original generators [Stoer-Witzgall]_::
+    Everything in ``K.cross_positive_operators_gens()`` should be
+    cross-positive on ``K``::
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8)
-        sage: (P,S) = motzkin_decomposition(K)
-        sage: A = S.linear_subspace().complement().matrix()
-        sage: proj_S_perp = A.transpose() * (A*A.transpose()).inverse() * A
-        sage: expected_P = Cone([ proj_S_perp*g for g in K ], K.lattice())
-        sage: P.is_equivalent(expected_P)
+        sage: K = random_cone(max_ambient_dim=5)
+        sage: all([ is_cross_positive_on(L,K)                     # long time
+        ....:       for L in K.cross_positive_operators_gens() ]) # long time
         True
-        sage: A = S.linear_subspace().matrix()
-        sage: proj_S = A.transpose() * (A*A.transpose()).inverse() * A
-        sage: expected_S = Cone([ proj_S*g for g in K ], K.lattice())
-        sage: S.is_equivalent(expected_S)
+        sage: all([ is_cross_positive_on(L.change_ring(SR),K)     # long time
+        ....:       for L in K.cross_positive_operators_gens() ]) # long time
         True
-    """
-    # The lines() method only returns one generator per line. For a true
-    # line, we also need a generator pointing in the opposite direction.
-    S_gens = [ direction*gen for direction in [1,-1] for gen in K.lines() ]
-    S = Cone(S_gens, K.lattice(), check=False)
 
-    # Since ``S`` is a subspace, the rays of its dual generate its
-    # orthogonal complement.
-    S_perp = Cone(S.dual(), K.lattice(), check=False)
-    P = K.intersection(S_perp)
+    Technically we could test this, but for now only closed convex cones
+    are supported as our ``K`` argument::
 
-    return (P,S)
+        sage: L = identity_matrix(3)
+        sage: K = [ vector([8,2,-8]), vector([5,-5,7]) ]
+        sage: is_cross_positive_on(L,K)
+        Traceback (most recent call last):
+        ...
+        TypeError: K must be a Cone.
 
+    We can't give reliable answers over inexact rings::
 
-def positive_operator_gens(K):
-    r"""
-    Compute generators of the cone of positive operators on this cone.
-
-    OUTPUT:
+        sage: K = Cone([(1,2,3), (4,5,6)])
+        sage: L = identity_matrix(RR,3)
+        sage: is_cross_positive_on(L,K)
+        Traceback (most recent call last):
+        ...
+        ValueError: The base ring of L is neither SR nor exact.
 
-    A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
-    Each matrix ``P`` in the list should have the property that ``P*x``
-    is an element of ``K`` whenever ``x`` is an element of
-    ``K``. Moreover, any nonnegative linear combination of these
-    matrices shares the same property.
+    """
+    if not is_Cone(K):
+        raise TypeError('K must be a Cone.')
+    if not L.base_ring().is_exact() and not L.base_ring() is SR:
+        raise ValueError('The base ring of L is neither SR nor exact.')
 
-    EXAMPLES:
+    return all([ s*(L*x) >= 0
+                 for (x,s) in K.discrete_complementarity_set() ])
 
-    Positive operators on the nonnegative orthant are nonnegative matrices::
+def is_Z_operator_on(L,K):
+    r"""
+    Determine whether or not ``L`` is a Z-operator on ``K``.
 
-        sage: K = Cone([(1,)])
-        sage: positive_operator_gens(K)
-        [[1]]
+    We say that ``L`` is a Z-operator on a closed convex cone``K`` if
+    `\left\langle L\left\lparenx\right\rparen,s\right\rangle \le 0` for
+    all pairs `\left\langle x,s \right\rangle` in the complementarity
+    set of ``K``. It is known that this property need only be checked
+    for generators of ``K`` and its dual.
 
-        sage: K = Cone([(1,0),(0,1)])
-        sage: positive_operator_gens(K)
-        [
-        [1 0]  [0 1]  [0 0]  [0 0]
-        [0 0], [0 0], [1 0], [0 1]
-        ]
+    A matrix is a Z-operator on ``K`` if and only if its negation is a
+    cross-positive operator on ``K``.
 
-    The trivial cone in a trivial space has no positive operators::
+    To reliably check whether or not ``L`` is a Z operator, its base
+    ring must be either exact (for example, the rationals) or ``SR``. An
+    exact ring is more reliable, but in some cases a matrix whose
+    entries contain symbolic constants like ``e`` and ``pi`` will work.
 
-        sage: K = Cone([], ToricLattice(0))
-        sage: positive_operator_gens(K)
-        []
+    INPUT:
 
-    Every operator is positive on the trivial cone::
+    - ``L`` -- A matrix over either an exact ring or ``SR``.
 
-        sage: K = Cone([(0,)])
-        sage: positive_operator_gens(K)
-        [[1], [-1]]
+    - ``K`` -- A polyhedral closed convex cone.
 
-        sage: K = Cone([(0,0)])
-        sage: K.is_trivial()
-        True
-        sage: positive_operator_gens(K)
-        [
-        [1 0]  [-1  0]  [0 1]  [ 0 -1]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
-        [0 0], [ 0  0], [0 0], [ 0  0], [1 0], [-1  0], [0 1], [ 0 -1]
-        ]
+    OUTPUT:
 
-    Every operator is positive on the ambient vector space::
+    If the base ring of ``L`` is exact, then ``True`` will be returned if
+    and only if ``L`` is a Z-operator on ``K``.
 
-        sage: K = Cone([(1,),(-1,)])
-        sage: K.is_full_space()
-        True
-        sage: positive_operator_gens(K)
-        [[1], [-1]]
+    If the base ring of ``L`` is ``SR``, then the situation is more
+    complicated:
 
-        sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
-        sage: K.is_full_space()
-        True
-        sage: positive_operator_gens(K)
-        [
-        [1 0]  [-1  0]  [0 1]  [ 0 -1]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
-        [0 0], [ 0  0], [0 0], [ 0  0], [1 0], [-1  0], [0 1], [ 0 -1]
-        ]
-
-    A non-obvious application is to find the positive operators on the
-    right half-plane::
-
-        sage: K = Cone([(1,0),(0,1),(0,-1)])
-        sage: positive_operator_gens(K)
-        [
-        [1 0]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
-        [0 0], [1 0], [-1  0], [0 1], [ 0 -1]
-        ]
+    - ``True`` will be returned if it can be proven that ``L``
+      is a Z-operator on ``K``.
+    - ``False`` will be returned if it can be proven that ``L``
+      is not a Z-operator on ``K``.
+    - ``False`` will also be returned if we can't decide; specifically
+      if we arrive at a symbolic inequality that cannot be resolved.
 
-    TESTS:
+    .. SEEALSO::
 
-    Each positive operator generator should send the generators of the
-    cone into the cone::
+          :func:`is_positive_on`,
+          :func:`is_cross_positive_on`,
+          :func:`is_lyapunov_like_on`
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: all([ K.contains(P*x) for P in pi_of_K for x in K ])
-        True
+    EXAMPLES:
 
-    Each positive operator generator should send a random element of the
-    cone into the cone::
+    The identity operator is always a Z-operator::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: all([ K.contains(P*K.random_element(QQ)) for P in pi_of_K ])
+        sage: K = random_cone(max_ambient_dim=8)
+        sage: L = identity_matrix(K.lattice_dim())
+        sage: is_Z_operator_on(L,K)
         True
 
-    A random element of the positive operator cone should send the
-    generators of the cone into the cone::
+    The "zero" operator is always a Z-operator::
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: pi_cone = Cone([ g.list() for g in pi_of_K ],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list())
-        sage: all([ K.contains(P*x) for x in K ])
+        sage: K = random_cone(max_ambient_dim=8)
+        sage: R = K.lattice().vector_space().base_ring()
+        sage: L = zero_matrix(R, K.lattice_dim())
+        sage: is_Z_operator_on(L,K)
         True
 
-    A random element of the positive operator cone should send a random
-    element of the cone into the cone::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: pi_cone = Cone([ g.list() for g in pi_of_K ],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list())
-        sage: K.contains(P*K.random_element(ring=QQ))
-        True
+    TESTS:
 
-    The lineality space of the dual of the cone of positive operators
-    can be computed from the lineality spaces of the cone and its dual::
+    Everything in ``K.Z_operators_gens()`` should be a Z-operator
+    on ``K``::
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: pi_cone = Cone([ g.list() for g in pi_of_K ],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: actual = pi_cone.dual().linear_subspace()
-        sage: U1 = [ vector((s.tensor_product(x)).list())
-        ....:        for x in K.lines()
-        ....:        for s in K.dual() ]
-        sage: U2 = [ vector((s.tensor_product(x)).list())
-        ....:        for x in K
-        ....:        for s in K.dual().lines() ]
-        sage: expected = pi_cone.lattice().vector_space().span(U1 + U2)
-        sage: actual == expected
+        sage: K = random_cone(max_ambient_dim=5)
+        sage: all([ is_Z_operator_on(L,K)            # long time
+        ....:       for L in K.Z_operators_gens() ]) # long time
         True
-
-    The lineality of the dual of the cone of positive operators
-    is known from its lineality space::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: n = K.lattice_dim()
-        sage: m = K.dim()
-        sage: l = K.lineality()
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: L = ToricLattice(n**2)
-        sage: pi_cone = Cone([p.list() for p in pi_of_K],
-        ....:                 lattice=L,
-        ....:                 check=False)
-        sage: actual = pi_cone.dual().lineality()
-        sage: expected = l*(m - l) + m*(n - m)
-        sage: actual == expected
+        sage: all([ is_Z_operator_on(L.change_ring(SR),K) # long time
+        ....:       for L in K.Z_operators_gens() ])      # long time
         True
 
-    The dimension of the cone of positive operators is given by the
-    corollary in my paper::
+    Technically we could test this, but for now only closed convex cones
+    are supported as our ``K`` argument::
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: n = K.lattice_dim()
-        sage: m = K.dim()
-        sage: l = K.lineality()
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: L = ToricLattice(n**2)
-        sage: pi_cone = Cone([p.list() for p in pi_of_K],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: actual = pi_cone.dim()
-        sage: expected = n**2 - l*(m - l) - (n - m)*m
-        sage: actual == expected
-        True
+        sage: L = identity_matrix(3)
+        sage: K = [ vector([-4,20,3]), vector([1,-5,2]) ]
+        sage: is_Z_operator_on(L,K)
+        Traceback (most recent call last):
+        ...
+        TypeError: K must be a Cone.
 
-    The trivial cone, full space, and half-plane all give rise to the
-    expected dimensions::
 
-        sage: n = ZZ.random_element().abs()
-        sage: K = Cone([[0] * n], ToricLattice(n))
-        sage: K.is_trivial()
-        True
-        sage: L = ToricLattice(n^2)
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: pi_cone = Cone([p.list() for p in pi_of_K],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: actual = pi_cone.dim()
-        sage: actual == n^2
-        True
-        sage: K = K.dual()
-        sage: K.is_full_space()
-        True
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: pi_cone = Cone([p.list() for p in pi_of_K],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: actual = pi_cone.dim()
-        sage: actual == n^2
-        True
-        sage: K = Cone([(1,0),(0,1),(0,-1)])
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: actual = Cone([p.list() for p in pi_of_K], check=False).dim()
-        sage: actual == 3
-        True
+    We can't give reliable answers over inexact rings::
 
-    The lineality of the cone of positive operators follows from the
-    description of its generators::
+        sage: K = Cone([(1,2,3), (4,5,6)])
+        sage: L = identity_matrix(RR,3)
+        sage: is_Z_operator_on(L,K)
+        Traceback (most recent call last):
+        ...
+        ValueError: The base ring of L is neither SR nor exact.
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: n = K.lattice_dim()
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: L = ToricLattice(n**2)
-        sage: pi_cone = Cone([p.list() for p in pi_of_K],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: actual = pi_cone.lineality()
-        sage: expected = n**2 - K.dim()*K.dual().dim()
-        sage: actual == expected
-        True
+    """
+    return is_cross_positive_on(-L,K)
 
-    The trivial cone, full space, and half-plane all give rise to the
-    expected linealities::
 
-        sage: n = ZZ.random_element().abs()
-        sage: K = Cone([[0] * n], ToricLattice(n))
-        sage: K.is_trivial()
-        True
-        sage: L = ToricLattice(n^2)
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: pi_cone = Cone([p.list() for p in pi_of_K],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: actual = pi_cone.lineality()
-        sage: actual == n^2
-        True
-        sage: K = K.dual()
-        sage: K.is_full_space()
-        True
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
-        sage: pi_cone.lineality() == n^2
-        True
-        sage: K = Cone([(1,0),(0,1),(0,-1)])
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: pi_cone = Cone([p.list() for p in pi_of_K], check=False)
-        sage: actual = pi_cone.lineality()
-        sage: actual == 2
-        True
+def is_lyapunov_like_on(L,K):
+    r"""
+    Determine whether or not ``L`` is Lyapunov-like on ``K``.
 
-    A cone is proper if and only if its cone of positive operators
-    is proper::
+    We say that ``L`` is Lyapunov-like on a closed convex cone ``K`` if
+    `\left\langle L\left\lparenx\right\rparen,s\right\rangle = 0` for
+    all pairs `\left\langle x,s \right\rangle` in the complementarity
+    set of ``K``. This property need only be checked for generators of
+    ``K`` and its dual.
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: pi_cone = Cone([p.list() for p in pi_of_K],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: K.is_proper() == pi_cone.is_proper()
-        True
+    An operator is Lyapunov-like on ``K`` if and only if both the
+    operator itself and its negation are cross-positive on ``K``.
 
-    The positive operators of a permuted cone can be obtained by
-    conjugation::
+    To reliably check whether or not ``L`` is Lyapunov-like, its base
+    ring must be either exact (for example, the rationals) or ``SR``. An
+    exact ring is more reliable, but in some cases a matrix whose
+    entries contain symbolic constants like ``e`` and ``pi`` will work.
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
-        sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
-        sage: pi_of_pK = positive_operator_gens(pK)
-        sage: actual = Cone([t.list() for t in pi_of_pK],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: expected = Cone([(p*t*p.inverse()).list() for t in pi_of_K],
-        ....:                   lattice=L,
-        ....:                   check=False)
-        sage: actual.is_equivalent(expected)
-        True
+    INPUT:
 
-    A transformation is positive on a cone if and only if its adjoint is
-    positive on the dual of that cone::
+    - ``L`` -- A matrix over either an exact ring or ``SR``.
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: F = K.lattice().vector_space().base_field()
-        sage: n = K.lattice_dim()
-        sage: L = ToricLattice(n**2)
-        sage: W = VectorSpace(F, n**2)
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: pi_of_K_star = positive_operator_gens(K.dual())
-        sage: pi_cone = Cone([p.list() for p in pi_of_K],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: pi_star = Cone([p.list() for p in pi_of_K_star],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: M = MatrixSpace(F, n)
-        sage: L = M(pi_cone.random_element(ring=QQ).list())
-        sage: pi_star.contains(W(L.transpose().list()))
-        True
-
-        sage: L = W.random_element()
-        sage: L_star = W(M(L.list()).transpose().list())
-        sage: pi_cone.contains(L) ==  pi_star.contains(L_star)
-        True
-    """
-    # Matrices are not vectors in Sage, so we have to convert them
-    # to vectors explicitly before we can find a basis. We need these
-    # two values to construct the appropriate "long vector" space.
-    F = K.lattice().base_field()
-    n = K.lattice_dim()
-
-    tensor_products = [ s.tensor_product(x) for x in K for s in K.dual() ]
-
-    # Convert those tensor products to long vectors.
-    W = VectorSpace(F, n**2)
-    vectors = [ W(tp.list()) for tp in tensor_products ]
-
-    check = True
-    if K.is_solid() or K.is_strictly_convex():
-        # The lineality space of either ``K`` or ``K.dual()`` is
-        # trivial and it's easy to show that our generating set is
-        # minimal. I would love a proof that this works when ``K`` is
-        # neither pointed nor solid.
-        #
-        # Note that in that case we can get *duplicates*, since the
-        # tensor product of (x,s) is the same as that of (-x,-s).
-        check = False
-
-    # Create the dual cone of the positive operators, expressed as
-    # long vectors.
-    pi_dual = Cone(vectors, ToricLattice(W.dimension()), check=check)
-
-    # Now compute the desired cone from its dual...
-    pi_cone = pi_dual.dual()
-
-    # And finally convert its rays back to matrix representations.
-    M = MatrixSpace(F, n)
-    return [ M(v.list()) for v in pi_cone ]
-
-
-def Z_transformation_gens(K):
-    r"""
-    Compute generators of the cone of Z-transformations on this cone.
+    - ``K`` -- A polyhedral closed convex cone.
 
     OUTPUT:
 
-    A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
-    Each matrix ``L`` in the list should have the property that
-    ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element the
-    discrete complementarity set of ``K``. Moreover, any nonnegative
-    linear combination of these matrices shares the same property.
+    If the base ring of ``L`` is exact, then ``True`` will be returned if
+    and only if ``L`` is Lyapunov-like on ``K``.
 
-    EXAMPLES:
+    If the base ring of ``L`` is ``SR``, then the situation is more
+    complicated:
 
-    Z-transformations on the nonnegative orthant are just Z-matrices.
-    That is, matrices whose off-diagonal elements are nonnegative::
-
-        sage: K = Cone([(1,0),(0,1)])
-        sage: Z_transformation_gens(K)
-        [
-        [ 0 -1]  [ 0  0]  [-1  0]  [1 0]  [ 0  0]  [0 0]
-        [ 0  0], [-1  0], [ 0  0], [0 0], [ 0 -1], [0 1]
-        ]
-        sage: K = Cone([(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)])
-        sage: all([ z[i][j] <= 0 for z in Z_transformation_gens(K)
-        ....:                    for i in range(z.nrows())
-        ....:                    for j in range(z.ncols())
-        ....:                    if i != j ])
-        True
+    - ``True`` will be returned if it can be proven that ``L``
+      is Lyapunov-like on ``K``.
+    - ``False`` will be returned if it can be proven that ``L``
+      is not Lyapunov-like on ``K``.
+    - ``False`` will also be returned if we can't decide; specifically
+      if we arrive at a symbolic inequality that cannot be resolved.
 
-    The trivial cone in a trivial space has no Z-transformations::
+    .. SEEALSO::
 
-        sage: K = Cone([], ToricLattice(0))
-        sage: Z_transformation_gens(K)
-        []
+          :func:`is_positive_on`,
+          :func:`is_cross_positive_on`,
+          :func:`is_Z_operator_on`
 
-    Every operator is a Z-transformation on the ambient vector space::
+    EXAMPLES:
 
-        sage: K = Cone([(1,),(-1,)])
-        sage: K.is_full_space()
-        True
-        sage: Z_transformation_gens(K)
-        [[-1], [1]]
+    Diagonal matrices are Lyapunov-like operators on the nonnegative
+    orthant::
 
-        sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
-        sage: K.is_full_space()
-        True
-        sage: Z_transformation_gens(K)
-        [
-        [-1  0]  [1 0]  [ 0 -1]  [0 1]  [ 0  0]  [0 0]  [ 0  0]  [0 0]
-        [ 0  0], [0 0], [ 0  0], [0 0], [-1  0], [1 0], [ 0 -1], [0 1]
-        ]
-
-    A non-obvious application is to find the Z-transformations on the
-    right half-plane::
-
-        sage: K = Cone([(1,0),(0,1),(0,-1)])
-        sage: Z_transformation_gens(K)
-        [
-        [-1  0]  [1 0]  [ 0  0]  [0 0]  [ 0  0]  [0 0]
-        [ 0  0], [0 0], [-1  0], [1 0], [ 0 -1], [0 1]
-        ]
-
-    Z-transformations on a subspace are Lyapunov-like and vice-versa::
-
-        sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
-        sage: K.is_full_space()
-        True
-        sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
-        sage: zs  = span([ vector(z.list()) for z in Z_transformation_gens(K) ])
-        sage: zs == lls
+        sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
+        sage: L = diagonal_matrix(random_vector(QQ,3))
+        sage: is_lyapunov_like_on(L,K)
         True
 
     TESTS:
 
-    The Z-property is possessed by every Z-transformation::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: Z_of_K = Z_transformation_gens(K)
-        sage: dcs = K.discrete_complementarity_set()
-        sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
-        ....:                                  for (x,s) in dcs])
-        True
-
-    The lineality space of the cone of Z-transformations is the space of
-    Lyapunov-like transformations::
+    The identity operator is always Lyapunov-like::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: Z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ],
-        ....:               lattice=L,
-        ....:               check=False)
-        sage: ll_basis = [ vector(l.list()) for l in K.lyapunov_like_basis() ]
-        sage: lls = L.vector_space().span(ll_basis)
-        sage: Z_cone.linear_subspace() == lls
+        sage: K = random_cone(max_ambient_dim=8)
+        sage: L = identity_matrix(K.lattice_dim())
+        sage: is_lyapunov_like_on(L,K)
         True
 
-    The lineality of the Z-transformations on a cone is the Lyapunov
-    rank of that cone::
+    The "zero" operator is always Lyapunov-like::
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: Z_of_K = Z_transformation_gens(K)
-        sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: Z_cone  = Cone([ z.list() for z in Z_of_K ],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: Z_cone.lineality() == K.lyapunov_rank()
+        sage: K = random_cone(max_ambient_dim=8)
+        sage: R = K.lattice().vector_space().base_ring()
+        sage: L = zero_matrix(R, K.lattice_dim())
+        sage: is_lyapunov_like_on(L,K)
         True
 
-    The lineality spaces of the duals of the positive operator and
-    Z-transformation cones are equal. From this it follows that the
-    dimensions of the Z-transformation cone and positive operator cone
-    are equal::
+    Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like
+    on ``K``::
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: pi_of_K = positive_operator_gens(K)
-        sage: Z_of_K = Z_transformation_gens(K)
-        sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: pi_cone = Cone([p.list() for p in pi_of_K],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: Z_cone = Cone([ z.list() for z in Z_of_K],
-        ....:               lattice=L,
-        ....:               check=False)
-        sage: pi_cone.dim() == Z_cone.dim()
+        sage: K = random_cone(max_ambient_dim=5)
+        sage: all([ is_lyapunov_like_on(L,K)            # long time
+        ....:       for L in K.lyapunov_like_basis() ]) # long time
         True
-        sage: pi_star = pi_cone.dual()
-        sage: z_star = Z_cone.dual()
-        sage: pi_star.linear_subspace() == z_star.linear_subspace()
+        sage: all([ is_lyapunov_like_on(L.change_ring(SR),K) # long time
+        ....:       for L in K.lyapunov_like_basis() ])      # long time
         True
 
-    The trivial cone, full space, and half-plane all give rise to the
-    expected dimensions::
+    Technically we could test this, but for now only closed convex cones
+    are supported as our ``K`` argument::
 
-        sage: n = ZZ.random_element().abs()
-        sage: K = Cone([[0] * n], ToricLattice(n))
-        sage: K.is_trivial()
-        True
-        sage: L = ToricLattice(n^2)
-        sage: Z_of_K = Z_transformation_gens(K)
-        sage: Z_cone = Cone([z.list() for z in Z_of_K],
-        ....:               lattice=L,
-        ....:               check=False)
-        sage: actual = Z_cone.dim()
-        sage: actual == n^2
-        True
-        sage: K = K.dual()
-        sage: K.is_full_space()
-        True
-        sage: Z_of_K = Z_transformation_gens(K)
-        sage: Z_cone = Cone([z.list() for z in Z_of_K],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: actual = Z_cone.dim()
-        sage: actual == n^2
-        True
-        sage: K = Cone([(1,0),(0,1),(0,-1)])
-        sage: Z_of_K = Z_transformation_gens(K)
-        sage: Z_cone = Cone([z.list() for z in Z_of_K], check=False)
-        sage: Z_cone.dim() == 3
-        True
+        sage: L = identity_matrix(3)
+        sage: K = [ vector([2,2,-1]), vector([5,4,-3]) ]
+        sage: is_lyapunov_like_on(L,K)
+        Traceback (most recent call last):
+        ...
+        TypeError: K must be a Cone.
 
-    The Z-transformations of a permuted cone can be obtained by
-    conjugation::
+    We can't give reliable answers over inexact rings::
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
-        sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
-        sage: Z_of_pK = Z_transformation_gens(pK)
-        sage: actual = Cone([t.list() for t in Z_of_pK],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: Z_of_K = Z_transformation_gens(K)
-        sage: expected = Cone([(p*t*p.inverse()).list() for t in Z_of_K],
-        ....:                   lattice=L,
-        ....:                   check=False)
-        sage: actual.is_equivalent(expected)
-        True
+        sage: K = Cone([(1,2,3), (4,5,6)])
+        sage: L = identity_matrix(RR,3)
+        sage: is_lyapunov_like_on(L,K)
+        Traceback (most recent call last):
+        ...
+        ValueError: The base ring of L is neither SR nor exact.
 
-    A transformation is a Z-transformation on a cone if and only if its
-    adjoint is a Z-transformation on the dual of that cone::
+    """
+    if not is_Cone(K):
+        raise TypeError('K must be a Cone.')
+    if not L.base_ring().is_exact() and not L.base_ring() is SR:
+        raise ValueError('The base ring of L is neither SR nor exact.')
 
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=4)
-        sage: F = K.lattice().vector_space().base_field()
-        sage: n = K.lattice_dim()
-        sage: L = ToricLattice(n**2)
-        sage: W = VectorSpace(F, n**2)
-        sage: Z_of_K = Z_transformation_gens(K)
-        sage: Z_of_K_star = Z_transformation_gens(K.dual())
-        sage: Z_cone = Cone([p.list() for p in Z_of_K],
-        ....:               lattice=L,
-        ....:               check=False)
-        sage: Z_star = Cone([p.list() for p in Z_of_K_star],
-        ....:               lattice=L,
-        ....:               check=False)
-        sage: M = MatrixSpace(F, n)
-        sage: L = M(Z_cone.random_element(ring=QQ).list())
-        sage: Z_star.contains(W(L.transpose().list()))
-        True
+    return all([ s*(L*x) == 0
+                 for (x,s) in K.discrete_complementarity_set() ])
 
-        sage: L = W.random_element()
-        sage: L_star = W(M(L.list()).transpose().list())
-        sage: Z_cone.contains(L) ==  Z_star.contains(L_star)
-        True
-    """
-    # Matrices are not vectors in Sage, so we have to convert them
-    # to vectors explicitly before we can find a basis. We need these
-    # two values to construct the appropriate "long vector" space.
-    F = K.lattice().base_field()
-    n = K.lattice_dim()
-
-    # These tensor products contain generators for the dual cone of
-    # the cross-positive transformations.
-    tensor_products = [ s.tensor_product(x)
-                        for (x,s) in K.discrete_complementarity_set() ]
-
-    # Turn our matrices into long vectors...
-    W = VectorSpace(F, n**2)
-    vectors = [ W(m.list()) for m in tensor_products ]
-
-    check = True
-    if K.is_solid() or K.is_strictly_convex():
-        # The lineality space of either ``K`` or ``K.dual()`` is
-        # trivial and it's easy to show that our generating set is
-        # minimal. I would love a proof that this works when ``K`` is
-        # neither pointed nor solid.
-        #
-        # Note that in that case we can get *duplicates*, since the
-        # tensor product of (x,s) is the same as that of (-x,-s).
-        check = False
-
-    # Create the dual cone of the cross-positive operators,
-    # expressed as long vectors.
-    Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension()), check=check)
-
-    # Now compute the desired cone from its dual...
-    Sigma_cone = Sigma_dual.dual()
-
-    # And finally convert its rays back to matrix representations.
-    # But first, make them negative, so we get Z-transformations and
-    # not cross-positive ones.
-    M = MatrixSpace(F, n)
-    return [ -M(v.list()) for v in Sigma_cone ]
 
+def LL_cone(K):
+    gens = K.lyapunov_like_basis()
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone([ g.list() for g in gens ], lattice=L, check=False)
+
+def Sigma_cone(K):
+    gens = K.cross_positive_operators_gens()
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone([ g.list() for g in gens ], lattice=L, check=False)
 
 def Z_cone(K):
-    gens = Z_transformation_gens(K)
+    gens = K.Z_operators_gens()
     L = ToricLattice(K.lattice_dim()**2)
     return Cone([ g.list() for g in gens ], lattice=L, check=False)
 
-def pi_cone(K):
-    gens = positive_operator_gens(K)
-    L = ToricLattice(K.lattice_dim()**2)
+def pi_cone(K1, K2=None):
+    if K2 is None:
+        K2 = K1
+    gens = K1.positive_operators_gens(K2)
+    L = ToricLattice(K1.lattice_dim()*K2.lattice_dim())
     return Cone([ g.list() for g in gens ], lattice=L, check=False)