from sage.matrix.constructor import matrix from sage.misc.cachefunc import cached_method from sage.rings.all import QQ from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra class FiniteDimensionalEJAElementSubalgebra(FiniteDimensionalEJASubalgebra): def __init__(self, elt, orthonormalize=True, **kwargs): superalgebra = elt.parent() powers = tuple( elt**k for k in range(superalgebra.dimension()) ) power_vectors = ( p.to_vector() for p in powers ) P = matrix(superalgebra.base_ring(), power_vectors) if orthonormalize: basis = powers # let god sort 'em out else: # Echelonize the matrix ourselves, because otherwise the # call to P.pivot_rows() below can choose a non-optimal # row-reduction algorithm. In particular, scaling can # help over AA because it avoids the RecursionError that # gets thrown when we have to look too hard for a root. # # Beware: QQ supports an entirely different set of "algorithm" # keywords than do AA and RR. algo = None if superalgebra.base_ring() is not QQ: algo = "scaled_partial_pivoting" P.echelonize(algorithm=algo) # In this case, we just need to figure out which elements # of the "powers" list are redundant... First compute the # vector subspace spanned by the powers of the given # element. # Figure out which powers form a linearly-independent set. ind_rows = P.pivot_rows() # Pick those out of the list of all powers. basis = tuple(map(powers.__getitem__, ind_rows)) super().__init__(superalgebra, basis, associative=True, **kwargs) # The rank is the highest possible degree of a minimal # polynomial, and is bounded above by the dimension. We know # in this case that there's an element whose minimal # polynomial has the same degree as the space's dimension # (remember how we constructed the space?), so that must be # its rank too. self.rank.set_cache(self.dimension()) @cached_method def one(self): """ Return the multiplicative identity element of this algebra. The superclass method computes the identity element, which is beyond overkill in this case: the superalgebra identity restricted to this algebra is its identity. Note that we can't count on the first basis element being the identity -- it might have been scaled if we orthonormalized the basis. SETUP:: sage: from mjo.eja.eja_algebra import (HadamardEJA, ....: random_eja) EXAMPLES:: sage: J = HadamardEJA(5) sage: J.one() e0 + e1 + e2 + e3 + e4 sage: x = sum(J.gens()) sage: A = x.subalgebra_generated_by() sage: A.one() f0 sage: A.one().superalgebra_element() e0 + e1 + e2 + e3 + e4 TESTS: The identity element acts like the identity over the rationals:: sage: set_random_seed() sage: x = random_eja(field=QQ,orthonormalize=False).random_element() sage: A = x.subalgebra_generated_by() sage: x = A.random_element() sage: A.one()*x == x and x*A.one() == x True The identity element acts like the identity over the algebraic reals with an orthonormal basis:: sage: set_random_seed() sage: x = random_eja().random_element() sage: A = x.subalgebra_generated_by(orthonormalize_basis=True) sage: x = A.random_element() sage: A.one()*x == x and x*A.one() == x True The matrix of the unit element's operator is the identity over the rationals:: sage: set_random_seed() sage: x = random_eja(field=QQ,orthonormalize=False).random_element() sage: A = x.subalgebra_generated_by() sage: actual = A.one().operator().matrix() sage: expected = matrix.identity(A.base_ring(), A.dimension()) sage: actual == expected True The matrix of the unit element's operator is the identity over the algebraic reals with an orthonormal basis:: sage: set_random_seed() sage: x = random_eja().random_element() sage: A = x.subalgebra_generated_by(orthonormalize_basis=True) sage: actual = A.one().operator().matrix() sage: expected = matrix.identity(A.base_ring(), A.dimension()) sage: actual == expected True """ if self.dimension() == 0: return self.zero() return self(self.superalgebra().one())