module Tests.Grid where import Test.Framework (Test, testGroup) import Test.Framework.Providers.HUnit (testCase) import Test.HUnit import Assertions import Comparisons import Cube hiding (i, j, k) import Examples import FunctionValues (value_at) import Grid import Point (Point) import Tetrahedron import ThreeDimensional -- | Check all coefficients of tetrahedron0 belonging to the cube -- centered on (1,1,1) with a grid constructed from the trilinear -- values. See example one in the paper. -- -- We also verify that the four vertices on face0 of the cube are -- in the correct location. -- trilinear_c0_t0_tests :: Test.Framework.Test trilinear_c0_t0_tests = testGroup "trilinear c0 t0" [testGroup "coefficients" [testCase "c0030 is correct" test_trilinear_c0030, testCase "c0003 is correct" test_trilinear_c0003, testCase "c0021 is correct" test_trilinear_c0021, testCase "c0012 is correct" test_trilinear_c0012, testCase "c0120 is correct" test_trilinear_c0120, testCase "c0102 is correct" test_trilinear_c0102, testCase "c0111 is correct" test_trilinear_c0111, testCase "c0210 is correct" test_trilinear_c0210, testCase "c0201 is correct" test_trilinear_c0201, testCase "c0300 is correct" test_trilinear_c0300, testCase "c1020 is correct" test_trilinear_c1020, testCase "c1002 is correct" test_trilinear_c1002, testCase "c1011 is correct" test_trilinear_c1011, testCase "c1110 is correct" test_trilinear_c1110, testCase "c1101 is correct" test_trilinear_c1101, testCase "c1200 is correct" test_trilinear_c1200, testCase "c2010 is correct" test_trilinear_c2010, testCase "c2001 is correct" test_trilinear_c2001, testCase "c2100 is correct" test_trilinear_c2100, testCase "c3000 is correct" test_trilinear_c3000], testGroup "face0 vertices" [testCase "v0 is correct" test_trilinear_f0_t0_v0, testCase "v1 is correct" test_trilinear_f0_t0_v1, testCase "v2 is correct" test_trilinear_f0_t0_v2, testCase "v3 is correct" test_trilinear_f0_t0_v3] ] where g = make_grid 1 trilinear cube = cube_at g 1 1 1 t = tetrahedron0 cube test_trilinear_c0030 :: Assertion test_trilinear_c0030 = assertAlmostEqual "c0030 is correct" (c t 0 0 3 0) (17/8) test_trilinear_c0003 :: Assertion test_trilinear_c0003 = assertAlmostEqual "c0003 is correct" (c t 0 0 0 3) (27/8) test_trilinear_c0021 :: Assertion test_trilinear_c0021 = assertAlmostEqual "c0021 is correct" (c t 0 0 2 1) (61/24) test_trilinear_c0012 :: Assertion test_trilinear_c0012 = assertAlmostEqual "c0012 is correct" (c t 0 0 1 2) (71/24) test_trilinear_c0120 :: Assertion test_trilinear_c0120 = assertAlmostEqual "c0120 is correct" (c t 0 1 2 0) (55/24) test_trilinear_c0102 :: Assertion test_trilinear_c0102 = assertAlmostEqual "c0102 is correct" (c t 0 1 0 2) (73/24) test_trilinear_c0111 :: Assertion test_trilinear_c0111 = assertAlmostEqual "c0111 is correct" (c t 0 1 1 1) (8/3) test_trilinear_c0210 :: Assertion test_trilinear_c0210 = assertAlmostEqual "c0210 is correct" (c t 0 2 1 0) (29/12) test_trilinear_c0201 :: Assertion test_trilinear_c0201 = assertAlmostEqual "c0201 is correct" (c t 0 2 0 1) (11/4) test_trilinear_c0300 :: Assertion test_trilinear_c0300 = assertAlmostEqual "c0300 is correct" (c t 0 3 0 0) (5/2) test_trilinear_c1020 :: Assertion test_trilinear_c1020 = assertAlmostEqual "c1020 is correct" (c t 1 0 2 0) (8/3) test_trilinear_c1002 :: Assertion test_trilinear_c1002 = assertAlmostEqual "c1002 is correct" (c t 1 0 0 2) (23/6) test_trilinear_c1011 :: Assertion test_trilinear_c1011 = assertAlmostEqual "c1011 is correct" (c t 1 0 1 1) (13/4) test_trilinear_c1110 :: Assertion test_trilinear_c1110 = assertAlmostEqual "c1110 is correct" (c t 1 1 1 0) (23/8) test_trilinear_c1101 :: Assertion test_trilinear_c1101 = assertAlmostEqual "c1101 is correct" (c t 1 1 0 1) (27/8) test_trilinear_c1200 :: Assertion test_trilinear_c1200 = assertAlmostEqual "c1200 is correct" (c t 1 2 0 0) 3 test_trilinear_c2010 :: Assertion test_trilinear_c2010 = assertAlmostEqual "c2010 is correct" (c t 2 0 1 0) (10/3) test_trilinear_c2001 :: Assertion test_trilinear_c2001 = assertAlmostEqual "c2001 is correct" (c t 2 0 0 1) 4 test_trilinear_c2100 :: Assertion test_trilinear_c2100 = assertAlmostEqual "c2100 is correct" (c t 2 1 0 0) (7/2) test_trilinear_c3000 :: Assertion test_trilinear_c3000 = assertAlmostEqual "c3000 is correct" (c t 3 0 0 0) 4 test_trilinear_f0_t0_v0 :: Assertion test_trilinear_f0_t0_v0 = assertEqual "v0 is correct" (v0 t) (1, 1, 1) test_trilinear_f0_t0_v1 :: Assertion test_trilinear_f0_t0_v1 = assertEqual "v1 is correct" (v1 t) (0.5, 1, 1) test_trilinear_f0_t0_v2 :: Assertion test_trilinear_f0_t0_v2 = assertEqual "v2 is correct" (v2 t) (0.5, 0.5, 1.5) test_trilinear_f0_t0_v3 :: Assertion test_trilinear_f0_t0_v3 = assertClose "v3 is correct" (v3 t) (0.5, 1.5, 1.5) test_trilinear_reproduced :: Assertion test_trilinear_reproduced = assertTrue "trilinears are reproduced correctly" $ and [p (i', j', k') ~= value_at trilinear i j k | i <- [0..2], j <- [0..2], k <- [0..2], t <- tetrahedra c0, let p = polynomial t, let i' = fromIntegral i, let j' = fromIntegral j, let k' = fromIntegral k] where g = make_grid 1 trilinear c0 = cube_at g 1 1 1 test_zeros_reproduced :: Assertion test_zeros_reproduced = assertTrue "the zero function is reproduced correctly" $ and [p (i', j', k') ~= value_at zeros i j k | i <- [0..2], j <- [0..2], k <- [0..2], let i' = fromIntegral i, let j' = fromIntegral j, let k' = fromIntegral k] where g = make_grid 1 zeros c0 = cube_at g 1 1 1 t0 = tetrahedron0 c0 p = polynomial t0 -- | Make sure we can reproduce a 9x9x9 trilinear from the 3x3x3 one. -- Use (t <- tetrahedra c0) for a much slower but comprehensive -- test. test_trilinear9x9x9_reproduced :: Assertion test_trilinear9x9x9_reproduced = assertTrue "trilinear 9x9x9 is reproduced correctly" $ and [p (i', j', k') ~= value_at trilinear9x9x9 i j k | i <- [0..8], j <- [0..8], k <- [0..8], t <- [head $ tetrahedra c0], let p = polynomial t, let i' = (fromIntegral i) * 0.5, let j' = (fromIntegral j) * 0.5, let k' = (fromIntegral k) * 0.5] where g = make_grid 1 trilinear c0 = cube_at g 1 1 1 -- | The point 'p' in this test lies on the boundary of tetrahedra 12 and 15. -- However, the 'contains_point' test fails due to some numerical innacuracy. -- This bug should have been fixed by setting a positive tolerance level. -- -- Example from before the fix: -- -- > b0 (tetrahedron15 c) p -- -3.4694469519536365e-18 -- test_tetrahedra_collision_sensitivity :: Assertion test_tetrahedra_collision_sensitivity = assertTrue "tetrahedron collision tests isn't too sensitive" $ contains_point t15 p where g = make_grid 1 naturals_1d c = cube_at g 0 17 1 p = (0, 16.75, 0.5) :: Point t15 = tetrahedron15 c