]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_element.py
eja: add is_minimal_idempotent() for elements.
[sage.d.git] / mjo / eja / eja_element.py
index a8594ca02688493355d9de5f867b3c0cfc1faf07..575c2a4754ae261f284c53de4d423011c9bf5418 100644 (file)
@@ -1,14 +1,20 @@
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
+# -*- coding: utf-8 -*-
+
+from itertools import izip
+
 from sage.matrix.constructor import matrix
 from sage.modules.free_module import VectorSpace
 from sage.matrix.constructor import matrix
 from sage.modules.free_module import VectorSpace
+from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
 
 # TODO: make this unnecessary somehow.
 from sage.misc.lazy_import import lazy_import
 lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
 
 # TODO: make this unnecessary somehow.
 from sage.misc.lazy_import import lazy_import
 lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
+lazy_import('mjo.eja.eja_subalgebra',
+            'FiniteDimensionalEuclideanJordanElementSubalgebra')
 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
 from mjo.eja.eja_utils import _mat2vec
 
 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
 from mjo.eja.eja_utils import _mat2vec
 
-class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraElement):
+class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
     """
     An element of a Euclidean Jordan algebra.
     """
     """
     An element of a Euclidean Jordan algebra.
     """
@@ -23,75 +29,14 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
                       dir(self.__class__) )
 
 
                       dir(self.__class__) )
 
 
-    def __init__(self, A, elt=None):
-        """
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
-            ....:                                  random_eja)
-
-        EXAMPLES:
-
-        The identity in `S^n` is converted to the identity in the EJA::
-
-            sage: J = RealSymmetricEJA(3)
-            sage: I = matrix.identity(QQ,3)
-            sage: J(I) == J.one()
-            True
-
-        This skew-symmetric matrix can't be represented in the EJA::
-
-            sage: J = RealSymmetricEJA(3)
-            sage: A = matrix(QQ,3, lambda i,j: i-j)
-            sage: J(A)
-            Traceback (most recent call last):
-            ...
-            ArithmeticError: vector is not in free module
-
-        TESTS:
 
 
-        Ensure that we can convert any element of the parent's
-        underlying vector space back into an algebra element whose
-        vector representation is what we started with::
-
-            sage: set_random_seed()
-            sage: J = random_eja()
-            sage: v = J.vector_space().random_element()
-            sage: J(v).vector() == v
-            True
-
-        """
-        # Goal: if we're given a matrix, and if it lives in our
-        # parent algebra's "natural ambient space," convert it
-        # into an algebra element.
-        #
-        # The catch is, we make a recursive call after converting
-        # the given matrix into a vector that lives in the algebra.
-        # This we need to try the parent class initializer first,
-        # to avoid recursing forever if we're given something that
-        # already fits into the algebra, but also happens to live
-        # in the parent's "natural ambient space" (this happens with
-        # vectors in R^n).
-        try:
-            FiniteDimensionalAlgebraElement.__init__(self, A, elt)
-        except ValueError:
-            natural_basis = A.natural_basis()
-            if elt in natural_basis[0].matrix_space():
-                # Thanks for nothing! Matrix spaces aren't vector
-                # spaces in Sage, so we have to figure out its
-                # natural-basis coordinates ourselves.
-                V = VectorSpace(elt.base_ring(), elt.nrows()**2)
-                W = V.span( _mat2vec(s) for s in natural_basis )
-                coords =  W.coordinates(_mat2vec(elt))
-                FiniteDimensionalAlgebraElement.__init__(self, A, coords)
 
     def __pow__(self, n):
         """
         Return ``self`` raised to the power ``n``.
 
         Jordan algebras are always power-associative; see for
 
     def __pow__(self, n):
         """
         Return ``self`` raised to the power ``n``.
 
         Jordan algebras are always power-associative; see for
-        example Faraut and Koranyi, Proposition II.1.2 (ii).
+        example Faraut and Korányi, Proposition II.1.2 (ii).
 
         We have to override this because our superclass uses row
         vectors instead of column vectors! We, on the other hand,
 
         We have to override this because our superclass uses row
         vectors instead of column vectors! We, on the other hand,
@@ -137,7 +82,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         elif n == 1:
             return self
         else:
         elif n == 1:
             return self
         else:
-            return (self.operator()**(n-1))(self)
+            return (self**(n-1))*self
 
 
     def apply_univariate_polynomial(self, p):
 
 
     def apply_univariate_polynomial(self, p):
@@ -224,9 +169,24 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
             sage: x.apply_univariate_polynomial(p)
             0
 
             sage: x.apply_univariate_polynomial(p)
             0
 
+        The characteristic polynomials of the zero and unit elements
+        should be what we think they are in a subalgebra, too::
+
+            sage: J = RealCartesianProductEJA(3)
+            sage: p1 = J.one().characteristic_polynomial()
+            sage: q1 = J.zero().characteristic_polynomial()
+            sage: e0,e1,e2 = J.gens()
+            sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
+            sage: p2 = A.one().characteristic_polynomial()
+            sage: q2 = A.zero().characteristic_polynomial()
+            sage: p1 == p2
+            True
+            sage: q1 == q2
+            True
+
         """
         p = self.parent().characteristic_polynomial()
         """
         p = self.parent().characteristic_polynomial()
-        return p(*self.vector())
+        return p(*self.to_vector())
 
 
     def inner_product(self, other):
 
 
     def inner_product(self, other):
@@ -253,7 +213,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
             sage: y = vector(QQ,[4,5,6])
             sage: x.inner_product(y)
             32
             sage: y = vector(QQ,[4,5,6])
             sage: x.inner_product(y)
             32
-            sage: J(x).inner_product(J(y))
+            sage: J.from_vector(x).inner_product(J.from_vector(y))
             32
 
         The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
             32
 
         The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
@@ -287,9 +247,8 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
             sage: set_random_seed()
             sage: J = random_eja()
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: x.inner_product(y) in RR
+            sage: x,y = J.random_elements(2)
+            sage: x.inner_product(y) in RLF
             True
 
         """
             True
 
         """
@@ -324,9 +283,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         Test Lemma 1 from Chapter III of Koecher::
 
             sage: set_random_seed()
         Test Lemma 1 from Chapter III of Koecher::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: u = J.random_element()
-            sage: v = J.random_element()
+            sage: u,v = random_eja().random_elements(2)
             sage: lhs = u.operator_commutes_with(u*v)
             sage: rhs = v.operator_commutes_with(u^2)
             sage: lhs == rhs
             sage: lhs = u.operator_commutes_with(u*v)
             sage: rhs = v.operator_commutes_with(u^2)
             sage: lhs == rhs
@@ -336,9 +293,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         Chapter III, or from Baes (2.3)::
 
             sage: set_random_seed()
         Chapter III, or from Baes (2.3)::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
+            sage: x,y = random_eja().random_elements(2)
             sage: Lx = x.operator()
             sage: Ly = y.operator()
             sage: Lxx = (x*x).operator()
             sage: Lx = x.operator()
             sage: Ly = y.operator()
             sage: Lxx = (x*x).operator()
@@ -350,10 +305,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         Baes (2.4)::
 
             sage: set_random_seed()
         Baes (2.4)::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
+            sage: x,y,z = random_eja().random_elements(3)
             sage: Lx = x.operator()
             sage: Ly = y.operator()
             sage: Lz = z.operator()
             sage: Lx = x.operator()
             sage: Ly = y.operator()
             sage: Lz = z.operator()
@@ -367,10 +319,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         Baes (2.5)::
 
             sage: set_random_seed()
         Baes (2.5)::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: u = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
+            sage: u,y,z = random_eja().random_elements(3)
             sage: Lu = u.operator()
             sage: Ly = y.operator()
             sage: Lz = z.operator()
             sage: Lu = u.operator()
             sage: Ly = y.operator()
             sage: Lz = z.operator()
@@ -427,6 +376,15 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
             sage: x.is_invertible() == (x.det() != 0)
             True
 
             sage: x.is_invertible() == (x.det() != 0)
             True
 
+        Ensure that the determinant is multiplicative on an associative
+        subalgebra as in Faraut and Korányi's Proposition II.2.2::
+
+            sage: set_random_seed()
+            sage: J = random_eja().random_element().subalgebra_generated_by()
+            sage: x,y = J.random_elements(2)
+            sage: (x*y).det() == x.det()*y.det()
+            True
+
         """
         P = self.parent()
         r = P.rank()
         """
         P = self.parent()
         r = P.rank()
@@ -435,7 +393,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         # -1 to ensure that _charpoly_coeff(0) is really what
         # appears in front of t^{0} in the charpoly. However,
         # we want (-1)^r times THAT for the determinant.
         # -1 to ensure that _charpoly_coeff(0) is really what
         # appears in front of t^{0} in the charpoly. However,
         # we want (-1)^r times THAT for the determinant.
-        return ((-1)**r)*p(*self.vector())
+        return ((-1)**r)*p(*self.to_vector())
 
 
     def inverse(self):
 
 
     def inverse(self):
@@ -449,7 +407,8 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
         SETUP::
 
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  JordanSpinEJA,
             ....:                                  random_eja)
 
         EXAMPLES:
             ....:                                  random_eja)
 
         EXAMPLES:
@@ -458,20 +417,26 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         Example 11.11::
 
             sage: set_random_seed()
         Example 11.11::
 
             sage: set_random_seed()
-            sage: n = ZZ.random_element(1,10)
-            sage: J = JordanSpinEJA(n)
+            sage: J = JordanSpinEJA.random_instance()
             sage: x = J.random_element()
             sage: while not x.is_invertible():
             ....:     x = J.random_element()
             sage: x = J.random_element()
             sage: while not x.is_invertible():
             ....:     x = J.random_element()
-            sage: x_vec = x.vector()
+            sage: x_vec = x.to_vector()
             sage: x0 = x_vec[0]
             sage: x_bar = x_vec[1:]
             sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
             sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
             sage: x_inverse = coeff*inv_vec
             sage: x0 = x_vec[0]
             sage: x_bar = x_vec[1:]
             sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
             sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
             sage: x_inverse = coeff*inv_vec
-            sage: x.inverse() == J(x_inverse)
+            sage: x.inverse() == J.from_vector(x_inverse)
             True
 
             True
 
+        Trying to invert a non-invertible element throws an error:
+
+            sage: JordanSpinEJA(3).zero().inverse()
+            Traceback (most recent call last):
+            ...
+            ValueError: element is not invertible
+
         TESTS:
 
         The identity element is its own inverse::
         TESTS:
 
         The identity element is its own inverse::
@@ -497,13 +462,32 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
             sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
             True
 
             sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
             True
 
-        The zero element is never invertible::
+        Proposition II.2.3 in Faraut and Korányi says that the inverse
+        of an element is the inverse of its left-multiplication operator
+        applied to the algebra's identity, when that inverse exists::
 
             sage: set_random_seed()
 
             sage: set_random_seed()
-            sage: J = random_eja().zero().inverse()
-            Traceback (most recent call last):
-            ...
-            ValueError: element is not invertible
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: (not x.operator().is_invertible()) or (
+            ....:    x.operator().inverse()(J.one()) == x.inverse() )
+            True
+
+        Proposition II.2.4 in Faraut and Korányi gives a formula for
+        the inverse based on the characteristic polynomial and the
+        Cayley-Hamilton theorem for Euclidean Jordan algebras::
+
+            sage: set_random_seed()
+            sage: J = ComplexHermitianEJA(3)
+            sage: x = J.random_element()
+            sage: while not x.is_invertible():
+            ....:     x = J.random_element()
+            sage: r = J.rank()
+            sage: a = x.characteristic_polynomial().coefficients(sparse=False)
+            sage: expected  = (-1)^(r+1)/x.det()
+            sage: expected *= sum( a[i+1]*x^i for i in range(r) )
+            sage: x.inverse() == expected
+            True
 
         """
         if not self.is_invertible():
 
         """
         if not self.is_invertible():
@@ -541,19 +525,117 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
             sage: J.one().is_invertible()
             True
 
             sage: J.one().is_invertible()
             True
 
-        The zero element is never invertible::
+        The zero element is never invertible in a non-trivial algebra::
 
             sage: set_random_seed()
             sage: J = random_eja()
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: J.zero().is_invertible()
+            sage: (not J.is_trivial()) and J.zero().is_invertible()
             False
 
         """
             False
 
         """
-        zero = self.parent().zero()
+        if self.is_zero():
+            if self.parent().is_trivial():
+                return True
+            else:
+                return False
+
+        # In fact, we only need to know if the constant term is non-zero,
+        # so we can pass in the field's zero element instead.
+        zero = self.base_ring().zero()
         p = self.minimal_polynomial()
         return not (p(zero) == zero)
 
 
         p = self.minimal_polynomial()
         return not (p(zero) == zero)
 
 
+    def is_minimal_idempotent(self):
+        """
+        Return whether or not this element is a minimal idempotent.
+
+
+        An element of a Euclidean Jordan algebra is a minimal idempotent
+        if it :meth:`is_idempotent` and if its Peirce subalgebra
+        corresponding to the eigenvalue ``1`` has dimension ``1`` (Baes,
+        Proposition 2.7.17).
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  random_eja)
+
+        WARNING::
+
+        This method is sloooooow.
+
+        EXAMPLES:
+
+        The spectral decomposition of a non-regular element should always
+        contain at least one non-minimal idempotent::
+
+            sage: J = RealSymmetricEJA(3, AA)
+            sage: x = sum(J.gens())
+            sage: x.is_regular()
+            False
+            sage: [ c.is_minimal_idempotent()
+            ....:   for (l,c) in x.spectral_decomposition() ]
+            [False, True]
+
+        On the other hand, the spectral decomposition of a regular
+        element should always be in terms of minimal idempotents::
+
+            sage: J = JordanSpinEJA(4, AA)
+            sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) )
+            sage: x.is_regular()
+            True
+            sage: [ c.is_minimal_idempotent()
+            ....:   for (l,c) in x.spectral_decomposition() ]
+            [True, True]
+
+        TESTS:
+
+        The identity element is minimal only in an EJA of rank one::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J.rank() == 1 or not J.one().is_minimal_idempotent()
+            True
+
+        A non-idempotent cannot be a minimal idempotent::
+
+            sage: set_random_seed()
+            sage: J = JordanSpinEJA(4)
+            sage: x = J.random_element()
+            sage: (not x.is_idempotent()) and x.is_minimal_idempotent()
+            False
+
+        Proposition 2.7.19 in Baes says that an element is a minimal
+        idempotent if and only if it's idempotent with trace equal to
+        unity::
+
+            sage: set_random_seed()
+            sage: J = JordanSpinEJA(4)
+            sage: x = J.random_element()
+            sage: expected = (x.is_idempotent() and x.trace() == 1)
+            sage: actual = x.is_minimal_idempotent()
+            sage: actual == expected
+            True
+
+        """
+        # TODO: when the Peirce decomposition is implemented for real,
+        # we can use that instead of finding this eigenspace manually.
+        #
+        # Trivial eigenspaces don't appear in the list, so we default to the
+        # trivial one and override it if there's a nontrivial space in the
+        # list.
+        if not self.is_idempotent():
+            return False
+
+        J1 = VectorSpace(self.parent().base_ring(), 0)
+        for (eigval, eigspace) in self.operator().matrix().left_eigenspaces():
+            if eigval == 1:
+                J1 = eigspace
+        return (J1.dimension() == 1)
+
+
     def is_nilpotent(self):
         """
         Return whether or not some power of this element is zero.
     def is_nilpotent(self):
         """
         Return whether or not some power of this element is zero.
@@ -581,10 +663,11 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
         TESTS:
 
 
         TESTS:
 
-        The identity element is never nilpotent::
+        The identity element is never nilpotent, except in a trivial EJA::
 
             sage: set_random_seed()
 
             sage: set_random_seed()
-            sage: random_eja().one().is_nilpotent()
+            sage: J = random_eja()
+            sage: J.one().is_nilpotent() and not J.is_trivial()
             False
 
         The additive identity is always nilpotent::
             False
 
         The additive identity is always nilpotent::
@@ -628,11 +711,11 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         TESTS:
 
         The zero element should never be regular, unless the parent
         TESTS:
 
         The zero element should never be regular, unless the parent
-        algebra has dimension one::
+        algebra has dimension less than or equal to one::
 
             sage: set_random_seed()
             sage: J = random_eja()
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: J.dimension() == 1 or not J.zero().is_regular()
+            sage: J.dimension() <= 1 or not J.zero().is_regular()
             True
 
         The unit element isn't regular unless the algebra happens to
             True
 
         The unit element isn't regular unless the algebra happens to
@@ -640,7 +723,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
             sage: set_random_seed()
             sage: J = random_eja()
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: J.dimension() == 1 or not J.one().is_regular()
+            sage: J.dimension() <= 1 or not J.one().is_regular()
             True
 
         """
             True
 
         """
@@ -677,22 +760,24 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         aren't multiples of the identity are regular::
 
             sage: set_random_seed()
         aren't multiples of the identity are regular::
 
             sage: set_random_seed()
-            sage: n = ZZ.random_element(1,10)
-            sage: J = JordanSpinEJA(n)
+            sage: J = JordanSpinEJA.random_instance()
             sage: x = J.random_element()
             sage: x == x.coefficient(0)*J.one() or x.degree() == 2
             True
 
         TESTS:
 
             sage: x = J.random_element()
             sage: x == x.coefficient(0)*J.one() or x.degree() == 2
             True
 
         TESTS:
 
-        The zero and unit elements are both of degree one::
+        The zero and unit elements are both of degree one in nontrivial
+        algebras::
 
             sage: set_random_seed()
             sage: J = random_eja()
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: J.zero().degree()
-            1
-            sage: J.one().degree()
-            1
+            sage: d = J.zero().degree()
+            sage: (J.is_trivial() and d == 0) or d == 1
+            True
+            sage: d = J.one().degree()
+            sage: (J.is_trivial() and d == 0) or d == 1
+            True
 
         Our implementation agrees with the definition::
 
 
         Our implementation agrees with the definition::
 
@@ -702,7 +787,12 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
             True
 
         """
             True
 
         """
-        return self.span_of_powers().dimension()
+        if self.is_zero() and not self.parent().is_trivial():
+            # The minimal polynomial of zero in a nontrivial algebra
+            # is "t"; in a trivial algebra it's "1" by convention
+            # (it's an empty product).
+            return 1
+        return self.subalgebra_generated_by().dimension()
 
 
     def left_matrix(self):
 
 
     def left_matrix(self):
@@ -730,15 +820,30 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  TrivialEJA,
             ....:                                  random_eja)
 
             ....:                                  random_eja)
 
+        EXAMPLES:
+
+        Keeping in mind that the polynomial ``1`` evaluates the identity
+        element (also the zero element) of the trivial algebra, it is clear
+        that the polynomial ``1`` is the minimal polynomial of the only
+        element in a trivial algebra::
+
+            sage: J = TrivialEJA()
+            sage: J.one().minimal_polynomial()
+            1
+            sage: J.zero().minimal_polynomial()
+            1
+
         TESTS:
 
         The minimal polynomial of the identity and zero elements are
         always the same::
 
             sage: set_random_seed()
         TESTS:
 
         The minimal polynomial of the identity and zero elements are
         always the same::
 
             sage: set_random_seed()
-            sage: J = random_eja()
+            sage: J = random_eja(nontrivial=True)
             sage: J.one().minimal_polynomial()
             t - 1
             sage: J.zero().minimal_polynomial()
             sage: J.one().minimal_polynomial()
             t - 1
             sage: J.zero().minimal_polynomial()
@@ -755,16 +860,18 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         The minimal polynomial and the characteristic polynomial coincide
         and are known (see Alizadeh, Example 11.11) for all elements of
         the spin factor algebra that aren't scalar multiples of the
         The minimal polynomial and the characteristic polynomial coincide
         and are known (see Alizadeh, Example 11.11) for all elements of
         the spin factor algebra that aren't scalar multiples of the
-        identity::
+        identity. We require the dimension of the algebra to be at least
+        two here so that said elements actually exist::
 
             sage: set_random_seed()
 
             sage: set_random_seed()
-            sage: n = ZZ.random_element(2,10)
+            sage: n_max = max(2, JordanSpinEJA._max_test_case_size())
+            sage: n = ZZ.random_element(2, n_max)
             sage: J = JordanSpinEJA(n)
             sage: y = J.random_element()
             sage: while y == y.coefficient(0)*J.one():
             ....:     y = J.random_element()
             sage: J = JordanSpinEJA(n)
             sage: y = J.random_element()
             sage: while y == y.coefficient(0)*J.one():
             ....:     y = J.random_element()
-            sage: y0 = y.vector()[0]
-            sage: y_bar = y.vector()[1:]
+            sage: y0 = y.to_vector()[0]
+            sage: y_bar = y.to_vector()[1:]
             sage: actual = y.minimal_polynomial()
             sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
             sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
             sage: actual = y.minimal_polynomial()
             sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
             sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
@@ -779,14 +886,36 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
             sage: x.apply_univariate_polynomial(p)
             0
 
             sage: x.apply_univariate_polynomial(p)
             0
 
+        The minimal polynomial is invariant under a change of basis,
+        and in particular, a re-scaling of the basis::
+
+            sage: set_random_seed()
+            sage: n_max = RealSymmetricEJA._max_test_case_size()
+            sage: n = ZZ.random_element(1, n_max)
+            sage: J1 = RealSymmetricEJA(n,QQ)
+            sage: J2 = RealSymmetricEJA(n,QQ,normalize_basis=False)
+            sage: X = random_matrix(QQ,n)
+            sage: X = X*X.transpose()
+            sage: x1 = J1(X)
+            sage: x2 = J2(X)
+            sage: x1.minimal_polynomial() == x2.minimal_polynomial()
+            True
+
         """
         """
-        V = self.span_of_powers()
-        assoc_subalg = self.subalgebra_generated_by()
-        # Mis-design warning: the basis used for span_of_powers()
-        # and subalgebra_generated_by() must be the same, and in
-        # the same order!
-        elt = assoc_subalg(V.coordinates(self.vector()))
-        return elt.operator().minimal_polynomial()
+        if self.is_zero():
+            # We would generate a zero-dimensional subalgebra
+            # where the minimal polynomial would be constant.
+            # That might be correct, but only if *this* algebra
+            # is trivial too.
+            if not self.parent().is_trivial():
+                # Pretty sure we know what the minimal polynomial of
+                # the zero operator is going to be. This ensures
+                # consistency of e.g. the polynomial variable returned
+                # in the "normal" case without us having to think about it.
+                return self.operator().minimal_polynomial()
+
+        A = self.subalgebra_generated_by()
+        return A(self).operator().minimal_polynomial()
 
 
 
 
 
 
@@ -809,7 +938,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
             sage: J = ComplexHermitianEJA(3)
             sage: J.one()
 
             sage: J = ComplexHermitianEJA(3)
             sage: J.one()
-            e0 + e5 + e8
+            e0 + e3 + e8
             sage: J.one().natural_representation()
             [1 0 0 0 0 0]
             [0 1 0 0 0 0]
             sage: J.one().natural_representation()
             [1 0 0 0 0 0]
             [0 1 0 0 0 0]
@@ -822,7 +951,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
             sage: J = QuaternionHermitianEJA(3)
             sage: J.one()
 
             sage: J = QuaternionHermitianEJA(3)
             sage: J.one()
-            e0 + e9 + e14
+            e0 + e5 + e14
             sage: J.one().natural_representation()
             [1 0 0 0 0 0 0 0 0 0 0 0]
             [0 1 0 0 0 0 0 0 0 0 0 0]
             sage: J.one().natural_representation()
             [1 0 0 0 0 0 0 0 0 0 0 0]
             [0 1 0 0 0 0 0 0 0 0 0 0]
@@ -839,8 +968,35 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
         """
         B = self.parent().natural_basis()
 
         """
         B = self.parent().natural_basis()
-        W = B[0].matrix_space()
-        return W.linear_combination(zip(self.vector(), B))
+        W = self.parent().natural_basis_space()
+        return W.linear_combination(izip(B,self.to_vector()))
+
+
+    def norm(self):
+        """
+        The norm of this element with respect to :meth:`inner_product`.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealCartesianProductEJA)
+
+        EXAMPLES::
+
+            sage: J = RealCartesianProductEJA(2)
+            sage: x = sum(J.gens())
+            sage: x.norm()
+            sqrt(2)
+
+        ::
+
+            sage: J = JordanSpinEJA(4)
+            sage: x = sum(J.gens())
+            sage: x.norm()
+            2
+
+        """
+        return self.inner_product(self).sqrt()
 
 
     def operator(self):
 
 
     def operator(self):
@@ -856,8 +1012,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
             sage: set_random_seed()
             sage: J = random_eja()
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
+            sage: x,y = J.random_elements(2)
             sage: x.operator()(y) == x*y
             True
             sage: y.operator()(x) == x*y
             sage: x.operator()(y) == x*y
             True
             sage: y.operator()(x) == x*y
@@ -865,11 +1020,12 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
         """
         P = self.parent()
 
         """
         P = self.parent()
-        fda_elt = FiniteDimensionalAlgebraElement(P, self)
+        left_mult_by_self = lambda y: self*y
+        L = P.module_morphism(function=left_mult_by_self, codomain=P)
         return FiniteDimensionalEuclideanJordanAlgebraOperator(
                  P,
                  P,
         return FiniteDimensionalEuclideanJordanAlgebraOperator(
                  P,
                  P,
-                 fda_elt.matrix().transpose() )
+                 L.matrix() )
 
 
     def quadratic_representation(self, other=None):
 
 
     def quadratic_representation(self, other=None):
@@ -887,10 +1043,9 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         Alizadeh's Example 11.12::
 
             sage: set_random_seed()
         Alizadeh's Example 11.12::
 
             sage: set_random_seed()
-            sage: n = ZZ.random_element(1,10)
-            sage: J = JordanSpinEJA(n)
-            sage: x = J.random_element()
-            sage: x_vec = x.vector()
+            sage: x = JordanSpinEJA.random_instance().random_element()
+            sage: x_vec = x.to_vector()
+            sage: n = x_vec.degree()
             sage: x0 = x_vec[0]
             sage: x_bar = x_vec[1:]
             sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
             sage: x0 = x_vec[0]
             sage: x_bar = x_vec[1:]
             sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
@@ -907,8 +1062,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
             sage: set_random_seed()
             sage: J = random_eja()
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
+            sage: x,y = J.random_elements(2)
             sage: Lx = x.operator()
             sage: Lxx = (x*x).operator()
             sage: Qx = x.quadratic_representation()
             sage: Lx = x.operator()
             sage: Lxx = (x*x).operator()
             sage: Qx = x.quadratic_representation()
@@ -925,7 +1079,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
         Property 2 (multiply on the right for :trac:`28272`):
 
 
         Property 2 (multiply on the right for :trac:`28272`):
 
-            sage: alpha = QQ.random_element()
+            sage: alpha = J.base_ring().random_element()
             sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
             True
 
             sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
             True
 
@@ -953,10 +1107,10 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
             sage: not x.is_invertible() or (
             ....:   x.quadratic_representation(x.inverse())*Qx
             ....:   ==
             sage: not x.is_invertible() or (
             ....:   x.quadratic_representation(x.inverse())*Qx
             ....:   ==
-            ....:   2*x.operator()*Qex - Qx )
+            ....:   2*Lx*Qex - Qx )
             True
 
             True
 
-            sage: 2*x.operator()*Qex - Qx == Lxx
+            sage: 2*Lx*Qex - Qx == Lxx
             True
 
         Property 5:
             True
 
         Property 5:
@@ -992,35 +1146,96 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         return ( L*M + M*L - (self*other).operator() )
 
 
         return ( L*M + M*L - (self*other).operator() )
 
 
-    def span_of_powers(self):
-        """
-        Return the vector space spanned by successive powers of
-        this element.
+
+    def spectral_decomposition(self):
         """
         """
-        # The dimension of the subalgebra can't be greater than
-        # the big algebra, so just put everything into a list
-        # and let span() get rid of the excess.
-        #
-        # We do the extra ambient_vector_space() in case we're messing
-        # with polynomials and the direct parent is a module.
-        V = self.parent().vector_space()
-        return V.span( (self**d).vector() for d in xrange(V.dimension()) )
+        Return the unique spectral decomposition of this element.
+
+        ALGORITHM:
+
+        Following Faraut and Korányi's Theorem III.1.1, we restrict this
+        element's left-multiplication-by operator to the subalgebra it
+        generates. We then compute the spectral decomposition of that
+        operator, and the spectral projectors we get back must be the
+        left-multiplication-by operators for the idempotents we
+        seek. Thus applying them to the identity element gives us those
+        idempotents.
+
+        Since the eigenvalues are required to be distinct, we take
+        the spectral decomposition of the zero element to be zero
+        times the identity element of the algebra (which is idempotent,
+        obviously).
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
+
+        EXAMPLES:
+
+        The spectral decomposition of the identity is ``1`` times itself,
+        and the spectral decomposition of zero is ``0`` times the identity::
+
+            sage: J = RealSymmetricEJA(3,AA)
+            sage: J.one()
+            e0 + e2 + e5
+            sage: J.one().spectral_decomposition()
+            [(1, e0 + e2 + e5)]
+            sage: J.zero().spectral_decomposition()
+            [(0, e0 + e2 + e5)]
+
+        TESTS::
 
 
+            sage: J = RealSymmetricEJA(4,AA)
+            sage: x = sum(J.gens())
+            sage: sd = x.spectral_decomposition()
+            sage: l0 = sd[0][0]
+            sage: l1 = sd[1][0]
+            sage: c0 = sd[0][1]
+            sage: c1 = sd[1][1]
+            sage: c0.inner_product(c1) == 0
+            True
+            sage: c0.is_idempotent()
+            True
+            sage: c1.is_idempotent()
+            True
+            sage: c0 + c1 == J.one()
+            True
+            sage: l0*c0 + l1*c1 == x
+            True
 
 
-    def subalgebra_generated_by(self):
+        """
+        P = self.parent()
+        A = self.subalgebra_generated_by(orthonormalize_basis=True)
+        result = []
+        for (evalue, proj) in A(self).operator().spectral_decomposition():
+            result.append( (evalue, proj(A.one()).superalgebra_element()) )
+        return result
+
+    def subalgebra_generated_by(self, orthonormalize_basis=False):
         """
         Return the associative subalgebra of the parent EJA generated
         by this element.
 
         """
         Return the associative subalgebra of the parent EJA generated
         by this element.
 
+        Since our parent algebra is unital, we want "subalgebra" to mean
+        "unital subalgebra" as well; thus the subalgebra that an element
+        generates will itself be a Euclidean Jordan algebra after
+        restricting the algebra operations appropriately. This is the
+        subalgebra that Faraut and Korányi work with in section II.2, for
+        example.
+
         SETUP::
 
             sage: from mjo.eja.eja_algebra import random_eja
 
         SETUP::
 
             sage: from mjo.eja.eja_algebra import random_eja
 
-        TESTS::
+        TESTS:
+
+        This subalgebra, being composed of only powers, is associative::
 
             sage: set_random_seed()
 
             sage: set_random_seed()
-            sage: x = random_eja().random_element()
-            sage: x.subalgebra_generated_by().is_associative()
+            sage: x0 = random_eja().random_element()
+            sage: A = x0.subalgebra_generated_by()
+            sage: x,y,z = A.random_elements(3)
+            sage: (x*y)*z == x*(y*z)
             True
 
         Squaring in the subalgebra should work the same as in
             True
 
         Squaring in the subalgebra should work the same as in
@@ -1028,54 +1243,22 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
             sage: set_random_seed()
             sage: x = random_eja().random_element()
 
             sage: set_random_seed()
             sage: x = random_eja().random_element()
-            sage: u = x.subalgebra_generated_by().random_element()
-            sage: u.operator()(u) == u^2
+            sage: A = x.subalgebra_generated_by()
+            sage: A(x^2) == A(x)*A(x)
+            True
+
+        By definition, the subalgebra generated by the zero element is
+        the one-dimensional algebra generated by the identity
+        element... unless the original algebra was trivial, in which
+        case the subalgebra is trivial too::
+
+            sage: set_random_seed()
+            sage: A = random_eja().zero().subalgebra_generated_by()
+            sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1
             True
 
         """
             True
 
         """
-        # First get the subspace spanned by the powers of myself...
-        V = self.span_of_powers()
-        F = self.base_ring()
-
-        # Now figure out the entries of the right-multiplication
-        # matrix for the successive basis elements b0, b1,... of
-        # that subspace.
-        mats = []
-        for b_right in V.basis():
-            eja_b_right = self.parent()(b_right)
-            b_right_rows = []
-            # The first row of the right-multiplication matrix by
-            # b1 is what we get if we apply that matrix to b1. The
-            # second row of the right multiplication matrix by b1
-            # is what we get when we apply that matrix to b2...
-            #
-            # IMPORTANT: this assumes that all vectors are COLUMN
-            # vectors, unlike our superclass (which uses row vectors).
-            for b_left in V.basis():
-                eja_b_left = self.parent()(b_left)
-                # Multiply in the original EJA, but then get the
-                # coordinates from the subalgebra in terms of its
-                # basis.
-                this_row = V.coordinates((eja_b_left*eja_b_right).vector())
-                b_right_rows.append(this_row)
-            b_right_matrix = matrix(F, b_right_rows)
-            mats.append(b_right_matrix)
-
-        # It's an algebra of polynomials in one element, and EJAs
-        # are power-associative.
-        #
-        # TODO: choose generator names intelligently.
-        #
-        # The rank is the highest possible degree of a minimal polynomial,
-        # and is bounded above by the dimension. We know in this case that
-        # there's an element whose minimal polynomial has the same degree
-        # as the space's dimension, so that must be its rank too.
-        return FiniteDimensionalEuclideanJordanAlgebra(
-                 F,
-                 mats,
-                 V.dimension(),
-                 assume_associative=True,
-                 names='f')
+        return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis)
 
 
     def subalgebra_idempotent(self):
 
 
     def subalgebra_idempotent(self):
@@ -1102,18 +1285,14 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         if self.is_nilpotent():
             raise ValueError("this only works with non-nilpotent elements!")
 
         if self.is_nilpotent():
             raise ValueError("this only works with non-nilpotent elements!")
 
-        V = self.span_of_powers()
         J = self.subalgebra_generated_by()
         J = self.subalgebra_generated_by()
-        # Mis-design warning: the basis used for span_of_powers()
-        # and subalgebra_generated_by() must be the same, and in
-        # the same order!
-        u = J(V.coordinates(self.vector()))
+        u = J(self)
 
         # The image of the matrix of left-u^m-multiplication
         # will be minimal for some natural number s...
         s = 0
 
         # The image of the matrix of left-u^m-multiplication
         # will be minimal for some natural number s...
         s = 0
-        minimal_dim = V.dimension()
-        for i in xrange(1, V.dimension()):
+        minimal_dim = J.dimension()
+        for i in xrange(1, minimal_dim):
             this_dim = (u**i).operator().matrix().image().dimension()
             if this_dim < minimal_dim:
                 minimal_dim = this_dim
             this_dim = (u**i).operator().matrix().image().dimension()
             if this_dim < minimal_dim:
                 minimal_dim = this_dim
@@ -1132,29 +1311,33 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
         # Our FiniteDimensionalAlgebraElement superclass uses rows.
         u_next = u**(s+1)
         A = u_next.operator().matrix()
         # Our FiniteDimensionalAlgebraElement superclass uses rows.
         u_next = u**(s+1)
         A = u_next.operator().matrix()
-        c_coordinates = A.solve_right(u_next.vector())
+        c = J.from_vector(A.solve_right(u_next.to_vector()))
 
 
-        # Now c_coordinates is the idempotent we want, but it's in
-        # the coordinate system of the subalgebra.
-        #
-        # We need the basis for J, but as elements of the parent algebra.
-        #
-        basis = [self.parent(v) for v in V.basis()]
-        return self.parent().linear_combination(zip(c_coordinates, basis))
+        # Now c is the idempotent we want, but it still lives in the subalgebra.
+        return c.superalgebra_element()
 
 
     def trace(self):
         """
         Return my trace, the sum of my eigenvalues.
 
 
 
     def trace(self):
         """
         Return my trace, the sum of my eigenvalues.
 
+        In a trivial algebra, however you want to look at it, the trace is
+        an empty sum for which we declare the result to be zero.
+
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
             ....:                                  RealCartesianProductEJA,
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
             ....:                                  RealCartesianProductEJA,
+            ....:                                  TrivialEJA,
             ....:                                  random_eja)
 
         EXAMPLES::
 
             ....:                                  random_eja)
 
         EXAMPLES::
 
+            sage: J = TrivialEJA()
+            sage: J.zero().trace()
+            0
+
+        ::
             sage: J = JordanSpinEJA(3)
             sage: x = sum(J.gens())
             sage: x.trace()
             sage: J = JordanSpinEJA(3)
             sage: x = sum(J.gens())
             sage: x.trace()
@@ -1172,18 +1355,24 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
             sage: set_random_seed()
             sage: J = random_eja()
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: J.random_element().trace() in J.base_ring()
+            sage: J.random_element().trace() in RLF
             True
 
         """
         P = self.parent()
         r = P.rank()
             True
 
         """
         P = self.parent()
         r = P.rank()
+
+        if r == 0:
+            # Special case for the trivial algebra where
+            # the trace is an empty sum.
+            return P.base_ring().zero()
+
         p = P._charpoly_coeff(r-1)
         # The _charpoly_coeff function already adds the factor of
         # -1 to ensure that _charpoly_coeff(r-1) is really what
         # appears in front of t^{r-1} in the charpoly. However,
         # we want the negative of THAT for the trace.
         p = P._charpoly_coeff(r-1)
         # The _charpoly_coeff function already adds the factor of
         # -1 to ensure that _charpoly_coeff(r-1) is really what
         # appears in front of t^{r-1} in the charpoly. However,
         # we want the negative of THAT for the trace.
-        return -p(*self.vector())
+        return -p(*self.to_vector())
 
 
     def trace_inner_product(self, other):
 
 
     def trace_inner_product(self, other):
@@ -1196,22 +1385,16 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
 
         TESTS:
 
 
         TESTS:
 
-        The trace inner product is commutative::
+        The trace inner product is commutative, bilinear, and associative::
 
             sage: set_random_seed()
             sage: J = random_eja()
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element(); y = J.random_element()
+            sage: x,y,z = J.random_elements(3)
+            sage: # commutative
             sage: x.trace_inner_product(y) == y.trace_inner_product(x)
             True
             sage: x.trace_inner_product(y) == y.trace_inner_product(x)
             True
-
-        The trace inner product is bilinear::
-
-            sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
-            sage: a = QQ.random_element();
+            sage: # bilinear
+            sage: a = J.base_ring().random_element();
             sage: actual = (a*(x+z)).trace_inner_product(y)
             sage: expected = ( a*x.trace_inner_product(y) +
             ....:              a*z.trace_inner_product(y) )
             sage: actual = (a*(x+z)).trace_inner_product(y)
             sage: expected = ( a*x.trace_inner_product(y) +
             ....:              a*z.trace_inner_product(y) )
@@ -1222,15 +1405,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
             ....:              a*x.trace_inner_product(z) )
             sage: actual == expected
             True
             ....:              a*x.trace_inner_product(z) )
             sage: actual == expected
             True
-
-        The trace inner product satisfies the compatibility
-        condition in the definition of a Euclidean Jordan algebra::
-
-            sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
+            sage: # associative
             sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
             True
 
             sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
             True
 
@@ -1239,3 +1414,30 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraEle
             raise TypeError("'other' must live in the same algebra")
 
         return (self*other).trace()
             raise TypeError("'other' must live in the same algebra")
 
         return (self*other).trace()
+
+
+    def trace_norm(self):
+        """
+        The norm of this element with respect to :meth:`trace_inner_product`.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealCartesianProductEJA)
+
+        EXAMPLES::
+
+            sage: J = RealCartesianProductEJA(2)
+            sage: x = sum(J.gens())
+            sage: x.trace_norm()
+            sqrt(2)
+
+        ::
+
+            sage: J = JordanSpinEJA(4)
+            sage: x = sum(J.gens())
+            sage: x.trace_norm()
+            2*sqrt(2)
+
+        """
+        return self.trace_inner_product(self).sqrt()