]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/cone/cone.py
Add tests for permutation/conjugation of cones/transformations.
[sage.d.git] / mjo / cone / cone.py
index eb5316330f6afefdc3b452482bfbd6d59deabbd2..21f9862c24a9e9e3d9cffc52a1e789018f59a153 100644 (file)
@@ -118,7 +118,7 @@ def motzkin_decomposition(K):
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=8)
         sage: (P,S) = motzkin_decomposition(K)
-        sage: x = K.random_element()
+        sage: x = K.random_element(ring=QQ)
         sage: P.contains(x) or S.contains(x)
         True
         sage: x.is_zero() or (P.contains(x) != S.contains(x))
@@ -135,6 +135,14 @@ def motzkin_decomposition(K):
         sage: S.lineality() == S.dim()
         True
 
+    A strictly convex cone should be equal to its strictly convex component::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=8, strictly_convex=True)
+        sage: (P,_) = motzkin_decomposition(K)
+        sage: K.is_equivalent(P)
+        True
+
     The generators of the components are obtained from orthogonal
     projections of the original generators [Stoer-Witzgall]_::
 
@@ -152,13 +160,15 @@ def motzkin_decomposition(K):
         sage: S.is_equivalent(expected_S)
         True
     """
-    # The lines() method only gives us one generator for each line,
-    # so we negate the result and combine everything for the full set.
-    S = Cone([p*l for p in [1,-1] for l in K.lines()], K.lattice())
+    # The lines() method only returns one generator per line. For a true
+    # line, we also need a generator pointing in the opposite direction.
+    S_gens = [ direction*gen for direction in [1,-1] for gen in K.lines() ]
+    S = Cone(S_gens, K.lattice(), check=False)
 
     # Since ``S`` is a subspace, the rays of its dual generate its
     # orthogonal complement.
-    P = K.intersection( Cone(S.dual(), K.lattice()) )
+    S_perp = Cone(S.dual(), K.lattice(), check=False)
+    P = K.intersection(S_perp)
 
     return (P,S)
 
@@ -177,12 +187,6 @@ def positive_operator_gens(K):
 
     EXAMPLES:
 
-    The trivial cone in a trivial space has no positive operators::
-
-        sage: K = Cone([], ToricLattice(0))
-        sage: positive_operator_gens(K)
-        []
-
     Positive operators on the nonnegative orthant are nonnegative matrices::
 
         sage: K = Cone([(1,)])
@@ -196,6 +200,27 @@ def positive_operator_gens(K):
         [0 0], [0 0], [1 0], [0 1]
         ]
 
+    The trivial cone in a trivial space has no positive operators::
+
+        sage: K = Cone([], ToricLattice(0))
+        sage: positive_operator_gens(K)
+        []
+
+    Every operator is positive on the trivial cone::
+
+        sage: K = Cone([(0,)])
+        sage: positive_operator_gens(K)
+        [[1], [-1]]
+
+        sage: K = Cone([(0,0)])
+        sage: K.is_trivial()
+        True
+        sage: positive_operator_gens(K)
+        [
+        [1 0]  [-1  0]  [0 1]  [ 0 -1]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
+        [0 0], [ 0  0], [0 0], [ 0  0], [1 0], [-1  0], [0 1], [ 0 -1]
+        ]
+
     Every operator is positive on the ambient vector space::
 
         sage: K = Cone([(1,),(-1,)])
@@ -213,54 +238,228 @@ def positive_operator_gens(K):
         [0 0], [ 0  0], [0 0], [ 0  0], [1 0], [-1  0], [0 1], [ 0 -1]
         ]
 
+    A non-obvious application is to find the positive operators on the
+    right half-plane::
+
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: positive_operator_gens(K)
+        [
+        [1 0]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
+        [0 0], [1 0], [-1  0], [0 1], [ 0 -1]
+        ]
+
     TESTS:
 
-    A positive operator on a cone should send its generators into the cone::
+    Each positive operator generator should send the generators of the
+    cone into the cone::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
-        sage: all([K.contains(p*x) for p in pi_of_K for x in K.rays()])
+        sage: all([ K.contains(P*x) for P in pi_of_K for x in K ])
+        True
+
+    Each positive operator generator should send a random element of the
+    cone into the cone::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: all([ K.contains(P*K.random_element(QQ)) for P in pi_of_K ])
+        True
+
+    A random element of the positive operator cone should send the
+    generators of the cone into the cone::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: pi_cone = Cone([ g.list() for g in pi_of_K ],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list())
+        sage: all([ K.contains(P*x) for x in K ])
+        True
+
+    A random element of the positive operator cone should send a random
+    element of the cone into the cone::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: pi_cone = Cone([ g.list() for g in pi_of_K ],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list())
+        sage: K.contains(P*K.random_element(ring=QQ))
+        True
+
+    The lineality space of the dual of the cone of positive operators
+    can be computed from the lineality spaces of the cone and its dual::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: pi_cone = Cone([ g.list() for g in pi_of_K ],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.dual().linear_subspace()
+        sage: U1 = [ vector((s.tensor_product(x)).list())
+        ....:        for x in K.lines()
+        ....:        for s in K.dual() ]
+        sage: U2 = [ vector((s.tensor_product(x)).list())
+        ....:        for x in K
+        ....:        for s in K.dual().lines() ]
+        sage: expected = pi_cone.lattice().vector_space().span(U1 + U2)
+        sage: actual == expected
+        True
+
+    The lineality of the dual of the cone of positive operators
+    is known from its lineality space::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: n = K.lattice_dim()
+        sage: m = K.dim()
+        sage: l = K.lineality()
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: L = ToricLattice(n**2)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                 lattice=L,
+        ....:                 check=False)
+        sage: actual = pi_cone.dual().lineality()
+        sage: expected = l*(m - l) + m*(n - m)
+        sage: actual == expected
         True
 
     The dimension of the cone of positive operators is given by the
     corollary in my paper::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: n = K.lattice_dim()
         sage: m = K.dim()
         sage: l = K.lineality()
         sage: pi_of_K = positive_operator_gens(K)
         sage: L = ToricLattice(n**2)
-        sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim()
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.dim()
         sage: expected = n**2 - l*(m - l) - (n - m)*m
         sage: actual == expected
         True
 
-    The lineality of the cone of positive operators is given by the
-    corollary in my paper::
+    The trivial cone, full space, and half-plane all give rise to the
+    expected dimensions::
+
+        sage: n = ZZ.random_element().abs()
+        sage: K = Cone([[0] * n], ToricLattice(n))
+        sage: K.is_trivial()
+        True
+        sage: L = ToricLattice(n^2)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.dim()
+        sage: actual == n^2
+        True
+        sage: K = K.dual()
+        sage: K.is_full_space()
+        True
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.dim()
+        sage: actual == n^2
+        True
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: actual = Cone([p.list() for p in pi_of_K], check=False).dim()
+        sage: actual == 3
+        True
+
+    The lineality of the cone of positive operators follows from the
+    description of its generators::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: n = K.lattice_dim()
         sage: pi_of_K = positive_operator_gens(K)
         sage: L = ToricLattice(n**2)
-        sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality()
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.lineality()
         sage: expected = n**2 - K.dim()*K.dual().dim()
         sage: actual == expected
         True
 
-    The cone ``K`` is proper if and only if the cone of positive
-    operators on ``K`` is proper::
+    The trivial cone, full space, and half-plane all give rise to the
+    expected linealities::
+
+        sage: n = ZZ.random_element().abs()
+        sage: K = Cone([[0] * n], ToricLattice(n))
+        sage: K.is_trivial()
+        True
+        sage: L = ToricLattice(n^2)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = pi_cone.lineality()
+        sage: actual == n^2
+        True
+        sage: K = K.dual()
+        sage: K.is_full_space()
+        True
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
+        sage: pi_cone.lineality() == n^2
+        True
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K], check=False)
+        sage: actual = pi_cone.lineality()
+        sage: actual == 2
+        True
+
+    A cone is proper if and only if its cone of positive operators
+    is proper::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
         sage: K.is_proper() == pi_cone.is_proper()
         True
+
+    The positive operators of a permuted cone can be obtained by
+    conjugation::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
+        sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
+        sage: pi_of_pK = positive_operator_gens(pK)
+        sage: actual = Cone([t.list() for t in pi_of_pK],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: expected = Cone([(p*t*p.inverse()).list() for t in pi_of_K],
+        ....:                   lattice=L,
+        ....:                   check=False)
+        sage: actual.is_equivalent(expected)
+        True
     """
     # Matrices are not vectors in Sage, so we have to convert them
     # to vectors explicitly before we can find a basis. We need these
@@ -274,16 +473,27 @@ def positive_operator_gens(K):
     W = VectorSpace(F, n**2)
     vectors = [ W(tp.list()) for tp in tensor_products ]
 
-    # Create the *dual* cone of the positive operators, expressed as
-    # long vectors..
-    pi_dual = Cone(vectors, ToricLattice(W.dimension()))
+    check = True
+    if K.is_solid() or K.is_strictly_convex():
+        # The lineality space of either ``K`` or ``K.dual()`` is
+        # trivial and it's easy to show that our generating set is
+        # minimal. I would love a proof that this works when ``K`` is
+        # neither pointed nor solid.
+        #
+        # Note that in that case we can get *duplicates*, since the
+        # tensor product of (x,s) is the same as that of (-x,-s).
+        check = False
+
+    # Create the dual cone of the positive operators, expressed as
+    # long vectors.
+    pi_dual = Cone(vectors, ToricLattice(W.dimension()), check=check)
 
     # Now compute the desired cone from its dual...
     pi_cone = pi_dual.dual()
 
     # And finally convert its rays back to matrix representations.
     M = MatrixSpace(F, n)
-    return [ M(v.list()) for v in pi_cone.rays() ]
+    return [ M(v.list()) for v in pi_cone ]
 
 
 def Z_transformation_gens(K):
@@ -322,6 +532,33 @@ def Z_transformation_gens(K):
         sage: Z_transformation_gens(K)
         []
 
+    Every operator is a Z-transformation on the ambient vector space::
+
+        sage: K = Cone([(1,),(-1,)])
+        sage: K.is_full_space()
+        True
+        sage: Z_transformation_gens(K)
+        [[-1], [1]]
+
+        sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
+        sage: K.is_full_space()
+        True
+        sage: Z_transformation_gens(K)
+        [
+        [-1  0]  [1 0]  [ 0 -1]  [0 1]  [ 0  0]  [0 0]  [ 0  0]  [0 0]
+        [ 0  0], [0 0], [ 0  0], [0 0], [-1  0], [1 0], [ 0 -1], [0 1]
+        ]
+
+    A non-obvious application is to find the Z-transformations on the
+    right half-plane::
+
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: Z_transformation_gens(K)
+        [
+        [-1  0]  [1 0]  [ 0  0]  [0 0]  [ 0  0]  [0 0]
+        [ 0  0], [0 0], [-1  0], [1 0], [ 0 -1], [0 1]
+        ]
+
     Z-transformations on a subspace are Lyapunov-like and vice-versa::
 
         sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
@@ -337,43 +574,112 @@ def Z_transformation_gens(K):
     The Z-property is possessed by every Z-transformation::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=6)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: Z_of_K = Z_transformation_gens(K)
         sage: dcs = K.discrete_complementarity_set()
         sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
         ....:                                  for (x,s) in dcs])
         True
 
-    The lineality space of Z is LL::
+    The lineality space of the cone of Z-transformations is the space of
+    Lyapunov-like transformations::
 
         sage: set_random_seed()
-        sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
-        sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
-        sage: z_cone  = Cone([ z.list() for z in Z_transformation_gens(K) ])
-        sage: z_cone.linear_subspace() == lls
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: Z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ],
+        ....:               lattice=L,
+        ....:               check=False)
+        sage: ll_basis = [ vector(l.list()) for l in K.lyapunov_like_basis() ]
+        sage: lls = L.vector_space().span(ll_basis)
+        sage: Z_cone.linear_subspace() == lls
         True
 
-    And thus, the lineality of Z is the Lyapunov rank::
+    The lineality of the Z-transformations on a cone is the Lyapunov
+    rank of that cone::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=6)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: Z_of_K = Z_transformation_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: z_cone  = Cone([ z.list() for z in Z_of_K ], lattice=L)
-        sage: z_cone.lineality() == K.lyapunov_rank()
+        sage: Z_cone  = Cone([ z.list() for z in Z_of_K ],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: Z_cone.lineality() == K.lyapunov_rank()
         True
 
-    The lineality spaces of pi-star and Z-star are equal:
+    The lineality spaces of the duals of the positive operator and
+    Z-transformation cones are equal. From this it follows that the
+    dimensions of the Z-transformation cone and positive operator cone
+    are equal::
 
         sage: set_random_seed()
-        sage: K = random_cone(max_ambient_dim=5)
+        sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
         sage: Z_of_K = Z_transformation_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: pi_star = Cone([p.list() for p in pi_of_K], lattice=L).dual()
-        sage: z_star  = Cone([ z.list() for z in Z_of_K], lattice=L).dual()
+        sage: pi_cone = Cone([p.list() for p in pi_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: Z_cone = Cone([ z.list() for z in Z_of_K],
+        ....:               lattice=L,
+        ....:               check=False)
+        sage: pi_cone.dim() == Z_cone.dim()
+        True
+        sage: pi_star = pi_cone.dual()
+        sage: z_star = Z_cone.dual()
         sage: pi_star.linear_subspace() == z_star.linear_subspace()
         True
+
+    The trivial cone, full space, and half-plane all give rise to the
+    expected dimensions::
+
+        sage: n = ZZ.random_element().abs()
+        sage: K = Cone([[0] * n], ToricLattice(n))
+        sage: K.is_trivial()
+        True
+        sage: L = ToricLattice(n^2)
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: Z_cone = Cone([z.list() for z in Z_of_K],
+        ....:               lattice=L,
+        ....:               check=False)
+        sage: actual = Z_cone.dim()
+        sage: actual == n^2
+        True
+        sage: K = K.dual()
+        sage: K.is_full_space()
+        True
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: Z_cone = Cone([z.list() for z in Z_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = Z_cone.dim()
+        sage: actual == n^2
+        True
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: Z_cone = Cone([z.list() for z in Z_of_K], check=False)
+        sage: Z_cone.dim() == 3
+        True
+
+    The Z-transformations of a permuted cone can be obtained by
+    conjugation::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
+        sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
+        sage: Z_of_pK = Z_transformation_gens(pK)
+        sage: actual = Cone([t.list() for t in Z_of_pK],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: expected = Cone([(p*t*p.inverse()).list() for t in Z_of_K],
+        ....:                   lattice=L,
+        ....:                   check=False)
+        sage: actual.is_equivalent(expected)
+        True
     """
     # Matrices are not vectors in Sage, so we have to convert them
     # to vectors explicitly before we can find a basis. We need these
@@ -390,9 +696,20 @@ def Z_transformation_gens(K):
     W = VectorSpace(F, n**2)
     vectors = [ W(m.list()) for m in tensor_products ]
 
-    # Create the *dual* cone of the cross-positive operators,
-    # expressed as long vectors..
-    Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension()))
+    check = True
+    if K.is_solid() or K.is_strictly_convex():
+        # The lineality space of either ``K`` or ``K.dual()`` is
+        # trivial and it's easy to show that our generating set is
+        # minimal. I would love a proof that this works when ``K`` is
+        # neither pointed nor solid.
+        #
+        # Note that in that case we can get *duplicates*, since the
+        # tensor product of (x,s) is the same as that of (-x,-s).
+        check = False
+
+    # Create the dual cone of the cross-positive operators,
+    # expressed as long vectors.
+    Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension()), check=check)
 
     # Now compute the desired cone from its dual...
     Sigma_cone = Sigma_dual.dual()
@@ -401,19 +718,15 @@ def Z_transformation_gens(K):
     # But first, make them negative, so we get Z-transformations and
     # not cross-positive ones.
     M = MatrixSpace(F, n)
-    return [ -M(v.list()) for v in Sigma_cone.rays() ]
+    return [ -M(v.list()) for v in Sigma_cone ]
 
 
 def Z_cone(K):
     gens = Z_transformation_gens(K)
-    L = None
-    if len(gens) == 0:
-        L = ToricLattice(0)
-    return Cone([ g.list() for g in gens ], lattice=L)
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone([ g.list() for g in gens ], lattice=L, check=False)
 
 def pi_cone(K):
     gens = positive_operator_gens(K)
-    L = None
-    if len(gens) == 0:
-        L = ToricLattice(0)
-    return Cone([ g.list() for g in gens ], lattice=L)
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone([ g.list() for g in gens ], lattice=L, check=False)