]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/cone/cone.py
Add tests for permutation/conjugation of cones/transformations.
[sage.d.git] / mjo / cone / cone.py
index 05c55ba15a6e79dcfaa86f958a99dafed522b8fd..21f9862c24a9e9e3d9cffc52a1e789018f59a153 100644 (file)
@@ -163,11 +163,11 @@ def motzkin_decomposition(K):
     # The lines() method only returns one generator per line. For a true
     # line, we also need a generator pointing in the opposite direction.
     S_gens = [ direction*gen for direction in [1,-1] for gen in K.lines() ]
-    S = Cone(S_gens, K.lattice())
+    S = Cone(S_gens, K.lattice(), check=False)
 
     # Since ``S`` is a subspace, the rays of its dual generate its
     # orthogonal complement.
-    S_perp = Cone(S.dual(), K.lattice())
+    S_perp = Cone(S.dual(), K.lattice(), check=False)
     P = K.intersection(S_perp)
 
     return (P,S)
@@ -419,8 +419,8 @@ def positive_operator_gens(K):
         sage: K.is_full_space()
         True
         sage: pi_of_K = positive_operator_gens(K)
-        sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality()
-        sage: actual == n^2
+        sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
+        sage: pi_cone.lineality() == n^2
         True
         sage: K = Cone([(1,0),(0,1),(0,-1)])
         sage: pi_of_K = positive_operator_gens(K)
@@ -441,6 +441,25 @@ def positive_operator_gens(K):
         ....:                check=False)
         sage: K.is_proper() == pi_cone.is_proper()
         True
+
+    The positive operators of a permuted cone can be obtained by
+    conjugation::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
+        sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
+        sage: pi_of_pK = positive_operator_gens(pK)
+        sage: actual = Cone([t.list() for t in pi_of_pK],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: pi_of_K = positive_operator_gens(K)
+        sage: expected = Cone([(p*t*p.inverse()).list() for t in pi_of_K],
+        ....:                   lattice=L,
+        ....:                   check=False)
+        sage: actual.is_equivalent(expected)
+        True
     """
     # Matrices are not vectors in Sage, so we have to convert them
     # to vectors explicitly before we can find a basis. We need these
@@ -513,6 +532,33 @@ def Z_transformation_gens(K):
         sage: Z_transformation_gens(K)
         []
 
+    Every operator is a Z-transformation on the ambient vector space::
+
+        sage: K = Cone([(1,),(-1,)])
+        sage: K.is_full_space()
+        True
+        sage: Z_transformation_gens(K)
+        [[-1], [1]]
+
+        sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
+        sage: K.is_full_space()
+        True
+        sage: Z_transformation_gens(K)
+        [
+        [-1  0]  [1 0]  [ 0 -1]  [0 1]  [ 0  0]  [0 0]  [ 0  0]  [0 0]
+        [ 0  0], [0 0], [ 0  0], [0 0], [-1  0], [1 0], [ 0 -1], [0 1]
+        ]
+
+    A non-obvious application is to find the Z-transformations on the
+    right half-plane::
+
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: Z_transformation_gens(K)
+        [
+        [-1  0]  [1 0]  [ 0  0]  [0 0]  [ 0  0]  [0 0]
+        [ 0  0], [0 0], [-1  0], [1 0], [ 0 -1], [0 1]
+        ]
+
     Z-transformations on a subspace are Lyapunov-like and vice-versa::
 
         sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
@@ -535,32 +581,37 @@ def Z_transformation_gens(K):
         ....:                                  for (x,s) in dcs])
         True
 
-    The lineality space of Z is LL::
+    The lineality space of the cone of Z-transformations is the space of
+    Lyapunov-like transformations::
 
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=4)
         sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ],
+        sage: Z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ],
         ....:               lattice=L,
         ....:               check=False)
         sage: ll_basis = [ vector(l.list()) for l in K.lyapunov_like_basis() ]
         sage: lls = L.vector_space().span(ll_basis)
-        sage: z_cone.linear_subspace() == lls
+        sage: Z_cone.linear_subspace() == lls
         True
 
-    And thus, the lineality of Z is the Lyapunov rank::
+    The lineality of the Z-transformations on a cone is the Lyapunov
+    rank of that cone::
 
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=4)
         sage: Z_of_K = Z_transformation_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: z_cone  = Cone([ z.list() for z in Z_of_K ],
+        sage: Z_cone  = Cone([ z.list() for z in Z_of_K ],
         ....:                lattice=L,
         ....:                check=False)
-        sage: z_cone.lineality() == K.lyapunov_rank()
+        sage: Z_cone.lineality() == K.lyapunov_rank()
         True
 
-    The lineality spaces of pi-star and Z-star are equal:
+    The lineality spaces of the duals of the positive operator and
+    Z-transformation cones are equal. From this it follows that the
+    dimensions of the Z-transformation cone and positive operator cone
+    are equal::
 
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=4)
@@ -570,13 +621,65 @@ def Z_transformation_gens(K):
         sage: pi_cone = Cone([p.list() for p in pi_of_K],
         ....:                lattice=L,
         ....:                check=False)
-        sage: pi_star = pi_cone.dual()
-        sage: z_cone = Cone([ z.list() for z in Z_of_K],
+        sage: Z_cone = Cone([ z.list() for z in Z_of_K],
         ....:               lattice=L,
         ....:               check=False)
-        sage: z_star = z_cone.dual()
+        sage: pi_cone.dim() == Z_cone.dim()
+        True
+        sage: pi_star = pi_cone.dual()
+        sage: z_star = Z_cone.dual()
         sage: pi_star.linear_subspace() == z_star.linear_subspace()
         True
+
+    The trivial cone, full space, and half-plane all give rise to the
+    expected dimensions::
+
+        sage: n = ZZ.random_element().abs()
+        sage: K = Cone([[0] * n], ToricLattice(n))
+        sage: K.is_trivial()
+        True
+        sage: L = ToricLattice(n^2)
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: Z_cone = Cone([z.list() for z in Z_of_K],
+        ....:               lattice=L,
+        ....:               check=False)
+        sage: actual = Z_cone.dim()
+        sage: actual == n^2
+        True
+        sage: K = K.dual()
+        sage: K.is_full_space()
+        True
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: Z_cone = Cone([z.list() for z in Z_of_K],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: actual = Z_cone.dim()
+        sage: actual == n^2
+        True
+        sage: K = Cone([(1,0),(0,1),(0,-1)])
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: Z_cone = Cone([z.list() for z in Z_of_K], check=False)
+        sage: Z_cone.dim() == 3
+        True
+
+    The Z-transformations of a permuted cone can be obtained by
+    conjugation::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: L = ToricLattice(K.lattice_dim()**2)
+        sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
+        sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
+        sage: Z_of_pK = Z_transformation_gens(pK)
+        sage: actual = Cone([t.list() for t in Z_of_pK],
+        ....:                lattice=L,
+        ....:                check=False)
+        sage: Z_of_K = Z_transformation_gens(K)
+        sage: expected = Cone([(p*t*p.inverse()).list() for t in Z_of_K],
+        ....:                   lattice=L,
+        ....:                   check=False)
+        sage: actual.is_equivalent(expected)
+        True
     """
     # Matrices are not vectors in Sage, so we have to convert them
     # to vectors explicitly before we can find a basis. We need these