""" Additional tests for the mjo.cone.cone module. These are extra properties that we'd like to check, but which are overkill for inclusion into Sage. """ # Sage doesn't load ~/.sage/init.sage during testing (sage -t), so we # have to explicitly mangle our sitedir here so that "mjo.cone" # resolves. from os.path import abspath from site import addsitedir addsitedir(abspath('../../')) from sage.all import * # The double-import is needed to get the underscore methods. from mjo.cone.cone import * def _restrict_to_subspace(K, W): r""" Restrict ``K`` (up to linear isomorphism) to a vector subspace. This operation not only restricts the cone to a subspace of its ambient space, but also represents the rays of the cone in a new (smaller) lattice corresponding to the subspace. The resulting cone will be linearly isomorphic (but not equal) to the desired restriction, since it has likely undergone a change of basis. To explain the difficulty, consider the cone ``K = Cone([(1,1,1)])`` having a single ray. The span of ``K`` is a one-dimensional subspace containing ``K``, yet we have no way to perform operations like "dual of" in the subspace. To represent ``K`` in the space ``K.span()``, we must perform a change of basis and write its sole ray as ``(1,0,0)``. Now the restricted ``Cone([(1,)])`` is linearly isomorphic (but of course not equal) to ``K`` interpreted as living in ``K.span()``. INPUT: - ``K`` -- The cone to restrict. - ``W`` -- The subspace into which ``K`` will be restricted. OUTPUT: A new cone in a sublattice corresponding to ``W``. REFERENCES: M. Orlitzky. The Lyapunov rank of an improper cone. http://www.optimization-online.org/DB_HTML/2015/10/5135.html EXAMPLES: Restricting a solid cone to its own span returns a cone linearly isomorphic to the original:: sage: K = Cone([(1,2,3),(-1,1,0),(9,0,-2)]) sage: K.is_solid() True sage: _restrict_to_subspace(K, K.span()).rays() N(-1, 1, 0), N( 1, 0, 0), N( 9, -6, -1) in 3-d lattice N A single ray restricted to its own span has the same representation regardless of the ambient space:: sage: K = Cone([(1,0)]) sage: K_S = _restrict_to_subspace(K, K.span()).rays() sage: K_S N(1) in 1-d lattice N sage: K = Cone([(1,1,1)]) sage: K_S = _restrict_to_subspace(K, K.span()).rays() sage: K_S N(1) in 1-d lattice N Restricting to a trivial space gives the trivial cone:: sage: K = Cone([(8,3,-1,0),(9,2,2,0),(-4,6,7,0)]) sage: trivial_space = K.lattice().vector_space().span([]) sage: _restrict_to_subspace(K, trivial_space) 0-d cone in 0-d lattice N TESTS: Restricting a cone to its own span results in a solid cone:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8) sage: K_S = _restrict_to_subspace(K, K.span()) sage: K_S.is_solid() True Restricting a cone to its span should not affect the number of rays in the cone:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8) sage: K_S = _restrict_to_subspace(K, K.span()) sage: K.nrays() == K_S.nrays() True Restricting a cone to its span should not affect its dimension:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8) sage: K_S = _restrict_to_subspace(K, K.span()) sage: K.dim() == K_S.dim() True Restricting a cone to its span should not affects its lineality:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8) sage: K_S = _restrict_to_subspace(K, K.span()) sage: K.lineality() == K_S.lineality() True Restricting a cone to its span should not affect the number of facets it has:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8) sage: K_S = _restrict_to_subspace(K, K.span()) sage: len(K.facets()) == len(K_S.facets()) True Restricting a solid cone to its span is a linear isomorphism and should not affect the dimension of its ambient space:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8, solid = True) sage: K_S = _restrict_to_subspace(K, K.span()) sage: K.lattice_dim() == K_S.lattice_dim() True Restricting a solid cone to its span is a linear isomorphism that establishes a one-to-one correspondence of discrete complementarity sets:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8, solid = True) sage: K_S = _restrict_to_subspace(K, K.span()) sage: dcs1 = K.discrete_complementarity_set() sage: dcs2 = K_S.discrete_complementarity_set() sage: len(dcs1) == len(dcs2) True Restricting a solid cone to its span is a linear isomorphism under which Lyapunov rank (the length of a Lyapunov-like basis) is invariant:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8, solid = True) sage: K_S = _restrict_to_subspace(K, K.span()) sage: LL1 = K.lyapunov_like_basis() sage: LL2 = K_S.lyapunov_like_basis() sage: len(LL1) == len(LL2) True If we restrict a cone to a subspace of its span, the resulting cone should have the same dimension as the subspace:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8) sage: W_basis = random_sublist(K.rays(), 0.5) sage: W = K.lattice().vector_space().span(W_basis) sage: K_W = _restrict_to_subspace(K,W) sage: K_W.lattice_dim() == W.dimension() True Through a series of restrictions, any closed convex cone can be reduced to a cartesian product with a proper factor [Orlitzky]_:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8) sage: K_S = _restrict_to_subspace(K, K.span()) sage: P = K_S.dual().span() sage: K_SP = _restrict_to_subspace(K_S, P) sage: K_SP.is_proper() True """ # We want to intersect this cone with ``W``. We can do that via # cone intersection, so we first turn the space ``W`` into a cone. W_rays = W.basis() + [ -b for b in W.basis() ] W_cone = Cone(W_rays, lattice=K.lattice()) K = K.intersection(W_cone) # Now every generator of ``K`` should belong to ``W``. K_W_rays = [ W.coordinate_vector(r) for r in K.rays() ] L = ToricLattice(W.dimension()) return Cone(K_W_rays, lattice=L) # # Tests for _restrict_to_subspace. # def _look_isomorphic(K1, K2): r""" Test whether or not ``K1`` and ``K2`` look linearly isomorphic. This is a hack to get around the fact that it's difficult to tell when two cones are linearly isomorphic. Instead, we check a list of properties that should be preserved under linear isomorphism. OUTPUT: ``True`` if ``K1`` and ``K2`` look isomorphic, or ``False`` if we can prove that they are not isomorphic. EXAMPLES: Any proper cone with three generators in `\mathbb{R}^{3}` is isomorphic to the nonnegative orthant:: sage: K1 = Cone([(1,0,0), (0,1,0), (0,0,1)]) sage: K2 = Cone([(1,2,3), (3, 18, 4), (66, 51, 0)]) sage: _look_isomorphic(K1, K2) True Negating a cone gives you an isomorphic cone:: sage: K = Cone([(0,2,-5), (-6, 2, 4), (0, 51, 0)]) sage: _look_isomorphic(K, -K) True TESTS: Any cone is isomorphic to itself:: sage: K = random_cone(max_ambient_dim = 8) sage: _look_isomorphic(K, K) True After applying an invertible matrix to the rows of a cone, the result should is isomorphic to the cone we started with:: sage: K1 = random_cone(max_ambient_dim = 8) sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular') sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice()) sage: _look_isomorphic(K1, K2) True """ if K1.lattice_dim() != K2.lattice_dim(): return False if K1.nrays() != K2.nrays(): return False if K1.dim() != K2.dim(): return False if K1.lineality() != K2.lineality(): return False if K1.is_solid() != K2.is_solid(): return False if K1.is_strictly_convex() != K2.is_strictly_convex(): return False if len(K1.lyapunov_like_basis()) != len(K2.lyapunov_like_basis()): return False C_of_K1 = K1.discrete_complementarity_set() C_of_K2 = K2.discrete_complementarity_set() if len(C_of_K1) != len(C_of_K2): return False if len(K1.facets()) != len(K2.facets()): return False return True """ Apply _restrict_to_subspace according to our paper (to obtain our main result). Test all four parameter combinations:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8, ....: strictly_convex=False, ....: solid=False) sage: K_S = _restrict_to_subspace(K, K.span()) sage: K_S2 = K.solid_restriction() sage: _look_isomorphic(K_S, K_S2) True sage: K_SP = _restrict_to_subspace(K_S.dual(), K_S.dual().span()).dual() sage: K_SP2 = K_S.strict_quotient() sage: K_SP.is_proper() True sage: K_SP2.is_proper() True sage: _look_isomorphic(K_SP, K_SP2) True sage: K_SP = _restrict_to_subspace(K_S, K_S.dual().span()) sage: K_SP.is_proper() True sage: _look_isomorphic(K_SP, K_SP2) True :: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8, ....: strictly_convex=False, ....: solid=True) sage: K_S = _restrict_to_subspace(K, K.span()) sage: K_S2 = K.solid_restriction() sage: _look_isomorphic(K_S, K_S2) True sage: K_SP = _restrict_to_subspace(K_S.dual(), K_S.dual().span()).dual() sage: K_SP2 = K_S.strict_quotient() sage: K_SP.is_proper() True sage: K_SP2.is_proper() True sage: _look_isomorphic(K_SP, K_SP2) True sage: K_SP = _restrict_to_subspace(K_S, K_S.dual().span()) sage: K_SP.is_proper() True sage: _look_isomorphic(K_SP, K_SP2) True :: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8, ....: strictly_convex=True, ....: solid=False) sage: K_S = _restrict_to_subspace(K, K.span()) sage: K_S2 = K.solid_restriction() sage: _look_isomorphic(K_S, K_S2) True sage: K_SP = _restrict_to_subspace(K_S.dual(), K_S.dual().span()).dual() sage: K_SP2 = K_S.strict_quotient() sage: K_SP.is_proper() True sage: K_SP2.is_proper() True sage: _look_isomorphic(K_SP, K_SP2) True sage: K_SP = _restrict_to_subspace(K_S, K_S.dual().span()) sage: K_SP.is_proper() True sage: _look_isomorphic(K_SP, K_SP2) True :: sage: set_random_seed() sage: K = random_cone(max_ambient_dim = 8, ....: strictly_convex=True, ....: solid=True) sage: K_S = _restrict_to_subspace(K, K.span()) sage: K_S2 = K.solid_restriction() sage: _look_isomorphic(K_S, K_S2) True sage: K_SP = _restrict_to_subspace(K_S.dual(), K_S.dual().span()).dual() sage: K_SP2 = K_S.strict_quotient() sage: K_SP.is_proper() True sage: K_SP2.is_proper() True sage: _look_isomorphic(K_SP, K_SP2) True sage: K_SP = _restrict_to_subspace(K_S, K_S.dual().span()) sage: K_SP.is_proper() True sage: _look_isomorphic(K_SP, K_SP2) True Test the proposition in our paper concerning the duals and restrictions. Generate a random cone, then create a subcone of it. The operation of dual-taking should then commute with rho. Test all parameter combinations:: sage: set_random_seed() sage: J = random_cone(max_ambient_dim = 8, ....: solid=False, ....: strictly_convex=False) sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice()) sage: K_W_star = _restrict_to_subspace(K, J.span()).dual() sage: K_star_W = _restrict_to_subspace(K.dual(), J.span()) sage: _look_isomorphic(K_W_star, K_star_W) True :: sage: set_random_seed() sage: J = random_cone(max_ambient_dim = 8, ....: solid=True, ....: strictly_convex=False) sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice()) sage: K_W_star = _restrict_to_subspace(K, J.span()).dual() sage: K_star_W = _restrict_to_subspace(K.dual(), J.span()) sage: _look_isomorphic(K_W_star, K_star_W) True :: sage: set_random_seed() sage: J = random_cone(max_ambient_dim = 8, ....: solid=False, ....: strictly_convex=True) sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice()) sage: K_W_star = _restrict_to_subspace(K, J.span()).dual() sage: K_star_W = _restrict_to_subspace(K.dual(), J.span()) sage: _look_isomorphic(K_W_star, K_star_W) True :: sage: set_random_seed() sage: J = random_cone(max_ambient_dim = 8, ....: solid=True, ....: strictly_convex=True) sage: K = Cone(random_sublist(J.rays(), 0.5), lattice=J.lattice()) sage: K_W_star = _restrict_to_subspace(K, J.span()).dual() sage: K_star_W = _restrict_to_subspace(K.dual(), J.span()) sage: _look_isomorphic(K_W_star, K_star_W) True Ensure that ``__restrict_to_subspace(K, K.span())`` and ``K.solid_restriction()`` are actually equivalent:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8) sage: K1 = _restrict_to_subspace(K, K.span()) sage: K2 = K.solid_restriction() sage: _look_isomorphic(K1,K2) True Ensure that ``K.__restrict_to_subspace(K,K.dual().span())`` and ``strict_quotient`` are actually equivalent:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=6) sage: K1 = _restrict_to_subspace(K, K.dual().span()) sage: K2 = K.strict_quotient() sage: _look_isomorphic(K1,K2) True """ # # Lyapunov rank tests # """ The Lyapunov rank is invariant under a linear isomorphism. Check all combinations of parameters:: sage: K1 = random_cone(max_ambient_dim=8, ....: strictly_convex=True, ....: solid=True) sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular') sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice()) sage: K1.lyapunov_rank() == K2.lyapunov_rank() True :: sage: K1 = random_cone(max_ambient_dim=8, ....: strictly_convex=True, ....: solid=False) sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular') sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice()) sage: K1.lyapunov_rank() == K2.lyapunov_rank() True :: sage: K1 = random_cone(max_ambient_dim=8, ....: strictly_convex=False, ....: solid=True) sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular') sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice()) sage: K1.lyapunov_rank() == K2.lyapunov_rank() True :: sage: K1 = random_cone(max_ambient_dim=8, ....: strictly_convex=False, ....: solid=False) sage: A = random_matrix(QQ, K1.lattice_dim(), algorithm='unimodular') sage: K2 = Cone( [ A*r for r in K1.rays() ], lattice=K1.lattice()) sage: K1.lyapunov_rank() == K2.lyapunov_rank() True The Lyapunov rank of a dual cone should be the same as the original cone. Check all combinations of parameters:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=False, ....: solid=False) sage: K.lyapunov_rank() == K.dual().lyapunov_rank() True :: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=False, ....: solid=True) sage: K.lyapunov_rank() == K.dual().lyapunov_rank() True :: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=True, ....: solid=False) sage: K.lyapunov_rank() == K.dual().lyapunov_rank() True :: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=True, ....: solid=True) sage: K.lyapunov_rank() == K.dual().lyapunov_rank() True The Lyapunov rank of a cone ``K`` is the dimension of ``K.lyapunov_like_basis()``. Check all combinations of parameters:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=True, ....: solid=True) sage: K.lyapunov_rank() == len(K.lyapunov_like_basis()) True :: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=True, ....: solid=False) sage: K.lyapunov_rank() == len(K.lyapunov_like_basis()) True :: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=False, ....: solid=True) sage: K.lyapunov_rank() == len(K.lyapunov_like_basis()) True :: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, ....: strictly_convex=False, ....: solid=False) sage: K.lyapunov_rank() == len(K.lyapunov_like_basis()) True """