]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/cone/cone.py
Commit the busted version of cone.py.
[sage.d.git] / mjo / cone / cone.py
index 2e3dc8afb78cd1f4e1d5f368eb5f75733d127e82..81698e467c603df3e57cb764c256a2e082df5ec6 100644 (file)
@@ -8,6 +8,58 @@ addsitedir(abspath('../../'))
 from sage.all import *
 
 
+def project_span(K, K2 = None):
+    r"""
+    Return a "copy" of ``K`` embeded in a lower-dimensional space.
+
+    By default, we will project ``K`` into the subspace spanned by its
+    rays. However, if ``K2`` is not ``None``, we will project into the
+    space spanned by the rays of ``K2`` instead.
+
+    EXAMPLES::
+
+        sage: K = Cone([(1,0,0), (0,1,0)])
+        sage: project_span(K)
+        2-d cone in 2-d lattice N
+        sage: project_span(K).rays()
+        N(1, 0),
+        N(0, 1)
+        in 2-d lattice N
+
+        sage: K = Cone([(1,0,0), (0,1,0)])
+        sage: K2 = Cone([(0,1)])
+        sage: project_span(K, K2).rays()
+        N(1)
+        in 1-d lattice N
+
+    """
+    # Allow us to use a second cone to generate the subspace into
+    # which we're "projecting."
+    if K2 is None:
+        K2 = K
+
+    # Use these to generate the new cone.
+    cs1 = K.rays().matrix().columns()
+
+    # And use these to figure out which indices to drop.
+    cs2 = K2.rays().matrix().columns()
+
+    perp_idxs = []
+
+    for idx in range(0, len(cs2)):
+        if cs2[idx].is_zero():
+            perp_idxs.append(idx)
+
+    solid_cols = [ cs1[idx] for idx in range(0,len(cs1))
+                            if not idx in perp_idxs
+                            and not idx >= len(cs2) ]
+
+    m = matrix(solid_cols)
+    L = ToricLattice(len(m.rows()))
+    J = Cone(m.transpose(), lattice=L)
+    return J
+
+
 def discrete_complementarity_set(K):
     r"""
     Compute the discrete complementarity set of this cone.
@@ -87,8 +139,70 @@ def LL(K):
 
     OUTPUT:
 
-    A ``MatrixSpace`` object `M` such that every matrix `L \in M` is
-    Lyapunov-like on this cone.
+    A list of matrices forming a basis for the space of all
+    Lyapunov-like transformations on the given cone.
+
+    EXAMPLES:
+
+    The trivial cone has no Lyapunov-like transformations::
+
+        sage: L = ToricLattice(0)
+        sage: K = Cone([], lattice=L)
+        sage: LL(K)
+        []
+
+    The Lyapunov-like transformations on the nonnegative orthant are
+    simply diagonal matrices::
+
+        sage: K = Cone([(1,)])
+        sage: LL(K)
+        [[1]]
+
+        sage: K = Cone([(1,0),(0,1)])
+        sage: LL(K)
+        [
+        [1 0]  [0 0]
+        [0 0], [0 1]
+        ]
+
+        sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
+        sage: LL(K)
+        [
+        [1 0 0]  [0 0 0]  [0 0 0]
+        [0 0 0]  [0 1 0]  [0 0 0]
+        [0 0 0], [0 0 0], [0 0 1]
+        ]
+
+    Only the identity matrix is Lyapunov-like on the `L^{3}_{1}` and
+    `L^{3}_{\infty}` cones [Rudolf et al.]_::
+
+        sage: L31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
+        sage: LL(L31)
+        [
+        [1 0 0]
+        [0 1 0]
+        [0 0 1]
+        ]
+
+        sage: L3infty = Cone([(0,1,1), (1,0,1), (0,-1,1), (-1,0,1)])
+        sage: LL(L3infty)
+        [
+        [1 0 0]
+        [0 1 0]
+        [0 0 1]
+        ]
+
+    TESTS:
+
+    The inner product `\left< L\left(x\right), s \right>` is zero for
+    every pair `\left( x,s \right)` in the discrete complementarity set
+    of the cone::
+
+        sage: K = random_cone(max_dim=8, max_rays=10)
+        sage: C_of_K = discrete_complementarity_set(K)
+        sage: l = [ (L*x).inner_product(s) for (x,s) in C_of_K for L in LL(K) ]
+        sage: sum(map(abs, l))
+        0
 
     """
     V = K.lattice().vector_space()
@@ -145,7 +259,7 @@ def lyapunov_rank(K):
     An integer representing the Lyapunov rank of the cone. If the
     dimension of the ambient vector space is `n`, then the Lyapunov rank
     will be between `1` and `n` inclusive; however a rank of `n-1` is
-    not possible (see the first reference).
+    not possible for any cone.
 
     .. note::
 
@@ -171,6 +285,9 @@ def lyapunov_rank(K):
        cone and Lyapunov-like transformations, Mathematical Programming, 147
        (2014) 155-170.
 
+    .. [Orlitzky/Gowda] M. Orlitzky and M. S. Gowda. The Lyapunov Rank of an
+       Improper Cone. Work in-progress.
+
     .. [Rudolf et al.] G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh, Bilinear
        optimality constraints for the cone of positive polynomials,
        Mathematical Programming, Series B, 129 (2011) 5-31.
@@ -259,5 +376,32 @@ def lyapunov_rank(K):
         sage: b == n-1
         False
 
+    In fact [Orlitzky/Gowda]_, no closed convex polyhedral cone can have
+    Lyapunov rank `n-1` in `n` dimensions::
+
+        sage: K = random_cone(max_dim=10, max_rays=16)
+        sage: b = lyapunov_rank(K)
+        sage: n = K.lattice_dim()
+        sage: b == n-1
+        False
+
+    The calculation of the Lyapunov rank of an improper cone can be
+    reduced to that of a proper cone [Orlitzky/Gowda]_::
+
+        sage: K = random_cone(max_dim=15, max_rays=25)
+        sage: actual = lyapunov_rank(K)
+        sage: K_S = project_span(K)
+        sage: J_T1 = project_span(K_S.dual()).dual()
+        sage: J_T2 = project_span(K, K_S.dual())
+        sage: J_T2 = Cone(J_T2.rays(), lattice=J_T1.lattice())
+        sage: J_T1 == J_T2
+        True
+        sage: J_T = J_T1
+        sage: l = K.linear_subspace().dimension()
+        sage: codim = K.lattice_dim() - K.dim()
+        sage: expected = lyapunov_rank(J_T) + K.dim()*(l + codim) + codim**2
+        sage: actual == expected
+        True
+
     """
     return len(LL(K))