]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/euclidean_jordan_algebra.py
eja: drop the inner_product argument to the EJA constructor.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.categories.magmatic_algebras import MagmaticAlgebras
9 from sage.structure.element import is_Matrix
10 from sage.structure.category_object import normalize_names
11
12 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
13 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
14
15 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
16 @staticmethod
17 def __classcall_private__(cls,
18 field,
19 mult_table,
20 names='e',
21 assume_associative=False,
22 category=None,
23 rank=None,
24 natural_basis=None):
25 n = len(mult_table)
26 mult_table = [b.base_extend(field) for b in mult_table]
27 for b in mult_table:
28 b.set_immutable()
29 if not (is_Matrix(b) and b.dimensions() == (n, n)):
30 raise ValueError("input is not a multiplication table")
31 mult_table = tuple(mult_table)
32
33 cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
34 cat.or_subcategory(category)
35 if assume_associative:
36 cat = cat.Associative()
37
38 names = normalize_names(n, names)
39
40 fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
41 return fda.__classcall__(cls,
42 field,
43 mult_table,
44 assume_associative=assume_associative,
45 names=names,
46 category=cat,
47 rank=rank,
48 natural_basis=natural_basis)
49
50
51 def __init__(self,
52 field,
53 mult_table,
54 names='e',
55 assume_associative=False,
56 category=None,
57 rank=None,
58 natural_basis=None):
59 """
60 EXAMPLES:
61
62 By definition, Jordan multiplication commutes::
63
64 sage: set_random_seed()
65 sage: J = random_eja()
66 sage: x = J.random_element()
67 sage: y = J.random_element()
68 sage: x*y == y*x
69 True
70
71 """
72 self._rank = rank
73 self._natural_basis = natural_basis
74 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
75 fda.__init__(field,
76 mult_table,
77 names=names,
78 category=category)
79
80
81 def _repr_(self):
82 """
83 Return a string representation of ``self``.
84 """
85 fmt = "Euclidean Jordan algebra of degree {} over {}"
86 return fmt.format(self.degree(), self.base_ring())
87
88
89 def inner_product(self, x, y):
90 """
91 The inner product associated with this Euclidean Jordan algebra.
92
93 Defaults to the trace inner product, but can be overridden by
94 subclasses if they are sure that the necessary properties are
95 satisfied.
96
97 EXAMPLES:
98
99 The inner product must satisfy its axiom for this algebra to truly
100 be a Euclidean Jordan Algebra::
101
102 sage: set_random_seed()
103 sage: J = random_eja()
104 sage: x = J.random_element()
105 sage: y = J.random_element()
106 sage: z = J.random_element()
107 sage: (x*y).inner_product(z) == y.inner_product(x*z)
108 True
109
110 """
111 if (not x in self) or (not y in self):
112 raise TypeError("arguments must live in this algebra")
113 return x.trace_inner_product(y)
114
115
116 def natural_basis(self):
117 """
118 Return a more-natural representation of this algebra's basis.
119
120 Every finite-dimensional Euclidean Jordan Algebra is a direct
121 sum of five simple algebras, four of which comprise Hermitian
122 matrices. This method returns the original "natural" basis
123 for our underlying vector space. (Typically, the natural basis
124 is used to construct the multiplication table in the first place.)
125
126 Note that this will always return a matrix. The standard basis
127 in `R^n` will be returned as `n`-by-`1` column matrices.
128
129 EXAMPLES::
130
131 sage: J = RealSymmetricEJA(2)
132 sage: J.basis()
133 Family (e0, e1, e2)
134 sage: J.natural_basis()
135 (
136 [1 0] [0 1] [0 0]
137 [0 0], [1 0], [0 1]
138 )
139
140 ::
141
142 sage: J = JordanSpinEJA(2)
143 sage: J.basis()
144 Family (e0, e1)
145 sage: J.natural_basis()
146 (
147 [1] [0]
148 [0], [1]
149 )
150
151 """
152 if self._natural_basis is None:
153 return tuple( b.vector().column() for b in self.basis() )
154 else:
155 return self._natural_basis
156
157
158 def rank(self):
159 """
160 Return the rank of this EJA.
161 """
162 if self._rank is None:
163 raise ValueError("no rank specified at genesis")
164 else:
165 return self._rank
166
167
168 class Element(FiniteDimensionalAlgebraElement):
169 """
170 An element of a Euclidean Jordan algebra.
171 """
172
173 def __init__(self, A, elt=None):
174 """
175 EXAMPLES:
176
177 The identity in `S^n` is converted to the identity in the EJA::
178
179 sage: J = RealSymmetricEJA(3)
180 sage: I = identity_matrix(QQ,3)
181 sage: J(I) == J.one()
182 True
183
184 This skew-symmetric matrix can't be represented in the EJA::
185
186 sage: J = RealSymmetricEJA(3)
187 sage: A = matrix(QQ,3, lambda i,j: i-j)
188 sage: J(A)
189 Traceback (most recent call last):
190 ...
191 ArithmeticError: vector is not in free module
192
193 """
194 # Goal: if we're given a matrix, and if it lives in our
195 # parent algebra's "natural ambient space," convert it
196 # into an algebra element.
197 #
198 # The catch is, we make a recursive call after converting
199 # the given matrix into a vector that lives in the algebra.
200 # This we need to try the parent class initializer first,
201 # to avoid recursing forever if we're given something that
202 # already fits into the algebra, but also happens to live
203 # in the parent's "natural ambient space" (this happens with
204 # vectors in R^n).
205 try:
206 FiniteDimensionalAlgebraElement.__init__(self, A, elt)
207 except ValueError:
208 natural_basis = A.natural_basis()
209 if elt in natural_basis[0].matrix_space():
210 # Thanks for nothing! Matrix spaces aren't vector
211 # spaces in Sage, so we have to figure out its
212 # natural-basis coordinates ourselves.
213 V = VectorSpace(elt.base_ring(), elt.nrows()**2)
214 W = V.span( _mat2vec(s) for s in natural_basis )
215 coords = W.coordinates(_mat2vec(elt))
216 FiniteDimensionalAlgebraElement.__init__(self, A, coords)
217
218 def __pow__(self, n):
219 """
220 Return ``self`` raised to the power ``n``.
221
222 Jordan algebras are always power-associative; see for
223 example Faraut and Koranyi, Proposition II.1.2 (ii).
224
225 .. WARNING:
226
227 We have to override this because our superclass uses row vectors
228 instead of column vectors! We, on the other hand, assume column
229 vectors everywhere.
230
231 EXAMPLES::
232
233 sage: set_random_seed()
234 sage: x = random_eja().random_element()
235 sage: x.operator_matrix()*x.vector() == (x^2).vector()
236 True
237
238 A few examples of power-associativity::
239
240 sage: set_random_seed()
241 sage: x = random_eja().random_element()
242 sage: x*(x*x)*(x*x) == x^5
243 True
244 sage: (x*x)*(x*x*x) == x^5
245 True
246
247 We also know that powers operator-commute (Koecher, Chapter
248 III, Corollary 1)::
249
250 sage: set_random_seed()
251 sage: x = random_eja().random_element()
252 sage: m = ZZ.random_element(0,10)
253 sage: n = ZZ.random_element(0,10)
254 sage: Lxm = (x^m).operator_matrix()
255 sage: Lxn = (x^n).operator_matrix()
256 sage: Lxm*Lxn == Lxn*Lxm
257 True
258
259 """
260 A = self.parent()
261 if n == 0:
262 return A.one()
263 elif n == 1:
264 return self
265 else:
266 return A( (self.operator_matrix()**(n-1))*self.vector() )
267
268
269 def characteristic_polynomial(self):
270 """
271 Return my characteristic polynomial (if I'm a regular
272 element).
273
274 Eventually this should be implemented in terms of the parent
275 algebra's characteristic polynomial that works for ALL
276 elements.
277 """
278 if self.is_regular():
279 return self.minimal_polynomial()
280 else:
281 raise NotImplementedError('irregular element')
282
283
284 def inner_product(self, other):
285 """
286 Return the parent algebra's inner product of myself and ``other``.
287
288 EXAMPLES:
289
290 The inner product in the Jordan spin algebra is the usual
291 inner product on `R^n` (this example only works because the
292 basis for the Jordan algebra is the standard basis in `R^n`)::
293
294 sage: J = JordanSpinEJA(3)
295 sage: x = vector(QQ,[1,2,3])
296 sage: y = vector(QQ,[4,5,6])
297 sage: x.inner_product(y)
298 32
299 sage: J(x).inner_product(J(y))
300 32
301
302 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
303 multiplication is the usual matrix multiplication in `S^n`,
304 so the inner product of the identity matrix with itself
305 should be the `n`::
306
307 sage: J = RealSymmetricEJA(3)
308 sage: J.one().inner_product(J.one())
309 3
310
311 Likewise, the inner product on `C^n` is `<X,Y> =
312 Re(trace(X*Y))`, where we must necessarily take the real
313 part because the product of Hermitian matrices may not be
314 Hermitian::
315
316 sage: J = ComplexHermitianEJA(3)
317 sage: J.one().inner_product(J.one())
318 3
319
320 Ditto for the quaternions::
321
322 sage: J = QuaternionHermitianEJA(3)
323 sage: J.one().inner_product(J.one())
324 3
325
326 TESTS:
327
328 Ensure that we can always compute an inner product, and that
329 it gives us back a real number::
330
331 sage: set_random_seed()
332 sage: J = random_eja()
333 sage: x = J.random_element()
334 sage: y = J.random_element()
335 sage: x.inner_product(y) in RR
336 True
337
338 """
339 P = self.parent()
340 if not other in P:
341 raise TypeError("'other' must live in the same algebra")
342
343 return P.inner_product(self, other)
344
345
346 def operator_commutes_with(self, other):
347 """
348 Return whether or not this element operator-commutes
349 with ``other``.
350
351 EXAMPLES:
352
353 The definition of a Jordan algebra says that any element
354 operator-commutes with its square::
355
356 sage: set_random_seed()
357 sage: x = random_eja().random_element()
358 sage: x.operator_commutes_with(x^2)
359 True
360
361 TESTS:
362
363 Test Lemma 1 from Chapter III of Koecher::
364
365 sage: set_random_seed()
366 sage: J = random_eja()
367 sage: u = J.random_element()
368 sage: v = J.random_element()
369 sage: lhs = u.operator_commutes_with(u*v)
370 sage: rhs = v.operator_commutes_with(u^2)
371 sage: lhs == rhs
372 True
373
374 """
375 if not other in self.parent():
376 raise TypeError("'other' must live in the same algebra")
377
378 A = self.operator_matrix()
379 B = other.operator_matrix()
380 return (A*B == B*A)
381
382
383 def det(self):
384 """
385 Return my determinant, the product of my eigenvalues.
386
387 EXAMPLES::
388
389 sage: J = JordanSpinEJA(2)
390 sage: e0,e1 = J.gens()
391 sage: x = e0 + e1
392 sage: x.det()
393 0
394 sage: J = JordanSpinEJA(3)
395 sage: e0,e1,e2 = J.gens()
396 sage: x = e0 + e1 + e2
397 sage: x.det()
398 -1
399
400 """
401 cs = self.characteristic_polynomial().coefficients(sparse=False)
402 r = len(cs) - 1
403 if r >= 0:
404 return cs[0] * (-1)**r
405 else:
406 raise ValueError('charpoly had no coefficients')
407
408
409 def inverse(self):
410 """
411 Return the Jordan-multiplicative inverse of this element.
412
413 We can't use the superclass method because it relies on the
414 algebra being associative.
415
416 EXAMPLES:
417
418 The inverse in the spin factor algebra is given in Alizadeh's
419 Example 11.11::
420
421 sage: set_random_seed()
422 sage: n = ZZ.random_element(1,10)
423 sage: J = JordanSpinEJA(n)
424 sage: x = J.random_element()
425 sage: while x.is_zero():
426 ....: x = J.random_element()
427 sage: x_vec = x.vector()
428 sage: x0 = x_vec[0]
429 sage: x_bar = x_vec[1:]
430 sage: coeff = 1/(x0^2 - x_bar.inner_product(x_bar))
431 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
432 sage: x_inverse = coeff*inv_vec
433 sage: x.inverse() == J(x_inverse)
434 True
435
436 TESTS:
437
438 The identity element is its own inverse::
439
440 sage: set_random_seed()
441 sage: J = random_eja()
442 sage: J.one().inverse() == J.one()
443 True
444
445 If an element has an inverse, it acts like one. TODO: this
446 can be a lot less ugly once ``is_invertible`` doesn't crash
447 on irregular elements::
448
449 sage: set_random_seed()
450 sage: J = random_eja()
451 sage: x = J.random_element()
452 sage: try:
453 ....: x.inverse()*x == J.one()
454 ....: except:
455 ....: True
456 True
457
458 """
459 if self.parent().is_associative():
460 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
461 return elt.inverse()
462
463 # TODO: we can do better once the call to is_invertible()
464 # doesn't crash on irregular elements.
465 #if not self.is_invertible():
466 # raise ValueError('element is not invertible')
467
468 # We do this a little different than the usual recursive
469 # call to a finite-dimensional algebra element, because we
470 # wind up with an inverse that lives in the subalgebra and
471 # we need information about the parent to convert it back.
472 V = self.span_of_powers()
473 assoc_subalg = self.subalgebra_generated_by()
474 # Mis-design warning: the basis used for span_of_powers()
475 # and subalgebra_generated_by() must be the same, and in
476 # the same order!
477 elt = assoc_subalg(V.coordinates(self.vector()))
478
479 # This will be in the subalgebra's coordinates...
480 fda_elt = FiniteDimensionalAlgebraElement(assoc_subalg, elt)
481 subalg_inverse = fda_elt.inverse()
482
483 # So we have to convert back...
484 basis = [ self.parent(v) for v in V.basis() ]
485 pairs = zip(subalg_inverse.vector(), basis)
486 return self.parent().linear_combination(pairs)
487
488
489 def is_invertible(self):
490 """
491 Return whether or not this element is invertible.
492
493 We can't use the superclass method because it relies on
494 the algebra being associative.
495 """
496 return not self.det().is_zero()
497
498
499 def is_nilpotent(self):
500 """
501 Return whether or not some power of this element is zero.
502
503 The superclass method won't work unless we're in an
504 associative algebra, and we aren't. However, we generate
505 an assocoative subalgebra and we're nilpotent there if and
506 only if we're nilpotent here (probably).
507
508 TESTS:
509
510 The identity element is never nilpotent::
511
512 sage: set_random_seed()
513 sage: random_eja().one().is_nilpotent()
514 False
515
516 The additive identity is always nilpotent::
517
518 sage: set_random_seed()
519 sage: random_eja().zero().is_nilpotent()
520 True
521
522 """
523 # The element we're going to call "is_nilpotent()" on.
524 # Either myself, interpreted as an element of a finite-
525 # dimensional algebra, or an element of an associative
526 # subalgebra.
527 elt = None
528
529 if self.parent().is_associative():
530 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
531 else:
532 V = self.span_of_powers()
533 assoc_subalg = self.subalgebra_generated_by()
534 # Mis-design warning: the basis used for span_of_powers()
535 # and subalgebra_generated_by() must be the same, and in
536 # the same order!
537 elt = assoc_subalg(V.coordinates(self.vector()))
538
539 # Recursive call, but should work since elt lives in an
540 # associative algebra.
541 return elt.is_nilpotent()
542
543
544 def is_regular(self):
545 """
546 Return whether or not this is a regular element.
547
548 EXAMPLES:
549
550 The identity element always has degree one, but any element
551 linearly-independent from it is regular::
552
553 sage: J = JordanSpinEJA(5)
554 sage: J.one().is_regular()
555 False
556 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
557 sage: for x in J.gens():
558 ....: (J.one() + x).is_regular()
559 False
560 True
561 True
562 True
563 True
564
565 """
566 return self.degree() == self.parent().rank()
567
568
569 def degree(self):
570 """
571 Compute the degree of this element the straightforward way
572 according to the definition; by appending powers to a list
573 and figuring out its dimension (that is, whether or not
574 they're linearly dependent).
575
576 EXAMPLES::
577
578 sage: J = JordanSpinEJA(4)
579 sage: J.one().degree()
580 1
581 sage: e0,e1,e2,e3 = J.gens()
582 sage: (e0 - e1).degree()
583 2
584
585 In the spin factor algebra (of rank two), all elements that
586 aren't multiples of the identity are regular::
587
588 sage: set_random_seed()
589 sage: n = ZZ.random_element(1,10)
590 sage: J = JordanSpinEJA(n)
591 sage: x = J.random_element()
592 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
593 True
594
595 """
596 return self.span_of_powers().dimension()
597
598
599 def minimal_polynomial(self):
600 """
601 EXAMPLES::
602
603 sage: set_random_seed()
604 sage: x = random_eja().random_element()
605 sage: x.degree() == x.minimal_polynomial().degree()
606 True
607
608 ::
609
610 sage: set_random_seed()
611 sage: x = random_eja().random_element()
612 sage: x.degree() == x.minimal_polynomial().degree()
613 True
614
615 The minimal polynomial and the characteristic polynomial coincide
616 and are known (see Alizadeh, Example 11.11) for all elements of
617 the spin factor algebra that aren't scalar multiples of the
618 identity::
619
620 sage: set_random_seed()
621 sage: n = ZZ.random_element(2,10)
622 sage: J = JordanSpinEJA(n)
623 sage: y = J.random_element()
624 sage: while y == y.coefficient(0)*J.one():
625 ....: y = J.random_element()
626 sage: y0 = y.vector()[0]
627 sage: y_bar = y.vector()[1:]
628 sage: actual = y.minimal_polynomial()
629 sage: x = SR.symbol('x', domain='real')
630 sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
631 sage: bool(actual == expected)
632 True
633
634 """
635 # The element we're going to call "minimal_polynomial()" on.
636 # Either myself, interpreted as an element of a finite-
637 # dimensional algebra, or an element of an associative
638 # subalgebra.
639 elt = None
640
641 if self.parent().is_associative():
642 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
643 else:
644 V = self.span_of_powers()
645 assoc_subalg = self.subalgebra_generated_by()
646 # Mis-design warning: the basis used for span_of_powers()
647 # and subalgebra_generated_by() must be the same, and in
648 # the same order!
649 elt = assoc_subalg(V.coordinates(self.vector()))
650
651 # Recursive call, but should work since elt lives in an
652 # associative algebra.
653 return elt.minimal_polynomial()
654
655
656 def natural_representation(self):
657 """
658 Return a more-natural representation of this element.
659
660 Every finite-dimensional Euclidean Jordan Algebra is a
661 direct sum of five simple algebras, four of which comprise
662 Hermitian matrices. This method returns the original
663 "natural" representation of this element as a Hermitian
664 matrix, if it has one. If not, you get the usual representation.
665
666 EXAMPLES::
667
668 sage: J = ComplexHermitianEJA(3)
669 sage: J.one()
670 e0 + e5 + e8
671 sage: J.one().natural_representation()
672 [1 0 0 0 0 0]
673 [0 1 0 0 0 0]
674 [0 0 1 0 0 0]
675 [0 0 0 1 0 0]
676 [0 0 0 0 1 0]
677 [0 0 0 0 0 1]
678
679 ::
680
681 sage: J = QuaternionHermitianEJA(3)
682 sage: J.one()
683 e0 + e9 + e14
684 sage: J.one().natural_representation()
685 [1 0 0 0 0 0 0 0 0 0 0 0]
686 [0 1 0 0 0 0 0 0 0 0 0 0]
687 [0 0 1 0 0 0 0 0 0 0 0 0]
688 [0 0 0 1 0 0 0 0 0 0 0 0]
689 [0 0 0 0 1 0 0 0 0 0 0 0]
690 [0 0 0 0 0 1 0 0 0 0 0 0]
691 [0 0 0 0 0 0 1 0 0 0 0 0]
692 [0 0 0 0 0 0 0 1 0 0 0 0]
693 [0 0 0 0 0 0 0 0 1 0 0 0]
694 [0 0 0 0 0 0 0 0 0 1 0 0]
695 [0 0 0 0 0 0 0 0 0 0 1 0]
696 [0 0 0 0 0 0 0 0 0 0 0 1]
697
698 """
699 B = self.parent().natural_basis()
700 W = B[0].matrix_space()
701 return W.linear_combination(zip(self.vector(), B))
702
703
704 def operator_matrix(self):
705 """
706 Return the matrix that represents left- (or right-)
707 multiplication by this element in the parent algebra.
708
709 We have to override this because the superclass method
710 returns a matrix that acts on row vectors (that is, on
711 the right).
712
713 EXAMPLES:
714
715 Test the first polarization identity from my notes, Koecher Chapter
716 III, or from Baes (2.3)::
717
718 sage: set_random_seed()
719 sage: J = random_eja()
720 sage: x = J.random_element()
721 sage: y = J.random_element()
722 sage: Lx = x.operator_matrix()
723 sage: Ly = y.operator_matrix()
724 sage: Lxx = (x*x).operator_matrix()
725 sage: Lxy = (x*y).operator_matrix()
726 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
727 True
728
729 Test the second polarization identity from my notes or from
730 Baes (2.4)::
731
732 sage: set_random_seed()
733 sage: J = random_eja()
734 sage: x = J.random_element()
735 sage: y = J.random_element()
736 sage: z = J.random_element()
737 sage: Lx = x.operator_matrix()
738 sage: Ly = y.operator_matrix()
739 sage: Lz = z.operator_matrix()
740 sage: Lzy = (z*y).operator_matrix()
741 sage: Lxy = (x*y).operator_matrix()
742 sage: Lxz = (x*z).operator_matrix()
743 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
744 True
745
746 Test the third polarization identity from my notes or from
747 Baes (2.5)::
748
749 sage: set_random_seed()
750 sage: J = random_eja()
751 sage: u = J.random_element()
752 sage: y = J.random_element()
753 sage: z = J.random_element()
754 sage: Lu = u.operator_matrix()
755 sage: Ly = y.operator_matrix()
756 sage: Lz = z.operator_matrix()
757 sage: Lzy = (z*y).operator_matrix()
758 sage: Luy = (u*y).operator_matrix()
759 sage: Luz = (u*z).operator_matrix()
760 sage: Luyz = (u*(y*z)).operator_matrix()
761 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
762 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
763 sage: bool(lhs == rhs)
764 True
765
766 """
767 fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
768 return fda_elt.matrix().transpose()
769
770
771 def quadratic_representation(self, other=None):
772 """
773 Return the quadratic representation of this element.
774
775 EXAMPLES:
776
777 The explicit form in the spin factor algebra is given by
778 Alizadeh's Example 11.12::
779
780 sage: set_random_seed()
781 sage: n = ZZ.random_element(1,10)
782 sage: J = JordanSpinEJA(n)
783 sage: x = J.random_element()
784 sage: x_vec = x.vector()
785 sage: x0 = x_vec[0]
786 sage: x_bar = x_vec[1:]
787 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
788 sage: B = 2*x0*x_bar.row()
789 sage: C = 2*x0*x_bar.column()
790 sage: D = identity_matrix(QQ, n-1)
791 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
792 sage: D = D + 2*x_bar.tensor_product(x_bar)
793 sage: Q = block_matrix(2,2,[A,B,C,D])
794 sage: Q == x.quadratic_representation()
795 True
796
797 Test all of the properties from Theorem 11.2 in Alizadeh::
798
799 sage: set_random_seed()
800 sage: J = random_eja()
801 sage: x = J.random_element()
802 sage: y = J.random_element()
803
804 Property 1:
805
806 sage: actual = x.quadratic_representation(y)
807 sage: expected = ( (x+y).quadratic_representation()
808 ....: -x.quadratic_representation()
809 ....: -y.quadratic_representation() ) / 2
810 sage: actual == expected
811 True
812
813 Property 2:
814
815 sage: alpha = QQ.random_element()
816 sage: actual = (alpha*x).quadratic_representation()
817 sage: expected = (alpha^2)*x.quadratic_representation()
818 sage: actual == expected
819 True
820
821 Property 5:
822
823 sage: Qy = y.quadratic_representation()
824 sage: actual = J(Qy*x.vector()).quadratic_representation()
825 sage: expected = Qy*x.quadratic_representation()*Qy
826 sage: actual == expected
827 True
828
829 Property 6:
830
831 sage: k = ZZ.random_element(1,10)
832 sage: actual = (x^k).quadratic_representation()
833 sage: expected = (x.quadratic_representation())^k
834 sage: actual == expected
835 True
836
837 """
838 if other is None:
839 other=self
840 elif not other in self.parent():
841 raise TypeError("'other' must live in the same algebra")
842
843 L = self.operator_matrix()
844 M = other.operator_matrix()
845 return ( L*M + M*L - (self*other).operator_matrix() )
846
847
848 def span_of_powers(self):
849 """
850 Return the vector space spanned by successive powers of
851 this element.
852 """
853 # The dimension of the subalgebra can't be greater than
854 # the big algebra, so just put everything into a list
855 # and let span() get rid of the excess.
856 V = self.vector().parent()
857 return V.span( (self**d).vector() for d in xrange(V.dimension()) )
858
859
860 def subalgebra_generated_by(self):
861 """
862 Return the associative subalgebra of the parent EJA generated
863 by this element.
864
865 TESTS::
866
867 sage: set_random_seed()
868 sage: x = random_eja().random_element()
869 sage: x.subalgebra_generated_by().is_associative()
870 True
871
872 Squaring in the subalgebra should be the same thing as
873 squaring in the superalgebra::
874
875 sage: set_random_seed()
876 sage: x = random_eja().random_element()
877 sage: u = x.subalgebra_generated_by().random_element()
878 sage: u.operator_matrix()*u.vector() == (u**2).vector()
879 True
880
881 """
882 # First get the subspace spanned by the powers of myself...
883 V = self.span_of_powers()
884 F = self.base_ring()
885
886 # Now figure out the entries of the right-multiplication
887 # matrix for the successive basis elements b0, b1,... of
888 # that subspace.
889 mats = []
890 for b_right in V.basis():
891 eja_b_right = self.parent()(b_right)
892 b_right_rows = []
893 # The first row of the right-multiplication matrix by
894 # b1 is what we get if we apply that matrix to b1. The
895 # second row of the right multiplication matrix by b1
896 # is what we get when we apply that matrix to b2...
897 #
898 # IMPORTANT: this assumes that all vectors are COLUMN
899 # vectors, unlike our superclass (which uses row vectors).
900 for b_left in V.basis():
901 eja_b_left = self.parent()(b_left)
902 # Multiply in the original EJA, but then get the
903 # coordinates from the subalgebra in terms of its
904 # basis.
905 this_row = V.coordinates((eja_b_left*eja_b_right).vector())
906 b_right_rows.append(this_row)
907 b_right_matrix = matrix(F, b_right_rows)
908 mats.append(b_right_matrix)
909
910 # It's an algebra of polynomials in one element, and EJAs
911 # are power-associative.
912 #
913 # TODO: choose generator names intelligently.
914 return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
915
916
917 def subalgebra_idempotent(self):
918 """
919 Find an idempotent in the associative subalgebra I generate
920 using Proposition 2.3.5 in Baes.
921
922 TESTS::
923
924 sage: set_random_seed()
925 sage: J = eja_rn(5)
926 sage: c = J.random_element().subalgebra_idempotent()
927 sage: c^2 == c
928 True
929 sage: J = JordanSpinEJA(5)
930 sage: c = J.random_element().subalgebra_idempotent()
931 sage: c^2 == c
932 True
933
934 """
935 if self.is_nilpotent():
936 raise ValueError("this only works with non-nilpotent elements!")
937
938 V = self.span_of_powers()
939 J = self.subalgebra_generated_by()
940 # Mis-design warning: the basis used for span_of_powers()
941 # and subalgebra_generated_by() must be the same, and in
942 # the same order!
943 u = J(V.coordinates(self.vector()))
944
945 # The image of the matrix of left-u^m-multiplication
946 # will be minimal for some natural number s...
947 s = 0
948 minimal_dim = V.dimension()
949 for i in xrange(1, V.dimension()):
950 this_dim = (u**i).operator_matrix().image().dimension()
951 if this_dim < minimal_dim:
952 minimal_dim = this_dim
953 s = i
954
955 # Now minimal_matrix should correspond to the smallest
956 # non-zero subspace in Baes's (or really, Koecher's)
957 # proposition.
958 #
959 # However, we need to restrict the matrix to work on the
960 # subspace... or do we? Can't we just solve, knowing that
961 # A(c) = u^(s+1) should have a solution in the big space,
962 # too?
963 #
964 # Beware, solve_right() means that we're using COLUMN vectors.
965 # Our FiniteDimensionalAlgebraElement superclass uses rows.
966 u_next = u**(s+1)
967 A = u_next.operator_matrix()
968 c_coordinates = A.solve_right(u_next.vector())
969
970 # Now c_coordinates is the idempotent we want, but it's in
971 # the coordinate system of the subalgebra.
972 #
973 # We need the basis for J, but as elements of the parent algebra.
974 #
975 basis = [self.parent(v) for v in V.basis()]
976 return self.parent().linear_combination(zip(c_coordinates, basis))
977
978
979 def trace(self):
980 """
981 Return my trace, the sum of my eigenvalues.
982
983 EXAMPLES::
984
985 sage: J = JordanSpinEJA(3)
986 sage: e0,e1,e2 = J.gens()
987 sage: x = e0 + e1 + e2
988 sage: x.trace()
989 2
990
991 """
992 cs = self.characteristic_polynomial().coefficients(sparse=False)
993 if len(cs) >= 2:
994 return -1*cs[-2]
995 else:
996 raise ValueError('charpoly had fewer than 2 coefficients')
997
998
999 def trace_inner_product(self, other):
1000 """
1001 Return the trace inner product of myself and ``other``.
1002 """
1003 if not other in self.parent():
1004 raise TypeError("'other' must live in the same algebra")
1005
1006 return (self*other).trace()
1007
1008
1009 def eja_rn(dimension, field=QQ):
1010 """
1011 Return the Euclidean Jordan Algebra corresponding to the set
1012 `R^n` under the Hadamard product.
1013
1014 EXAMPLES:
1015
1016 This multiplication table can be verified by hand::
1017
1018 sage: J = eja_rn(3)
1019 sage: e0,e1,e2 = J.gens()
1020 sage: e0*e0
1021 e0
1022 sage: e0*e1
1023 0
1024 sage: e0*e2
1025 0
1026 sage: e1*e1
1027 e1
1028 sage: e1*e2
1029 0
1030 sage: e2*e2
1031 e2
1032
1033 """
1034 # The FiniteDimensionalAlgebra constructor takes a list of
1035 # matrices, the ith representing right multiplication by the ith
1036 # basis element in the vector space. So if e_1 = (1,0,0), then
1037 # right (Hadamard) multiplication of x by e_1 picks out the first
1038 # component of x; and likewise for the ith basis element e_i.
1039 Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
1040 for i in xrange(dimension) ]
1041
1042 return FiniteDimensionalEuclideanJordanAlgebra(field,
1043 Qs,
1044 rank=dimension)
1045
1046
1047
1048 def random_eja():
1049 """
1050 Return a "random" finite-dimensional Euclidean Jordan Algebra.
1051
1052 ALGORITHM:
1053
1054 For now, we choose a random natural number ``n`` (greater than zero)
1055 and then give you back one of the following:
1056
1057 * The cartesian product of the rational numbers ``n`` times; this is
1058 ``QQ^n`` with the Hadamard product.
1059
1060 * The Jordan spin algebra on ``QQ^n``.
1061
1062 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
1063 product.
1064
1065 * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
1066 in the space of ``2n``-by-``2n`` real symmetric matrices.
1067
1068 * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
1069 in the space of ``4n``-by-``4n`` real symmetric matrices.
1070
1071 Later this might be extended to return Cartesian products of the
1072 EJAs above.
1073
1074 TESTS::
1075
1076 sage: random_eja()
1077 Euclidean Jordan algebra of degree...
1078
1079 """
1080 n = ZZ.random_element(1,5)
1081 constructor = choice([eja_rn,
1082 JordanSpinEJA,
1083 RealSymmetricEJA,
1084 ComplexHermitianEJA,
1085 QuaternionHermitianEJA])
1086 return constructor(n, field=QQ)
1087
1088
1089
1090 def _real_symmetric_basis(n, field=QQ):
1091 """
1092 Return a basis for the space of real symmetric n-by-n matrices.
1093 """
1094 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1095 # coordinates.
1096 S = []
1097 for i in xrange(n):
1098 for j in xrange(i+1):
1099 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1100 if i == j:
1101 Sij = Eij
1102 else:
1103 # Beware, orthogonal but not normalized!
1104 Sij = Eij + Eij.transpose()
1105 S.append(Sij)
1106 return tuple(S)
1107
1108
1109 def _complex_hermitian_basis(n, field=QQ):
1110 """
1111 Returns a basis for the space of complex Hermitian n-by-n matrices.
1112
1113 TESTS::
1114
1115 sage: set_random_seed()
1116 sage: n = ZZ.random_element(1,5)
1117 sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
1118 True
1119
1120 """
1121 F = QuadraticField(-1, 'I')
1122 I = F.gen()
1123
1124 # This is like the symmetric case, but we need to be careful:
1125 #
1126 # * We want conjugate-symmetry, not just symmetry.
1127 # * The diagonal will (as a result) be real.
1128 #
1129 S = []
1130 for i in xrange(n):
1131 for j in xrange(i+1):
1132 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1133 if i == j:
1134 Sij = _embed_complex_matrix(Eij)
1135 S.append(Sij)
1136 else:
1137 # Beware, orthogonal but not normalized! The second one
1138 # has a minus because it's conjugated.
1139 Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
1140 S.append(Sij_real)
1141 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
1142 S.append(Sij_imag)
1143 return tuple(S)
1144
1145
1146 def _quaternion_hermitian_basis(n, field=QQ):
1147 """
1148 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1149
1150 TESTS::
1151
1152 sage: set_random_seed()
1153 sage: n = ZZ.random_element(1,5)
1154 sage: all( M.is_symmetric() for M in _quaternion_hermitian_basis(n) )
1155 True
1156
1157 """
1158 Q = QuaternionAlgebra(QQ,-1,-1)
1159 I,J,K = Q.gens()
1160
1161 # This is like the symmetric case, but we need to be careful:
1162 #
1163 # * We want conjugate-symmetry, not just symmetry.
1164 # * The diagonal will (as a result) be real.
1165 #
1166 S = []
1167 for i in xrange(n):
1168 for j in xrange(i+1):
1169 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1170 if i == j:
1171 Sij = _embed_quaternion_matrix(Eij)
1172 S.append(Sij)
1173 else:
1174 # Beware, orthogonal but not normalized! The second,
1175 # third, and fourth ones have a minus because they're
1176 # conjugated.
1177 Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
1178 S.append(Sij_real)
1179 Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
1180 S.append(Sij_I)
1181 Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
1182 S.append(Sij_J)
1183 Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
1184 S.append(Sij_K)
1185 return tuple(S)
1186
1187
1188 def _mat2vec(m):
1189 return vector(m.base_ring(), m.list())
1190
1191 def _vec2mat(v):
1192 return matrix(v.base_ring(), sqrt(v.degree()), v.list())
1193
1194 def _multiplication_table_from_matrix_basis(basis):
1195 """
1196 At least three of the five simple Euclidean Jordan algebras have the
1197 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1198 multiplication on the right is matrix multiplication. Given a basis
1199 for the underlying matrix space, this function returns a
1200 multiplication table (obtained by looping through the basis
1201 elements) for an algebra of those matrices. A reordered copy
1202 of the basis is also returned to work around the fact that
1203 the ``span()`` in this function will change the order of the basis
1204 from what we think it is, to... something else.
1205 """
1206 # In S^2, for example, we nominally have four coordinates even
1207 # though the space is of dimension three only. The vector space V
1208 # is supposed to hold the entire long vector, and the subspace W
1209 # of V will be spanned by the vectors that arise from symmetric
1210 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1211 field = basis[0].base_ring()
1212 dimension = basis[0].nrows()
1213
1214 V = VectorSpace(field, dimension**2)
1215 W = V.span( _mat2vec(s) for s in basis )
1216
1217 # Taking the span above reorders our basis (thanks, jerk!) so we
1218 # need to put our "matrix basis" in the same order as the
1219 # (reordered) vector basis.
1220 S = tuple( _vec2mat(b) for b in W.basis() )
1221
1222 Qs = []
1223 for s in S:
1224 # Brute force the multiplication-by-s matrix by looping
1225 # through all elements of the basis and doing the computation
1226 # to find out what the corresponding row should be. BEWARE:
1227 # these multiplication tables won't be symmetric! It therefore
1228 # becomes REALLY IMPORTANT that the underlying algebra
1229 # constructor uses ROW vectors and not COLUMN vectors. That's
1230 # why we're computing rows here and not columns.
1231 Q_rows = []
1232 for t in S:
1233 this_row = _mat2vec((s*t + t*s)/2)
1234 Q_rows.append(W.coordinates(this_row))
1235 Q = matrix(field, W.dimension(), Q_rows)
1236 Qs.append(Q)
1237
1238 return (Qs, S)
1239
1240
1241 def _embed_complex_matrix(M):
1242 """
1243 Embed the n-by-n complex matrix ``M`` into the space of real
1244 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1245 bi` to the block matrix ``[[a,b],[-b,a]]``.
1246
1247 EXAMPLES::
1248
1249 sage: F = QuadraticField(-1,'i')
1250 sage: x1 = F(4 - 2*i)
1251 sage: x2 = F(1 + 2*i)
1252 sage: x3 = F(-i)
1253 sage: x4 = F(6)
1254 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1255 sage: _embed_complex_matrix(M)
1256 [ 4 -2| 1 2]
1257 [ 2 4|-2 1]
1258 [-----+-----]
1259 [ 0 -1| 6 0]
1260 [ 1 0| 0 6]
1261
1262 TESTS:
1263
1264 Embedding is a homomorphism (isomorphism, in fact)::
1265
1266 sage: set_random_seed()
1267 sage: n = ZZ.random_element(5)
1268 sage: F = QuadraticField(-1, 'i')
1269 sage: X = random_matrix(F, n)
1270 sage: Y = random_matrix(F, n)
1271 sage: actual = _embed_complex_matrix(X) * _embed_complex_matrix(Y)
1272 sage: expected = _embed_complex_matrix(X*Y)
1273 sage: actual == expected
1274 True
1275
1276 """
1277 n = M.nrows()
1278 if M.ncols() != n:
1279 raise ValueError("the matrix 'M' must be square")
1280 field = M.base_ring()
1281 blocks = []
1282 for z in M.list():
1283 a = z.real()
1284 b = z.imag()
1285 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1286
1287 # We can drop the imaginaries here.
1288 return block_matrix(field.base_ring(), n, blocks)
1289
1290
1291 def _unembed_complex_matrix(M):
1292 """
1293 The inverse of _embed_complex_matrix().
1294
1295 EXAMPLES::
1296
1297 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1298 ....: [-2, 1, -4, 3],
1299 ....: [ 9, 10, 11, 12],
1300 ....: [-10, 9, -12, 11] ])
1301 sage: _unembed_complex_matrix(A)
1302 [ 2*i + 1 4*i + 3]
1303 [ 10*i + 9 12*i + 11]
1304
1305 TESTS:
1306
1307 Unembedding is the inverse of embedding::
1308
1309 sage: set_random_seed()
1310 sage: F = QuadraticField(-1, 'i')
1311 sage: M = random_matrix(F, 3)
1312 sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
1313 True
1314
1315 """
1316 n = ZZ(M.nrows())
1317 if M.ncols() != n:
1318 raise ValueError("the matrix 'M' must be square")
1319 if not n.mod(2).is_zero():
1320 raise ValueError("the matrix 'M' must be a complex embedding")
1321
1322 F = QuadraticField(-1, 'i')
1323 i = F.gen()
1324
1325 # Go top-left to bottom-right (reading order), converting every
1326 # 2-by-2 block we see to a single complex element.
1327 elements = []
1328 for k in xrange(n/2):
1329 for j in xrange(n/2):
1330 submat = M[2*k:2*k+2,2*j:2*j+2]
1331 if submat[0,0] != submat[1,1]:
1332 raise ValueError('bad on-diagonal submatrix')
1333 if submat[0,1] != -submat[1,0]:
1334 raise ValueError('bad off-diagonal submatrix')
1335 z = submat[0,0] + submat[0,1]*i
1336 elements.append(z)
1337
1338 return matrix(F, n/2, elements)
1339
1340
1341 def _embed_quaternion_matrix(M):
1342 """
1343 Embed the n-by-n quaternion matrix ``M`` into the space of real
1344 matrices of size 4n-by-4n by first sending each quaternion entry
1345 `z = a + bi + cj + dk` to the block-complex matrix
1346 ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
1347 a real matrix.
1348
1349 EXAMPLES::
1350
1351 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1352 sage: i,j,k = Q.gens()
1353 sage: x = 1 + 2*i + 3*j + 4*k
1354 sage: M = matrix(Q, 1, [[x]])
1355 sage: _embed_quaternion_matrix(M)
1356 [ 1 2 3 4]
1357 [-2 1 -4 3]
1358 [-3 4 1 -2]
1359 [-4 -3 2 1]
1360
1361 Embedding is a homomorphism (isomorphism, in fact)::
1362
1363 sage: set_random_seed()
1364 sage: n = ZZ.random_element(5)
1365 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1366 sage: X = random_matrix(Q, n)
1367 sage: Y = random_matrix(Q, n)
1368 sage: actual = _embed_quaternion_matrix(X)*_embed_quaternion_matrix(Y)
1369 sage: expected = _embed_quaternion_matrix(X*Y)
1370 sage: actual == expected
1371 True
1372
1373 """
1374 quaternions = M.base_ring()
1375 n = M.nrows()
1376 if M.ncols() != n:
1377 raise ValueError("the matrix 'M' must be square")
1378
1379 F = QuadraticField(-1, 'i')
1380 i = F.gen()
1381
1382 blocks = []
1383 for z in M.list():
1384 t = z.coefficient_tuple()
1385 a = t[0]
1386 b = t[1]
1387 c = t[2]
1388 d = t[3]
1389 cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
1390 [-c + d*i, a - b*i]])
1391 blocks.append(_embed_complex_matrix(cplx_matrix))
1392
1393 # We should have real entries by now, so use the realest field
1394 # we've got for the return value.
1395 return block_matrix(quaternions.base_ring(), n, blocks)
1396
1397
1398 def _unembed_quaternion_matrix(M):
1399 """
1400 The inverse of _embed_quaternion_matrix().
1401
1402 EXAMPLES::
1403
1404 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1405 ....: [-2, 1, -4, 3],
1406 ....: [-3, 4, 1, -2],
1407 ....: [-4, -3, 2, 1]])
1408 sage: _unembed_quaternion_matrix(M)
1409 [1 + 2*i + 3*j + 4*k]
1410
1411 TESTS:
1412
1413 Unembedding is the inverse of embedding::
1414
1415 sage: set_random_seed()
1416 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1417 sage: M = random_matrix(Q, 3)
1418 sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
1419 True
1420
1421 """
1422 n = ZZ(M.nrows())
1423 if M.ncols() != n:
1424 raise ValueError("the matrix 'M' must be square")
1425 if not n.mod(4).is_zero():
1426 raise ValueError("the matrix 'M' must be a complex embedding")
1427
1428 Q = QuaternionAlgebra(QQ,-1,-1)
1429 i,j,k = Q.gens()
1430
1431 # Go top-left to bottom-right (reading order), converting every
1432 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1433 # quaternion block.
1434 elements = []
1435 for l in xrange(n/4):
1436 for m in xrange(n/4):
1437 submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
1438 if submat[0,0] != submat[1,1].conjugate():
1439 raise ValueError('bad on-diagonal submatrix')
1440 if submat[0,1] != -submat[1,0].conjugate():
1441 raise ValueError('bad off-diagonal submatrix')
1442 z = submat[0,0].real() + submat[0,0].imag()*i
1443 z += submat[0,1].real()*j + submat[0,1].imag()*k
1444 elements.append(z)
1445
1446 return matrix(Q, n/4, elements)
1447
1448
1449 # The usual inner product on R^n.
1450 def _usual_ip(x,y):
1451 return x.vector().inner_product(y.vector())
1452
1453 # The inner product used for the real symmetric simple EJA.
1454 # We keep it as a separate function because e.g. the complex
1455 # algebra uses the same inner product, except divided by 2.
1456 def _matrix_ip(X,Y):
1457 X_mat = X.natural_representation()
1458 Y_mat = Y.natural_representation()
1459 return (X_mat*Y_mat).trace()
1460
1461
1462 class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
1463 """
1464 The rank-n simple EJA consisting of real symmetric n-by-n
1465 matrices, the usual symmetric Jordan product, and the trace inner
1466 product. It has dimension `(n^2 + n)/2` over the reals.
1467
1468 EXAMPLES::
1469
1470 sage: J = RealSymmetricEJA(2)
1471 sage: e0, e1, e2 = J.gens()
1472 sage: e0*e0
1473 e0
1474 sage: e1*e1
1475 e0 + e2
1476 sage: e2*e2
1477 e2
1478
1479 TESTS:
1480
1481 The degree of this algebra is `(n^2 + n) / 2`::
1482
1483 sage: set_random_seed()
1484 sage: n = ZZ.random_element(1,5)
1485 sage: J = RealSymmetricEJA(n)
1486 sage: J.degree() == (n^2 + n)/2
1487 True
1488
1489 The Jordan multiplication is what we think it is::
1490
1491 sage: set_random_seed()
1492 sage: n = ZZ.random_element(1,5)
1493 sage: J = RealSymmetricEJA(n)
1494 sage: x = J.random_element()
1495 sage: y = J.random_element()
1496 sage: actual = (x*y).natural_representation()
1497 sage: X = x.natural_representation()
1498 sage: Y = y.natural_representation()
1499 sage: expected = (X*Y + Y*X)/2
1500 sage: actual == expected
1501 True
1502 sage: J(expected) == x*y
1503 True
1504
1505 """
1506 @staticmethod
1507 def __classcall_private__(cls, n, field=QQ):
1508 S = _real_symmetric_basis(n, field=field)
1509 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1510
1511 fdeja = super(RealSymmetricEJA, cls)
1512 return fdeja.__classcall_private__(cls,
1513 field,
1514 Qs,
1515 rank=n,
1516 natural_basis=T)
1517
1518 def inner_product(self, x, y):
1519 return _matrix_ip(x,y)
1520
1521
1522 class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
1523 """
1524 The rank-n simple EJA consisting of complex Hermitian n-by-n
1525 matrices over the real numbers, the usual symmetric Jordan product,
1526 and the real-part-of-trace inner product. It has dimension `n^2` over
1527 the reals.
1528
1529 TESTS:
1530
1531 The degree of this algebra is `n^2`::
1532
1533 sage: set_random_seed()
1534 sage: n = ZZ.random_element(1,5)
1535 sage: J = ComplexHermitianEJA(n)
1536 sage: J.degree() == n^2
1537 True
1538
1539 The Jordan multiplication is what we think it is::
1540
1541 sage: set_random_seed()
1542 sage: n = ZZ.random_element(1,5)
1543 sage: J = ComplexHermitianEJA(n)
1544 sage: x = J.random_element()
1545 sage: y = J.random_element()
1546 sage: actual = (x*y).natural_representation()
1547 sage: X = x.natural_representation()
1548 sage: Y = y.natural_representation()
1549 sage: expected = (X*Y + Y*X)/2
1550 sage: actual == expected
1551 True
1552 sage: J(expected) == x*y
1553 True
1554
1555 """
1556 @staticmethod
1557 def __classcall_private__(cls, n, field=QQ):
1558 S = _complex_hermitian_basis(n)
1559 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1560
1561 fdeja = super(ComplexHermitianEJA, cls)
1562 return fdeja.__classcall_private__(cls,
1563 field,
1564 Qs,
1565 rank=n,
1566 natural_basis=T)
1567
1568 def inner_product(self, x, y):
1569 # Since a+bi on the diagonal is represented as
1570 #
1571 # a + bi = [ a b ]
1572 # [ -b a ],
1573 #
1574 # we'll double-count the "a" entries if we take the trace of
1575 # the embedding.
1576 return _matrix_ip(x,y)/2
1577
1578
1579 class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
1580 """
1581 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1582 matrices, the usual symmetric Jordan product, and the
1583 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1584 the reals.
1585
1586 TESTS:
1587
1588 The degree of this algebra is `n^2`::
1589
1590 sage: set_random_seed()
1591 sage: n = ZZ.random_element(1,5)
1592 sage: J = QuaternionHermitianEJA(n)
1593 sage: J.degree() == 2*(n^2) - n
1594 True
1595
1596 The Jordan multiplication is what we think it is::
1597
1598 sage: set_random_seed()
1599 sage: n = ZZ.random_element(1,5)
1600 sage: J = QuaternionHermitianEJA(n)
1601 sage: x = J.random_element()
1602 sage: y = J.random_element()
1603 sage: actual = (x*y).natural_representation()
1604 sage: X = x.natural_representation()
1605 sage: Y = y.natural_representation()
1606 sage: expected = (X*Y + Y*X)/2
1607 sage: actual == expected
1608 True
1609 sage: J(expected) == x*y
1610 True
1611
1612 """
1613 @staticmethod
1614 def __classcall_private__(cls, n, field=QQ):
1615 S = _quaternion_hermitian_basis(n)
1616 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1617
1618 fdeja = super(QuaternionHermitianEJA, cls)
1619 return fdeja.__classcall_private__(cls,
1620 field,
1621 Qs,
1622 rank=n,
1623 natural_basis=T)
1624
1625 def inner_product(self, x, y):
1626 # Since a+bi+cj+dk on the diagonal is represented as
1627 #
1628 # a + bi +cj + dk = [ a b c d]
1629 # [ -b a -d c]
1630 # [ -c d a -b]
1631 # [ -d -c b a],
1632 #
1633 # we'll quadruple-count the "a" entries if we take the trace of
1634 # the embedding.
1635 return _matrix_ip(x,y)/4
1636
1637
1638 class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
1639 """
1640 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1641 with the usual inner product and jordan product ``x*y =
1642 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1643 the reals.
1644
1645 EXAMPLES:
1646
1647 This multiplication table can be verified by hand::
1648
1649 sage: J = JordanSpinEJA(4)
1650 sage: e0,e1,e2,e3 = J.gens()
1651 sage: e0*e0
1652 e0
1653 sage: e0*e1
1654 e1
1655 sage: e0*e2
1656 e2
1657 sage: e0*e3
1658 e3
1659 sage: e1*e2
1660 0
1661 sage: e1*e3
1662 0
1663 sage: e2*e3
1664 0
1665
1666 """
1667 @staticmethod
1668 def __classcall_private__(cls, n, field=QQ):
1669 Qs = []
1670 id_matrix = identity_matrix(field, n)
1671 for i in xrange(n):
1672 ei = id_matrix.column(i)
1673 Qi = zero_matrix(field, n)
1674 Qi.set_row(0, ei)
1675 Qi.set_column(0, ei)
1676 Qi += diagonal_matrix(n, [ei[0]]*n)
1677 # The addition of the diagonal matrix adds an extra ei[0] in the
1678 # upper-left corner of the matrix.
1679 Qi[0,0] = Qi[0,0] * ~field(2)
1680 Qs.append(Qi)
1681
1682 fdeja = super(JordanSpinEJA, cls)
1683 return fdeja.__classcall_private__(cls, field, Qs)
1684
1685 def rank(self):
1686 """
1687 Return the rank of this Jordan Spin Algebra.
1688
1689 The rank of the spin algebra is two, unless we're in a
1690 one-dimensional ambient space (because the rank is bounded by
1691 the ambient dimension).
1692 """
1693 return min(self.dimension(),2)
1694
1695 def inner_product(self, x, y):
1696 return _usual_ip(x,y)