]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/euclidean_jordan_algebra.py
eja: use random_eja() where applicable in tests.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.categories.magmatic_algebras import MagmaticAlgebras
9 from sage.structure.element import is_Matrix
10 from sage.structure.category_object import normalize_names
11
12 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
13 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
14
15 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
16 @staticmethod
17 def __classcall_private__(cls,
18 field,
19 mult_table,
20 names='e',
21 assume_associative=False,
22 category=None,
23 rank=None):
24 n = len(mult_table)
25 mult_table = [b.base_extend(field) for b in mult_table]
26 for b in mult_table:
27 b.set_immutable()
28 if not (is_Matrix(b) and b.dimensions() == (n, n)):
29 raise ValueError("input is not a multiplication table")
30 mult_table = tuple(mult_table)
31
32 cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
33 cat.or_subcategory(category)
34 if assume_associative:
35 cat = cat.Associative()
36
37 names = normalize_names(n, names)
38
39 fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
40 return fda.__classcall__(cls,
41 field,
42 mult_table,
43 assume_associative=assume_associative,
44 names=names,
45 category=cat,
46 rank=rank)
47
48
49 def __init__(self, field,
50 mult_table,
51 names='e',
52 assume_associative=False,
53 category=None,
54 rank=None):
55 self._rank = rank
56 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
57 fda.__init__(field,
58 mult_table,
59 names=names,
60 category=category)
61
62
63 def _repr_(self):
64 """
65 Return a string representation of ``self``.
66 """
67 fmt = "Euclidean Jordan algebra of degree {} over {}"
68 return fmt.format(self.degree(), self.base_ring())
69
70 def rank(self):
71 """
72 Return the rank of this EJA.
73 """
74 if self._rank is None:
75 raise ValueError("no rank specified at genesis")
76 else:
77 return self._rank
78
79
80 class Element(FiniteDimensionalAlgebraElement):
81 """
82 An element of a Euclidean Jordan algebra.
83 """
84
85 def __pow__(self, n):
86 """
87 Return ``self`` raised to the power ``n``.
88
89 Jordan algebras are always power-associative; see for
90 example Faraut and Koranyi, Proposition II.1.2 (ii).
91
92 .. WARNING:
93
94 We have to override this because our superclass uses row vectors
95 instead of column vectors! We, on the other hand, assume column
96 vectors everywhere.
97
98 EXAMPLES:
99
100 sage: set_random_seed()
101 sage: x = random_eja().random_element()
102 sage: x.matrix()*x.vector() == (x**2).vector()
103 True
104
105 """
106 A = self.parent()
107 if n == 0:
108 return A.one()
109 elif n == 1:
110 return self
111 else:
112 return A.element_class(A, (self.matrix()**(n-1))*self.vector())
113
114
115 def characteristic_polynomial(self):
116 """
117 Return my characteristic polynomial (if I'm a regular
118 element).
119
120 Eventually this should be implemented in terms of the parent
121 algebra's characteristic polynomial that works for ALL
122 elements.
123 """
124 if self.is_regular():
125 return self.minimal_polynomial()
126 else:
127 raise NotImplementedError('irregular element')
128
129
130 def det(self):
131 """
132 Return my determinant, the product of my eigenvalues.
133
134 EXAMPLES::
135
136 sage: J = eja_ln(2)
137 sage: e0,e1 = J.gens()
138 sage: x = e0 + e1
139 sage: x.det()
140 0
141 sage: J = eja_ln(3)
142 sage: e0,e1,e2 = J.gens()
143 sage: x = e0 + e1 + e2
144 sage: x.det()
145 -1
146
147 """
148 cs = self.characteristic_polynomial().coefficients(sparse=False)
149 r = len(cs) - 1
150 if r >= 0:
151 return cs[0] * (-1)**r
152 else:
153 raise ValueError('charpoly had no coefficients')
154
155
156 def is_nilpotent(self):
157 """
158 Return whether or not some power of this element is zero.
159
160 The superclass method won't work unless we're in an
161 associative algebra, and we aren't. However, we generate
162 an assocoative subalgebra and we're nilpotent there if and
163 only if we're nilpotent here (probably).
164
165 TESTS:
166
167 The identity element is never nilpotent::
168
169 sage: set_random_seed()
170 sage: random_eja().one().is_nilpotent()
171 False
172
173 The additive identity is always nilpotent::
174
175 sage: set_random_seed()
176 sage: random_eja().zero().is_nilpotent()
177 True
178
179 """
180 # The element we're going to call "is_nilpotent()" on.
181 # Either myself, interpreted as an element of a finite-
182 # dimensional algebra, or an element of an associative
183 # subalgebra.
184 elt = None
185
186 if self.parent().is_associative():
187 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
188 else:
189 V = self.span_of_powers()
190 assoc_subalg = self.subalgebra_generated_by()
191 # Mis-design warning: the basis used for span_of_powers()
192 # and subalgebra_generated_by() must be the same, and in
193 # the same order!
194 elt = assoc_subalg(V.coordinates(self.vector()))
195
196 # Recursive call, but should work since elt lives in an
197 # associative algebra.
198 return elt.is_nilpotent()
199
200
201 def is_regular(self):
202 """
203 Return whether or not this is a regular element.
204
205 EXAMPLES:
206
207 The identity element always has degree one, but any element
208 linearly-independent from it is regular::
209
210 sage: J = eja_ln(5)
211 sage: J.one().is_regular()
212 False
213 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
214 sage: for x in J.gens():
215 ....: (J.one() + x).is_regular()
216 False
217 True
218 True
219 True
220 True
221
222 """
223 return self.degree() == self.parent().rank()
224
225
226 def degree(self):
227 """
228 Compute the degree of this element the straightforward way
229 according to the definition; by appending powers to a list
230 and figuring out its dimension (that is, whether or not
231 they're linearly dependent).
232
233 EXAMPLES::
234
235 sage: J = eja_ln(4)
236 sage: J.one().degree()
237 1
238 sage: e0,e1,e2,e3 = J.gens()
239 sage: (e0 - e1).degree()
240 2
241
242 In the spin factor algebra (of rank two), all elements that
243 aren't multiples of the identity are regular::
244
245 sage: set_random_seed()
246 sage: n = ZZ.random_element(1,10).abs()
247 sage: J = eja_ln(n)
248 sage: x = J.random_element()
249 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
250 True
251
252 """
253 return self.span_of_powers().dimension()
254
255
256 def matrix(self):
257 """
258 Return the matrix that represents left- (or right-)
259 multiplication by this element in the parent algebra.
260
261 We have to override this because the superclass method
262 returns a matrix that acts on row vectors (that is, on
263 the right).
264 """
265 fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
266 return fda_elt.matrix().transpose()
267
268
269 def minimal_polynomial(self):
270 """
271 EXAMPLES::
272
273 sage: set_random_seed()
274 sage: x = random_eja().random_element()
275 sage: x.degree() == x.minimal_polynomial().degree()
276 True
277
278 ::
279
280 sage: set_random_seed()
281 sage: x = random_eja().random_element()
282 sage: x.degree() == x.minimal_polynomial().degree()
283 True
284
285 The minimal polynomial and the characteristic polynomial coincide
286 and are known (see Alizadeh, Example 11.11) for all elements of
287 the spin factor algebra that aren't scalar multiples of the
288 identity::
289
290 sage: set_random_seed()
291 sage: n = ZZ.random_element(2,10).abs()
292 sage: J = eja_ln(n)
293 sage: y = J.random_element()
294 sage: while y == y.coefficient(0)*J.one():
295 ....: y = J.random_element()
296 sage: y0 = y.vector()[0]
297 sage: y_bar = y.vector()[1:]
298 sage: actual = y.minimal_polynomial()
299 sage: x = SR.symbol('x', domain='real')
300 sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
301 sage: bool(actual == expected)
302 True
303
304 """
305 # The element we're going to call "minimal_polynomial()" on.
306 # Either myself, interpreted as an element of a finite-
307 # dimensional algebra, or an element of an associative
308 # subalgebra.
309 elt = None
310
311 if self.parent().is_associative():
312 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
313 else:
314 V = self.span_of_powers()
315 assoc_subalg = self.subalgebra_generated_by()
316 # Mis-design warning: the basis used for span_of_powers()
317 # and subalgebra_generated_by() must be the same, and in
318 # the same order!
319 elt = assoc_subalg(V.coordinates(self.vector()))
320
321 # Recursive call, but should work since elt lives in an
322 # associative algebra.
323 return elt.minimal_polynomial()
324
325
326 def span_of_powers(self):
327 """
328 Return the vector space spanned by successive powers of
329 this element.
330 """
331 # The dimension of the subalgebra can't be greater than
332 # the big algebra, so just put everything into a list
333 # and let span() get rid of the excess.
334 V = self.vector().parent()
335 return V.span( (self**d).vector() for d in xrange(V.dimension()) )
336
337
338 def subalgebra_generated_by(self):
339 """
340 Return the associative subalgebra of the parent EJA generated
341 by this element.
342
343 TESTS::
344
345 sage: set_random_seed()
346 sage: x = random_eja().random_element()
347 sage: x.subalgebra_generated_by().is_associative()
348 True
349
350 Squaring in the subalgebra should be the same thing as
351 squaring in the superalgebra::
352
353 sage: set_random_seed()
354 sage: x = random_eja().random_element()
355 sage: u = x.subalgebra_generated_by().random_element()
356 sage: u.matrix()*u.vector() == (u**2).vector()
357 True
358
359 """
360 # First get the subspace spanned by the powers of myself...
361 V = self.span_of_powers()
362 F = self.base_ring()
363
364 # Now figure out the entries of the right-multiplication
365 # matrix for the successive basis elements b0, b1,... of
366 # that subspace.
367 mats = []
368 for b_right in V.basis():
369 eja_b_right = self.parent()(b_right)
370 b_right_rows = []
371 # The first row of the right-multiplication matrix by
372 # b1 is what we get if we apply that matrix to b1. The
373 # second row of the right multiplication matrix by b1
374 # is what we get when we apply that matrix to b2...
375 #
376 # IMPORTANT: this assumes that all vectors are COLUMN
377 # vectors, unlike our superclass (which uses row vectors).
378 for b_left in V.basis():
379 eja_b_left = self.parent()(b_left)
380 # Multiply in the original EJA, but then get the
381 # coordinates from the subalgebra in terms of its
382 # basis.
383 this_row = V.coordinates((eja_b_left*eja_b_right).vector())
384 b_right_rows.append(this_row)
385 b_right_matrix = matrix(F, b_right_rows)
386 mats.append(b_right_matrix)
387
388 # It's an algebra of polynomials in one element, and EJAs
389 # are power-associative.
390 #
391 # TODO: choose generator names intelligently.
392 return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
393
394
395 def subalgebra_idempotent(self):
396 """
397 Find an idempotent in the associative subalgebra I generate
398 using Proposition 2.3.5 in Baes.
399
400 TESTS::
401
402 sage: set_random_seed()
403 sage: J = eja_rn(5)
404 sage: c = J.random_element().subalgebra_idempotent()
405 sage: c^2 == c
406 True
407 sage: J = eja_ln(5)
408 sage: c = J.random_element().subalgebra_idempotent()
409 sage: c^2 == c
410 True
411
412 """
413 if self.is_nilpotent():
414 raise ValueError("this only works with non-nilpotent elements!")
415
416 V = self.span_of_powers()
417 J = self.subalgebra_generated_by()
418 # Mis-design warning: the basis used for span_of_powers()
419 # and subalgebra_generated_by() must be the same, and in
420 # the same order!
421 u = J(V.coordinates(self.vector()))
422
423 # The image of the matrix of left-u^m-multiplication
424 # will be minimal for some natural number s...
425 s = 0
426 minimal_dim = V.dimension()
427 for i in xrange(1, V.dimension()):
428 this_dim = (u**i).matrix().image().dimension()
429 if this_dim < minimal_dim:
430 minimal_dim = this_dim
431 s = i
432
433 # Now minimal_matrix should correspond to the smallest
434 # non-zero subspace in Baes's (or really, Koecher's)
435 # proposition.
436 #
437 # However, we need to restrict the matrix to work on the
438 # subspace... or do we? Can't we just solve, knowing that
439 # A(c) = u^(s+1) should have a solution in the big space,
440 # too?
441 #
442 # Beware, solve_right() means that we're using COLUMN vectors.
443 # Our FiniteDimensionalAlgebraElement superclass uses rows.
444 u_next = u**(s+1)
445 A = u_next.matrix()
446 c_coordinates = A.solve_right(u_next.vector())
447
448 # Now c_coordinates is the idempotent we want, but it's in
449 # the coordinate system of the subalgebra.
450 #
451 # We need the basis for J, but as elements of the parent algebra.
452 #
453 basis = [self.parent(v) for v in V.basis()]
454 return self.parent().linear_combination(zip(c_coordinates, basis))
455
456
457 def trace(self):
458 """
459 Return my trace, the sum of my eigenvalues.
460
461 EXAMPLES::
462
463 sage: J = eja_ln(3)
464 sage: e0,e1,e2 = J.gens()
465 sage: x = e0 + e1 + e2
466 sage: x.trace()
467 2
468
469 """
470 cs = self.characteristic_polynomial().coefficients(sparse=False)
471 if len(cs) >= 2:
472 return -1*cs[-2]
473 else:
474 raise ValueError('charpoly had fewer than 2 coefficients')
475
476
477 def eja_rn(dimension, field=QQ):
478 """
479 Return the Euclidean Jordan Algebra corresponding to the set
480 `R^n` under the Hadamard product.
481
482 EXAMPLES:
483
484 This multiplication table can be verified by hand::
485
486 sage: J = eja_rn(3)
487 sage: e0,e1,e2 = J.gens()
488 sage: e0*e0
489 e0
490 sage: e0*e1
491 0
492 sage: e0*e2
493 0
494 sage: e1*e1
495 e1
496 sage: e1*e2
497 0
498 sage: e2*e2
499 e2
500
501 """
502 # The FiniteDimensionalAlgebra constructor takes a list of
503 # matrices, the ith representing right multiplication by the ith
504 # basis element in the vector space. So if e_1 = (1,0,0), then
505 # right (Hadamard) multiplication of x by e_1 picks out the first
506 # component of x; and likewise for the ith basis element e_i.
507 Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
508 for i in xrange(dimension) ]
509
510 return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
511
512
513 def eja_ln(dimension, field=QQ):
514 """
515 Return the Jordan algebra corresponding to the Lorentz "ice cream"
516 cone of the given ``dimension``.
517
518 EXAMPLES:
519
520 This multiplication table can be verified by hand::
521
522 sage: J = eja_ln(4)
523 sage: e0,e1,e2,e3 = J.gens()
524 sage: e0*e0
525 e0
526 sage: e0*e1
527 e1
528 sage: e0*e2
529 e2
530 sage: e0*e3
531 e3
532 sage: e1*e2
533 0
534 sage: e1*e3
535 0
536 sage: e2*e3
537 0
538
539 In one dimension, this is the reals under multiplication::
540
541 sage: J1 = eja_ln(1)
542 sage: J2 = eja_rn(1)
543 sage: J1 == J2
544 True
545
546 """
547 Qs = []
548 id_matrix = identity_matrix(field,dimension)
549 for i in xrange(dimension):
550 ei = id_matrix.column(i)
551 Qi = zero_matrix(field,dimension)
552 Qi.set_row(0, ei)
553 Qi.set_column(0, ei)
554 Qi += diagonal_matrix(dimension, [ei[0]]*dimension)
555 # The addition of the diagonal matrix adds an extra ei[0] in the
556 # upper-left corner of the matrix.
557 Qi[0,0] = Qi[0,0] * ~field(2)
558 Qs.append(Qi)
559
560 # The rank of the spin factor algebra is two, UNLESS we're in a
561 # one-dimensional ambient space (the rank is bounded by the
562 # ambient dimension).
563 rank = min(dimension,2)
564 return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=rank)
565
566
567 def eja_sn(dimension, field=QQ):
568 """
569 Return the simple Jordan algebra of ``dimension``-by-``dimension``
570 symmetric matrices over ``field``.
571
572 EXAMPLES::
573
574 sage: J = eja_sn(2)
575 sage: e0, e1, e2 = J.gens()
576 sage: e0*e0
577 e0
578 sage: e1*e1
579 e0 + e2
580 sage: e2*e2
581 e2
582
583 """
584 Qs = []
585
586 # In S^2, for example, we nominally have four coordinates even
587 # though the space is of dimension three only. The vector space V
588 # is supposed to hold the entire long vector, and the subspace W
589 # of V will be spanned by the vectors that arise from symmetric
590 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
591 V = VectorSpace(field, dimension**2)
592
593 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
594 # coordinates.
595 S = []
596
597 for i in xrange(dimension):
598 for j in xrange(i+1):
599 Eij = matrix(field, dimension, lambda k,l: k==i and l==j)
600 if i == j:
601 Sij = Eij
602 else:
603 Sij = Eij + Eij.transpose()
604 S.append(Sij)
605
606 def mat2vec(m):
607 return vector(field, m.list())
608
609 def vec2mat(v):
610 return matrix(field, dimension, v.list())
611
612 W = V.span( mat2vec(s) for s in S )
613
614 # Taking the span above reorders our basis (thanks, jerk!) so we
615 # need to put our "matrix basis" in the same order as the
616 # (reordered) vector basis.
617 S = [ vec2mat(b) for b in W.basis() ]
618
619 for s in S:
620 # Brute force the multiplication-by-s matrix by looping
621 # through all elements of the basis and doing the computation
622 # to find out what the corresponding row should be. BEWARE:
623 # these multiplication tables won't be symmetric! It therefore
624 # becomes REALLY IMPORTANT that the underlying algebra
625 # constructor uses ROW vectors and not COLUMN vectors. That's
626 # why we're computing rows here and not columns.
627 Q_rows = []
628 for t in S:
629 this_row = mat2vec((s*t + t*s)/2)
630 Q_rows.append(W.coordinates(this_row))
631 Q = matrix(field,Q_rows)
632 Qs.append(Q)
633
634 return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
635
636
637 def random_eja():
638 """
639 Return a "random" finite-dimensional Euclidean Jordan Algebra.
640
641 ALGORITHM:
642
643 For now, we choose a random natural number ``n`` (greater than zero)
644 and then give you back one of the following:
645
646 * The cartesian product of the rational numbers ``n`` times; this is
647 ``QQ^n`` with the Hadamard product.
648
649 * The Jordan spin algebra on ``QQ^n``.
650
651 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
652 product.
653
654 Later this might be extended to return Cartesian products of the
655 EJAs above.
656
657 TESTS::
658
659 sage: random_eja()
660 Euclidean Jordan algebra of degree...
661
662 """
663 n = ZZ.random_element(1,10).abs()
664 constructor = choice([eja_rn, eja_ln, eja_sn])
665 return constructor(dimension=n, field=QQ)