]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/cone/cone.py
More examples and a better implementation for random_element().
[sage.d.git] / mjo / cone / cone.py
index f78c27e7e8ba748274b968601fff61c4701a98c1..a5f5f2f4fcf1ac603a9d8d48a75a0924003bd8cf 100644 (file)
@@ -40,14 +40,14 @@ def is_lyapunov_like(L,K):
     The identity is always Lyapunov-like in a nontrivial space::
 
         sage: set_random_seed()
-        sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 8)
+        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
         sage: L = identity_matrix(K.lattice_dim())
         sage: is_lyapunov_like(L,K)
         True
 
     As is the "zero" transformation::
 
-        sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 8)
+        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
         sage: R = K.lattice().vector_space().base_ring()
         sage: L = zero_matrix(R, K.lattice_dim())
         sage: is_lyapunov_like(L,K)
@@ -56,7 +56,7 @@ def is_lyapunov_like(L,K):
         Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like
         on ``K``::
 
-        sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 6)
+        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
         sage: all([ is_lyapunov_like(L,K) for L in K.lyapunov_like_basis() ])
         True
 
@@ -99,27 +99,46 @@ def random_element(K):
         sage: random_element(K)
         (0, 0, 0)
 
+    A random element of the nonnegative orthant should have all
+    components nonnegative::
+
+        sage: set_random_seed()
+        sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
+        sage: all([ x >= 0 for x in random_element(K) ])
+        True
+
     TESTS:
 
-    Any cone should contain an element of itself::
+    Any cone should contain a random element of itself::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_rays = 8)
+        sage: K = random_cone(max_ambient_dim=8)
         sage: K.contains(random_element(K))
         True
 
+    A strictly convex cone contains no lines, and thus no negative
+    multiples of any of its elements besides zero::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=8, strictly_convex=True)
+        sage: x = random_element(K)
+        sage: x.is_zero() or not K.contains(-x)
+        True
+
+    The sum of random elements of a cone lies in the cone::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=8)
+        sage: K.contains(sum([random_element(K) for i in range(10)]))
+        True
+
     """
     V = K.lattice().vector_space()
-    F = V.base_ring()
-    coefficients = [ F.random_element().abs() for i in range(K.nrays()) ]
-    vector_gens  = map(V, K.rays())
-    scaled_gens  = [ coefficients[i]*vector_gens[i]
-                         for i in range(len(vector_gens)) ]
+    scaled_gens = [ V.base_field().random_element().abs()*V(r) for r in K ]
 
     # Make sure we return a vector. Without the coercion, we might
     # return ``0`` when ``K`` has no rays.
-    v = V(sum(scaled_gens))
-    return v
+    return V(sum(scaled_gens))
 
 
 def positive_operator_gens(K):
@@ -176,7 +195,8 @@ def positive_operator_gens(K):
 
     A positive operator on a cone should send its generators into the cone::
 
-        sage: K = random_cone(max_ambient_dim = 6)
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=5)
         sage: pi_of_K = positive_operator_gens(K)
         sage: all([K.contains(p*x) for p in pi_of_K for x in K.rays()])
         True
@@ -184,16 +204,41 @@ def positive_operator_gens(K):
     The dimension of the cone of positive operators is given by the
     corollary in my paper::
 
-        sage: K = random_cone(max_ambient_dim = 6)
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=5)
         sage: n = K.lattice_dim()
         sage: m = K.dim()
         sage: l = K.lineality()
         sage: pi_of_K = positive_operator_gens(K)
-        sage: actual = Cone([p.list() for p in pi_of_K]).dim()
-        sage: expected = n**2 - l*(n - l) - (n - m)*m
+        sage: L = ToricLattice(n**2)
+        sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim()
+        sage: expected = n**2 - l*(m - l) - (n - m)*m
         sage: actual == expected
         True
 
+    The lineality of the cone of positive operators is given by the
+    corollary in my paper::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=5)
+        sage: n = K.lattice_dim()
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: L = ToricLattice(n**2)
+        sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality()
+        sage: expected = n**2 - K.dim()*K.dual().dim()
+        sage: actual == expected
+        True
+
+    The cone ``K`` is proper if and only if the cone of positive
+    operators on ``K`` is proper::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=5)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
+        sage: K.is_proper() == pi_cone.is_proper()
+        True
     """
     # Matrices are not vectors in Sage, so we have to convert them
     # to vectors explicitly before we can find a basis. We need these
@@ -270,7 +315,7 @@ def Z_transformation_gens(K):
     The Z-property is possessed by every Z-transformation::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim = 6)
+        sage: K = random_cone(max_ambient_dim=6)
         sage: Z_of_K = Z_transformation_gens(K)
         sage: dcs = K.discrete_complementarity_set()
         sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
@@ -280,12 +325,33 @@ def Z_transformation_gens(K):
     The lineality space of Z is LL::
 
         sage: set_random_seed()
-        sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 6)
+        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
         sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
         sage: z_cone  = Cone([ z.list() for z in Z_transformation_gens(K) ])
         sage: z_cone.linear_subspace() == lls
         True
 
+    And thus, the lineality of Z is the Lyapunov rank::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=6)
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: z_cone  = Cone([ z.list() for z in Z_of_K ], lattice=L)
+        sage: z_cone.lineality() == K.lyapunov_rank()
+        True
+
+    The lineality spaces of pi-star and Z-star are equal:
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=5)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: pi_star = Cone([p.list() for p in pi_of_K], lattice=L).dual()
+        sage: z_star  = Cone([ z.list() for z in Z_of_K], lattice=L).dual()
+        sage: pi_star.linear_subspace() == z_star.linear_subspace()
+        True
     """
     # Matrices are not vectors in Sage, so we have to convert them
     # to vectors explicitly before we can find a basis. We need these
@@ -314,3 +380,18 @@ def Z_transformation_gens(K):
     # not cross-positive ones.
     M = MatrixSpace(F, n)
     return [ -M(v.list()) for v in Sigma_cone.rays() ]
+
+
+def Z_cone(K):
+    gens = Z_transformation_gens(K)
+    L = None
+    if len(gens) == 0:
+        L = ToricLattice(0)
+    return Cone([ g.list() for g in gens ], lattice=L)
+
+def pi_cone(K):
+    gens = positive_operator_gens(K)
+    L = None
+    if len(gens) == 0:
+        L = ToricLattice(0)
+    return Cone([ g.list() for g in gens ], lattice=L)