from sage.matrix.constructor import matrix from sage.misc.cachefunc import cached_method from sage.rings.all import QQ from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra class FiniteDimensionalEJAElementSubalgebra(FiniteDimensionalEJASubalgebra): def __init__(self, elt, **kwargs): superalgebra = elt.parent() # TODO: going up to the superalgebra dimension here is # overkill. We should append p vectors as rows to a matrix # and continually rref() it until the rank stops going # up. When n=10 but the dimension of the algebra is 1, that # can save a shitload of time (especially over AA). powers = tuple( elt**k for k in range(elt.degree()) ) super().__init__(superalgebra, powers, associative=True, **kwargs) # The rank is the highest possible degree of a minimal # polynomial, and is bounded above by the dimension. We know # in this case that there's an element whose minimal # polynomial has the same degree as the space's dimension # (remember how we constructed the space?), so that must be # its rank too. self.rank.set_cache(self.dimension()) @cached_method def one(self): """ Return the multiplicative identity element of this algebra. The superclass method computes the identity element, which is beyond overkill in this case: the superalgebra identity restricted to this algebra is its identity. Note that we can't count on the first basis element being the identity -- it might have been scaled if we orthonormalized the basis. SETUP:: sage: from mjo.eja.eja_algebra import (HadamardEJA, ....: random_eja) EXAMPLES:: sage: J = HadamardEJA(5) sage: J.one() e0 + e1 + e2 + e3 + e4 sage: x = sum(J.gens()) sage: A = x.subalgebra_generated_by(orthonormalize=False) sage: A.one() f0 sage: A.one().superalgebra_element() e0 + e1 + e2 + e3 + e4 TESTS: The identity element acts like the identity over the rationals:: sage: set_random_seed() sage: x = random_eja(field=QQ,orthonormalize=False).random_element() sage: A = x.subalgebra_generated_by() sage: x = A.random_element() sage: A.one()*x == x and x*A.one() == x True The identity element acts like the identity over the algebraic reals with an orthonormal basis:: sage: set_random_seed() sage: x = random_eja().random_element() sage: A = x.subalgebra_generated_by() sage: x = A.random_element() sage: A.one()*x == x and x*A.one() == x True The matrix of the unit element's operator is the identity over the rationals:: sage: set_random_seed() sage: x = random_eja(field=QQ,orthonormalize=False).random_element() sage: A = x.subalgebra_generated_by(orthonormalize=False) sage: actual = A.one().operator().matrix() sage: expected = matrix.identity(A.base_ring(), A.dimension()) sage: actual == expected True The matrix of the unit element's operator is the identity over the algebraic reals with an orthonormal basis:: sage: set_random_seed() sage: x = random_eja().random_element() sage: A = x.subalgebra_generated_by() sage: actual = A.one().operator().matrix() sage: expected = matrix.identity(A.base_ring(), A.dimension()) sage: actual == expected True """ if self.dimension() == 0: return self.zero() return self(self.superalgebra().one())