from sage.all import * def is_lyapunov_like(L,K): r""" Determine whether or not ``L`` is Lyapunov-like on ``K``. We say that ``L`` is Lyapunov-like on ``K`` if `\left\langle L\left\lparenx\right\rparen,s\right\rangle = 0` for all pairs `\left\langle x,s \right\rangle` in the complementarity set of ``K``. It is known [Orlitzky]_ that this property need only be checked for generators of ``K`` and its dual. INPUT: - ``L`` -- A linear transformation or matrix. - ``K`` -- A polyhedral closed convex cone. OUTPUT: ``True`` if it can be proven that ``L`` is Lyapunov-like on ``K``, and ``False`` otherwise. .. WARNING:: If this function returns ``True``, then ``L`` is Lyapunov-like on ``K``. However, if ``False`` is returned, that could mean one of two things. The first is that ``L`` is definitely not Lyapunov-like on ``K``. The second is more of an "I don't know" answer, returned (for example) if we cannot prove that an inner product is zero. REFERENCES: M. Orlitzky. The Lyapunov rank of an improper cone. http://www.optimization-online.org/DB_HTML/2015/10/5135.html EXAMPLES: The identity is always Lyapunov-like in a nontrivial space:: sage: set_random_seed() sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8) sage: L = identity_matrix(K.lattice_dim()) sage: is_lyapunov_like(L,K) True As is the "zero" transformation:: sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8) sage: R = K.lattice().vector_space().base_ring() sage: L = zero_matrix(R, K.lattice_dim()) sage: is_lyapunov_like(L,K) True Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like on ``K``:: sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6) sage: all([ is_lyapunov_like(L,K) for L in K.lyapunov_like_basis() ]) True """ return all([(L*x).inner_product(s) == 0 for (x,s) in K.discrete_complementarity_set()]) def motzkin_decomposition(K): r""" Return the pair of components in the Motzkin decomposition of this cone. Every convex cone is the direct sum of a strictly convex cone and a linear subspace [Stoer-Witzgall]_. Return a pair ``(P,S)`` of cones such that ``P`` is strictly convex, ``S`` is a subspace, and ``K`` is the direct sum of ``P`` and ``S``. .. NOTE:: The name "Motzkin decomposition" is not standard. The result is usually stated as the "decomposition theorem", or "cone decomposition theorem." OUTPUT: An ordered pair ``(P,S)`` of closed convex polyhedral cones where ``P`` is strictly convex, ``S`` is a subspace, and ``K`` is the direct sum of ``P`` and ``S``. REFERENCES: .. [Stoer-Witzgall] J. Stoer and C. Witzgall. Convexity and Optimization in Finite Dimensions I. Springer-Verlag, New York, 1970. EXAMPLES: The nonnegative orthant is strictly convex, so it is its own strictly convex component and its subspace component is trivial:: sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)]) sage: (P,S) = motzkin_decomposition(K) sage: K.is_equivalent(P) True sage: S.is_trivial() True Likewise, full spaces are their own subspace components:: sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)]) sage: K.is_full_space() True sage: (P,S) = motzkin_decomposition(K) sage: K.is_equivalent(S) True sage: P.is_trivial() True TESTS: A random point in the cone should belong to either the strictly convex component or the subspace component. If the point is nonzero, it cannot be in both:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8) sage: (P,S) = motzkin_decomposition(K) sage: x = K.random_element(ring=QQ) sage: P.contains(x) or S.contains(x) True sage: x.is_zero() or (P.contains(x) != S.contains(x)) True The strictly convex component should always be strictly convex, and the subspace component should always be a subspace:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8) sage: (P,S) = motzkin_decomposition(K) sage: P.is_strictly_convex() True sage: S.lineality() == S.dim() True A strictly convex cone should be equal to its strictly convex component:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, strictly_convex=True) sage: (P,_) = motzkin_decomposition(K) sage: K.is_equivalent(P) True The generators of the components are obtained from orthogonal projections of the original generators [Stoer-Witzgall]_:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8) sage: (P,S) = motzkin_decomposition(K) sage: A = S.linear_subspace().complement().matrix() sage: proj_S_perp = A.transpose() * (A*A.transpose()).inverse() * A sage: expected_P = Cone([ proj_S_perp*g for g in K ], K.lattice()) sage: P.is_equivalent(expected_P) True sage: A = S.linear_subspace().matrix() sage: proj_S = A.transpose() * (A*A.transpose()).inverse() * A sage: expected_S = Cone([ proj_S*g for g in K ], K.lattice()) sage: S.is_equivalent(expected_S) True """ # The lines() method only returns one generator per line. For a true # line, we also need a generator pointing in the opposite direction. S_gens = [ direction*gen for direction in [1,-1] for gen in K.lines() ] S = Cone(S_gens, K.lattice(), check=False) # Since ``S`` is a subspace, the rays of its dual generate its # orthogonal complement. S_perp = Cone(S.dual(), K.lattice(), check=False) P = K.intersection(S_perp) return (P,S) def positive_operator_gens(K): r""" Compute generators of the cone of positive operators on this cone. OUTPUT: A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``. Each matrix ``P`` in the list should have the property that ``P*x`` is an element of ``K`` whenever ``x`` is an element of ``K``. Moreover, any nonnegative linear combination of these matrices shares the same property. EXAMPLES: Positive operators on the nonnegative orthant are nonnegative matrices:: sage: K = Cone([(1,)]) sage: positive_operator_gens(K) [[1]] sage: K = Cone([(1,0),(0,1)]) sage: positive_operator_gens(K) [ [1 0] [0 1] [0 0] [0 0] [0 0], [0 0], [1 0], [0 1] ] The trivial cone in a trivial space has no positive operators:: sage: K = Cone([], ToricLattice(0)) sage: positive_operator_gens(K) [] Every operator is positive on the trivial cone:: sage: K = Cone([(0,)]) sage: positive_operator_gens(K) [[1], [-1]] sage: K = Cone([(0,0)]) sage: K.is_trivial() True sage: positive_operator_gens(K) [ [1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0] [0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1] ] Every operator is positive on the ambient vector space:: sage: K = Cone([(1,),(-1,)]) sage: K.is_full_space() True sage: positive_operator_gens(K) [[1], [-1]] sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)]) sage: K.is_full_space() True sage: positive_operator_gens(K) [ [1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0] [0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1] ] A non-obvious application is to find the positive operators on the right half-plane:: sage: K = Cone([(1,0),(0,1),(0,-1)]) sage: positive_operator_gens(K) [ [1 0] [0 0] [ 0 0] [0 0] [ 0 0] [0 0], [1 0], [-1 0], [0 1], [ 0 -1] ] TESTS: Each positive operator generator should send the generators of the cone into the cone:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: pi_of_K = positive_operator_gens(K) sage: all([ K.contains(P*x) for P in pi_of_K for x in K ]) True Each positive operator generator should send a random element of the cone into the cone:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: pi_of_K = positive_operator_gens(K) sage: all([ K.contains(P*K.random_element(QQ)) for P in pi_of_K ]) True A random element of the positive operator cone should send the generators of the cone into the cone:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) sage: pi_cone = Cone([ g.list() for g in pi_of_K ], ....: lattice=L, ....: check=False) sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list()) sage: all([ K.contains(P*x) for x in K ]) True A random element of the positive operator cone should send a random element of the cone into the cone:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) sage: pi_cone = Cone([ g.list() for g in pi_of_K ], ....: lattice=L, ....: check=False) sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list()) sage: K.contains(P*K.random_element(ring=QQ)) True The lineality space of the dual of the cone of positive operators can be computed from the lineality spaces of the cone and its dual:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) sage: pi_cone = Cone([ g.list() for g in pi_of_K ], ....: lattice=L, ....: check=False) sage: actual = pi_cone.dual().linear_subspace() sage: U1 = [ vector((s.tensor_product(x)).list()) ....: for x in K.lines() ....: for s in K.dual() ] sage: U2 = [ vector((s.tensor_product(x)).list()) ....: for x in K ....: for s in K.dual().lines() ] sage: expected = pi_cone.lattice().vector_space().span(U1 + U2) sage: actual == expected True The lineality of the dual of the cone of positive operators is known from its lineality space:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: n = K.lattice_dim() sage: m = K.dim() sage: l = K.lineality() sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(n**2) sage: pi_cone = Cone([p.list() for p in pi_of_K], ....: lattice=L, ....: check=False) sage: actual = pi_cone.dual().lineality() sage: expected = l*(m - l) + m*(n - m) sage: actual == expected True The dimension of the cone of positive operators is given by the corollary in my paper:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: n = K.lattice_dim() sage: m = K.dim() sage: l = K.lineality() sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(n**2) sage: pi_cone = Cone([p.list() for p in pi_of_K], ....: lattice=L, ....: check=False) sage: actual = pi_cone.dim() sage: expected = n**2 - l*(m - l) - (n - m)*m sage: actual == expected True The trivial cone, full space, and half-plane all give rise to the expected dimensions:: sage: n = ZZ.random_element().abs() sage: K = Cone([[0] * n], ToricLattice(n)) sage: K.is_trivial() True sage: L = ToricLattice(n^2) sage: pi_of_K = positive_operator_gens(K) sage: pi_cone = Cone([p.list() for p in pi_of_K], ....: lattice=L, ....: check=False) sage: actual = pi_cone.dim() sage: actual == n^2 True sage: K = K.dual() sage: K.is_full_space() True sage: pi_of_K = positive_operator_gens(K) sage: pi_cone = Cone([p.list() for p in pi_of_K], ....: lattice=L, ....: check=False) sage: actual = pi_cone.dim() sage: actual == n^2 True sage: K = Cone([(1,0),(0,1),(0,-1)]) sage: pi_of_K = positive_operator_gens(K) sage: actual = Cone([p.list() for p in pi_of_K], check=False).dim() sage: actual == 3 True The lineality of the cone of positive operators follows from the description of its generators:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: n = K.lattice_dim() sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(n**2) sage: pi_cone = Cone([p.list() for p in pi_of_K], ....: lattice=L, ....: check=False) sage: actual = pi_cone.lineality() sage: expected = n**2 - K.dim()*K.dual().dim() sage: actual == expected True The trivial cone, full space, and half-plane all give rise to the expected linealities:: sage: n = ZZ.random_element().abs() sage: K = Cone([[0] * n], ToricLattice(n)) sage: K.is_trivial() True sage: L = ToricLattice(n^2) sage: pi_of_K = positive_operator_gens(K) sage: pi_cone = Cone([p.list() for p in pi_of_K], ....: lattice=L, ....: check=False) sage: actual = pi_cone.lineality() sage: actual == n^2 True sage: K = K.dual() sage: K.is_full_space() True sage: pi_of_K = positive_operator_gens(K) sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L) sage: pi_cone.lineality() == n^2 True sage: K = Cone([(1,0),(0,1),(0,-1)]) sage: pi_of_K = positive_operator_gens(K) sage: pi_cone = Cone([p.list() for p in pi_of_K], check=False) sage: actual = pi_cone.lineality() sage: actual == 2 True A cone is proper if and only if its cone of positive operators is proper:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: pi_of_K = positive_operator_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) sage: pi_cone = Cone([p.list() for p in pi_of_K], ....: lattice=L, ....: check=False) sage: K.is_proper() == pi_cone.is_proper() True The positive operators of a permuted cone can be obtained by conjugation:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: L = ToricLattice(K.lattice_dim()**2) sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix() sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False) sage: pi_of_pK = positive_operator_gens(pK) sage: actual = Cone([t.list() for t in pi_of_pK], ....: lattice=L, ....: check=False) sage: pi_of_K = positive_operator_gens(K) sage: expected = Cone([(p*t*p.inverse()).list() for t in pi_of_K], ....: lattice=L, ....: check=False) sage: actual.is_equivalent(expected) True A transformation is positive on a cone if and only if its adjoint is positive on the dual of that cone:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: F = K.lattice().vector_space().base_field() sage: n = K.lattice_dim() sage: L = ToricLattice(n**2) sage: W = VectorSpace(F, n**2) sage: pi_of_K = positive_operator_gens(K) sage: pi_of_K_star = positive_operator_gens(K.dual()) sage: pi_cone = Cone([p.list() for p in pi_of_K], ....: lattice=L, ....: check=False) sage: pi_star = Cone([p.list() for p in pi_of_K_star], ....: lattice=L, ....: check=False) sage: M = MatrixSpace(F, n) sage: L = M(pi_cone.random_element(ring=QQ).list()) sage: pi_star.contains(W(L.transpose().list())) True sage: L = W.random_element() sage: L_star = W(M(L.list()).transpose().list()) sage: pi_cone.contains(L) == pi_star.contains(L_star) True """ # Matrices are not vectors in Sage, so we have to convert them # to vectors explicitly before we can find a basis. We need these # two values to construct the appropriate "long vector" space. F = K.lattice().base_field() n = K.lattice_dim() tensor_products = [ s.tensor_product(x) for x in K for s in K.dual() ] # Convert those tensor products to long vectors. W = VectorSpace(F, n**2) vectors = [ W(tp.list()) for tp in tensor_products ] check = True if K.is_solid() or K.is_strictly_convex(): # The lineality space of either ``K`` or ``K.dual()`` is # trivial and it's easy to show that our generating set is # minimal. I would love a proof that this works when ``K`` is # neither pointed nor solid. # # Note that in that case we can get *duplicates*, since the # tensor product of (x,s) is the same as that of (-x,-s). check = False # Create the dual cone of the positive operators, expressed as # long vectors. pi_dual = Cone(vectors, ToricLattice(W.dimension()), check=check) # Now compute the desired cone from its dual... pi_cone = pi_dual.dual() # And finally convert its rays back to matrix representations. M = MatrixSpace(F, n) return [ M(v.list()) for v in pi_cone ] def Z_transformation_gens(K): r""" Compute generators of the cone of Z-transformations on this cone. OUTPUT: A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``. Each matrix ``L`` in the list should have the property that ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element the discrete complementarity set of ``K``. Moreover, any nonnegative linear combination of these matrices shares the same property. EXAMPLES: Z-transformations on the nonnegative orthant are just Z-matrices. That is, matrices whose off-diagonal elements are nonnegative:: sage: K = Cone([(1,0),(0,1)]) sage: Z_transformation_gens(K) [ [ 0 -1] [ 0 0] [-1 0] [1 0] [ 0 0] [0 0] [ 0 0], [-1 0], [ 0 0], [0 0], [ 0 -1], [0 1] ] sage: K = Cone([(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)]) sage: all([ z[i][j] <= 0 for z in Z_transformation_gens(K) ....: for i in range(z.nrows()) ....: for j in range(z.ncols()) ....: if i != j ]) True The trivial cone in a trivial space has no Z-transformations:: sage: K = Cone([], ToricLattice(0)) sage: Z_transformation_gens(K) [] Every operator is a Z-transformation on the ambient vector space:: sage: K = Cone([(1,),(-1,)]) sage: K.is_full_space() True sage: Z_transformation_gens(K) [[-1], [1]] sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)]) sage: K.is_full_space() True sage: Z_transformation_gens(K) [ [-1 0] [1 0] [ 0 -1] [0 1] [ 0 0] [0 0] [ 0 0] [0 0] [ 0 0], [0 0], [ 0 0], [0 0], [-1 0], [1 0], [ 0 -1], [0 1] ] A non-obvious application is to find the Z-transformations on the right half-plane:: sage: K = Cone([(1,0),(0,1),(0,-1)]) sage: Z_transformation_gens(K) [ [-1 0] [1 0] [ 0 0] [0 0] [ 0 0] [0 0] [ 0 0], [0 0], [-1 0], [1 0], [ 0 -1], [0 1] ] Z-transformations on a subspace are Lyapunov-like and vice-versa:: sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)]) sage: K.is_full_space() True sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ]) sage: zs = span([ vector(z.list()) for z in Z_transformation_gens(K) ]) sage: zs == lls True TESTS: The Z-property is possessed by every Z-transformation:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: Z_of_K = Z_transformation_gens(K) sage: dcs = K.discrete_complementarity_set() sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K ....: for (x,s) in dcs]) True The lineality space of the cone of Z-transformations is the space of Lyapunov-like transformations:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: L = ToricLattice(K.lattice_dim()**2) sage: Z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ], ....: lattice=L, ....: check=False) sage: ll_basis = [ vector(l.list()) for l in K.lyapunov_like_basis() ] sage: lls = L.vector_space().span(ll_basis) sage: Z_cone.linear_subspace() == lls True The lineality of the Z-transformations on a cone is the Lyapunov rank of that cone:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: Z_of_K = Z_transformation_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) sage: Z_cone = Cone([ z.list() for z in Z_of_K ], ....: lattice=L, ....: check=False) sage: Z_cone.lineality() == K.lyapunov_rank() True The lineality spaces of the duals of the positive operator and Z-transformation cones are equal. From this it follows that the dimensions of the Z-transformation cone and positive operator cone are equal:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: pi_of_K = positive_operator_gens(K) sage: Z_of_K = Z_transformation_gens(K) sage: L = ToricLattice(K.lattice_dim()**2) sage: pi_cone = Cone([p.list() for p in pi_of_K], ....: lattice=L, ....: check=False) sage: Z_cone = Cone([ z.list() for z in Z_of_K], ....: lattice=L, ....: check=False) sage: pi_cone.dim() == Z_cone.dim() True sage: pi_star = pi_cone.dual() sage: z_star = Z_cone.dual() sage: pi_star.linear_subspace() == z_star.linear_subspace() True The trivial cone, full space, and half-plane all give rise to the expected dimensions:: sage: n = ZZ.random_element().abs() sage: K = Cone([[0] * n], ToricLattice(n)) sage: K.is_trivial() True sage: L = ToricLattice(n^2) sage: Z_of_K = Z_transformation_gens(K) sage: Z_cone = Cone([z.list() for z in Z_of_K], ....: lattice=L, ....: check=False) sage: actual = Z_cone.dim() sage: actual == n^2 True sage: K = K.dual() sage: K.is_full_space() True sage: Z_of_K = Z_transformation_gens(K) sage: Z_cone = Cone([z.list() for z in Z_of_K], ....: lattice=L, ....: check=False) sage: actual = Z_cone.dim() sage: actual == n^2 True sage: K = Cone([(1,0),(0,1),(0,-1)]) sage: Z_of_K = Z_transformation_gens(K) sage: Z_cone = Cone([z.list() for z in Z_of_K], check=False) sage: Z_cone.dim() == 3 True The Z-transformations of a permuted cone can be obtained by conjugation:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: L = ToricLattice(K.lattice_dim()**2) sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix() sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False) sage: Z_of_pK = Z_transformation_gens(pK) sage: actual = Cone([t.list() for t in Z_of_pK], ....: lattice=L, ....: check=False) sage: Z_of_K = Z_transformation_gens(K) sage: expected = Cone([(p*t*p.inverse()).list() for t in Z_of_K], ....: lattice=L, ....: check=False) sage: actual.is_equivalent(expected) True A transformation is a Z-transformation on a cone if and only if its adjoint is a Z-transformation on the dual of that cone:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=4) sage: F = K.lattice().vector_space().base_field() sage: n = K.lattice_dim() sage: L = ToricLattice(n**2) sage: W = VectorSpace(F, n**2) sage: Z_of_K = Z_transformation_gens(K) sage: Z_of_K_star = Z_transformation_gens(K.dual()) sage: Z_cone = Cone([p.list() for p in Z_of_K], ....: lattice=L, ....: check=False) sage: Z_star = Cone([p.list() for p in Z_of_K_star], ....: lattice=L, ....: check=False) sage: M = MatrixSpace(F, n) sage: L = M(Z_cone.random_element(ring=QQ).list()) sage: Z_star.contains(W(L.transpose().list())) True sage: L = W.random_element() sage: L_star = W(M(L.list()).transpose().list()) sage: Z_cone.contains(L) == Z_star.contains(L_star) True """ # Matrices are not vectors in Sage, so we have to convert them # to vectors explicitly before we can find a basis. We need these # two values to construct the appropriate "long vector" space. F = K.lattice().base_field() n = K.lattice_dim() # These tensor products contain generators for the dual cone of # the cross-positive transformations. tensor_products = [ s.tensor_product(x) for (x,s) in K.discrete_complementarity_set() ] # Turn our matrices into long vectors... W = VectorSpace(F, n**2) vectors = [ W(m.list()) for m in tensor_products ] check = True if K.is_solid() or K.is_strictly_convex(): # The lineality space of either ``K`` or ``K.dual()`` is # trivial and it's easy to show that our generating set is # minimal. I would love a proof that this works when ``K`` is # neither pointed nor solid. # # Note that in that case we can get *duplicates*, since the # tensor product of (x,s) is the same as that of (-x,-s). check = False # Create the dual cone of the cross-positive operators, # expressed as long vectors. Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension()), check=check) # Now compute the desired cone from its dual... Sigma_cone = Sigma_dual.dual() # And finally convert its rays back to matrix representations. # But first, make them negative, so we get Z-transformations and # not cross-positive ones. M = MatrixSpace(F, n) return [ -M(v.list()) for v in Sigma_cone ] def Z_cone(K): gens = Z_transformation_gens(K) L = ToricLattice(K.lattice_dim()**2) return Cone([ g.list() for g in gens ], lattice=L, check=False) def pi_cone(K): gens = positive_operator_gens(K) L = ToricLattice(K.lattice_dim()**2) return Cone([ g.list() for g in gens ], lattice=L, check=False)