]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/cone/cone.py
Only check=False when K is proper (can't prove it otherwise).
[sage.d.git] / mjo / cone / cone.py
index 21f9862c24a9e9e3d9cffc52a1e789018f59a153..3d74b5f17adc095dc43c7e421f511ab84308c4ac 100644 (file)
@@ -65,114 +65,6 @@ def is_lyapunov_like(L,K):
                 for (x,s) in K.discrete_complementarity_set()])
 
 
-def motzkin_decomposition(K):
-    r"""
-    Return the pair of components in the Motzkin decomposition of this cone.
-
-    Every convex cone is the direct sum of a strictly convex cone and a
-    linear subspace [Stoer-Witzgall]_. Return a pair ``(P,S)`` of cones
-    such that ``P`` is strictly convex, ``S`` is a subspace, and ``K``
-    is the direct sum of ``P`` and ``S``.
-
-    OUTPUT:
-
-    An ordered pair ``(P,S)`` of closed convex polyhedral cones where
-    ``P`` is strictly convex, ``S`` is a subspace, and ``K`` is the
-    direct sum of ``P`` and ``S``.
-
-    REFERENCES:
-
-    .. [Stoer-Witzgall] J. Stoer and C. Witzgall. Convexity and
-       Optimization in Finite Dimensions I. Springer-Verlag, New
-       York, 1970.
-
-    EXAMPLES:
-
-    The nonnegative orthant is strictly convex, so it is its own
-    strictly convex component and its subspace component is trivial::
-
-        sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
-        sage: (P,S) = motzkin_decomposition(K)
-        sage: K.is_equivalent(P)
-        True
-        sage: S.is_trivial()
-        True
-
-    Likewise, full spaces are their own subspace components::
-
-        sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
-        sage: K.is_full_space()
-        True
-        sage: (P,S) = motzkin_decomposition(K)
-        sage: K.is_equivalent(S)
-        True
-        sage: P.is_trivial()
-        True
-
-    TESTS:
-
-    A random point in the cone should belong to either the strictly
-    convex component or the subspace component. If the point is nonzero,
-    it cannot be in both::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8)
-        sage: (P,S) = motzkin_decomposition(K)
-        sage: x = K.random_element(ring=QQ)
-        sage: P.contains(x) or S.contains(x)
-        True
-        sage: x.is_zero() or (P.contains(x) != S.contains(x))
-        True
-
-    The strictly convex component should always be strictly convex, and
-    the subspace component should always be a subspace::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8)
-        sage: (P,S) = motzkin_decomposition(K)
-        sage: P.is_strictly_convex()
-        True
-        sage: S.lineality() == S.dim()
-        True
-
-    A strictly convex cone should be equal to its strictly convex component::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8, strictly_convex=True)
-        sage: (P,_) = motzkin_decomposition(K)
-        sage: K.is_equivalent(P)
-        True
-
-    The generators of the components are obtained from orthogonal
-    projections of the original generators [Stoer-Witzgall]_::
-
-        sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=8)
-        sage: (P,S) = motzkin_decomposition(K)
-        sage: A = S.linear_subspace().complement().matrix()
-        sage: proj_S_perp = A.transpose() * (A*A.transpose()).inverse() * A
-        sage: expected_P = Cone([ proj_S_perp*g for g in K ], K.lattice())
-        sage: P.is_equivalent(expected_P)
-        True
-        sage: A = S.linear_subspace().matrix()
-        sage: proj_S = A.transpose() * (A*A.transpose()).inverse() * A
-        sage: expected_S = Cone([ proj_S*g for g in K ], K.lattice())
-        sage: S.is_equivalent(expected_S)
-        True
-    """
-    # The lines() method only returns one generator per line. For a true
-    # line, we also need a generator pointing in the opposite direction.
-    S_gens = [ direction*gen for direction in [1,-1] for gen in K.lines() ]
-    S = Cone(S_gens, K.lattice(), check=False)
-
-    # Since ``S`` is a subspace, the rays of its dual generate its
-    # orthogonal complement.
-    S_perp = Cone(S.dual(), K.lattice(), check=False)
-    P = K.intersection(S_perp)
-
-    return (P,S)
-
-
 def positive_operator_gens(K):
     r"""
     Compute generators of the cone of positive operators on this cone.
@@ -185,6 +77,17 @@ def positive_operator_gens(K):
     ``K``. Moreover, any nonnegative linear combination of these
     matrices shares the same property.
 
+    REFERENCES:
+
+    .. [Orlitzky-Pi-Z]
+       M. Orlitzky.
+       Positive operators and Z-transformations on closed convex cones.
+
+    .. [Tam]
+       B.-S. Tam.
+       Some results of polyhedral cones and simplicial cones.
+       Linear and Multilinear Algebra, 4:4 (1977) 281--284.
+
     EXAMPLES:
 
     Positive operators on the nonnegative orthant are nonnegative matrices::
@@ -460,6 +363,33 @@ def positive_operator_gens(K):
         ....:                   check=False)
         sage: actual.is_equivalent(expected)
         True
+
+    A transformation is positive on a cone if and only if its adjoint is
+    positive on the dual of that cone::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: F = K.lattice().vector_space().base_field()
+        sage: n = K.lattice_dim()
+        sage: L = ToricLattice(n**2)
+        sage: W = VectorSpace(F, n**2)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_of_K_star = positive_operator_gens(K.dual())
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: pi_star = Cone([p.list() for p in pi_of_K_star],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: M = MatrixSpace(F, n)
+        sage: L = M(pi_cone.random_element(ring=QQ).list())
+        sage: pi_star.contains(W(L.transpose().list()))
+        True
+
+        sage: L = W.random_element()
+        sage: L_star = W(M(L.list()).transpose().list())
+        sage: pi_cone.contains(L) ==  pi_star.contains(L_star)
+        True
     """
     # Matrices are not vectors in Sage, so we have to convert them
     # to vectors explicitly before we can find a basis. We need these
@@ -474,14 +404,12 @@ def positive_operator_gens(K):
     vectors = [ W(tp.list()) for tp in tensor_products ]
 
     check = True
-    if K.is_solid() or K.is_strictly_convex():
-        # The lineality space of either ``K`` or ``K.dual()`` is
-        # trivial and it's easy to show that our generating set is
-        # minimal. I would love a proof that this works when ``K`` is
-        # neither pointed nor solid.
-        #
-        # Note that in that case we can get *duplicates*, since the
-        # tensor product of (x,s) is the same as that of (-x,-s).
+    if K.is_proper():
+        # All of the generators involved are extreme vectors and
+        # therefore minimal [Tam]_. If this cone is neither solid nor
+        # strictly convex, then the tensor product of ``s`` and ``x``
+        # is the same as that of ``-s`` and ``-x``. However, as a
+        # /set/, ``tensor_products`` may still be minimal.
         check = False
 
     # Create the dual cone of the positive operators, expressed as
@@ -504,9 +432,15 @@ def Z_transformation_gens(K):
 
     A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
     Each matrix ``L`` in the list should have the property that
-    ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element the
-    discrete complementarity set of ``K``. Moreover, any nonnegative
-    linear combination of these matrices shares the same property.
+    ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element of
+    this cone's :meth:`discrete_complementarity_set`. Moreover, any
+    conic (nonnegative linear) combination of these matrices shares the
+    same property.
+
+    REFERENCES:
+
+    M. Orlitzky.
+    Positive operators and Z-transformations on closed convex cones.
 
     EXAMPLES:
 
@@ -680,6 +614,33 @@ def Z_transformation_gens(K):
         ....:                   check=False)
         sage: actual.is_equivalent(expected)
         True
+
+    A transformation is a Z-transformation on a cone if and only if its
+    adjoint is a Z-transformation on the dual of that cone::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: F = K.lattice().vector_space().base_field()
+        sage: n = K.lattice_dim()
+        sage: L = ToricLattice(n**2)
+        sage: W = VectorSpace(F, n**2)
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: Z_of_K_star = Z_transformation_gens(K.dual())
+        sage: Z_cone = Cone([p.list() for p in Z_of_K],
+        ....:               lattice=L,
+        ....:               check=False)
+        sage: Z_star = Cone([p.list() for p in Z_of_K_star],
+        ....:               lattice=L,
+        ....:               check=False)
+        sage: M = MatrixSpace(F, n)
+        sage: L = M(Z_cone.random_element(ring=QQ).list())
+        sage: Z_star.contains(W(L.transpose().list()))
+        True
+
+        sage: L = W.random_element()
+        sage: L_star = W(M(L.list()).transpose().list())
+        sage: Z_cone.contains(L) ==  Z_star.contains(L_star)
+        True
     """
     # Matrices are not vectors in Sage, so we have to convert them
     # to vectors explicitly before we can find a basis. We need these
@@ -697,14 +658,12 @@ def Z_transformation_gens(K):
     vectors = [ W(m.list()) for m in tensor_products ]
 
     check = True
-    if K.is_solid() or K.is_strictly_convex():
-        # The lineality space of either ``K`` or ``K.dual()`` is
-        # trivial and it's easy to show that our generating set is
-        # minimal. I would love a proof that this works when ``K`` is
-        # neither pointed nor solid.
-        #
-        # Note that in that case we can get *duplicates*, since the
-        # tensor product of (x,s) is the same as that of (-x,-s).
+    if K.is_proper():
+        # All of the generators involved are extreme vectors and
+        # therefore minimal. If this cone is neither solid nor
+        # strictly convex, then the tensor product of ``s`` and ``x``
+        # is the same as that of ``-s`` and ``-x``. However, as a
+        # /set/, ``tensor_products`` may still be minimal.
         check = False
 
     # Create the dual cone of the cross-positive operators,