]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/euclidean_jordan_algebra.py
eja: add operator_commutes_with() for elements.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.categories.magmatic_algebras import MagmaticAlgebras
9 from sage.structure.element import is_Matrix
10 from sage.structure.category_object import normalize_names
11
12 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
13 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
14
15 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
16 @staticmethod
17 def __classcall_private__(cls,
18 field,
19 mult_table,
20 names='e',
21 assume_associative=False,
22 category=None,
23 rank=None):
24 n = len(mult_table)
25 mult_table = [b.base_extend(field) for b in mult_table]
26 for b in mult_table:
27 b.set_immutable()
28 if not (is_Matrix(b) and b.dimensions() == (n, n)):
29 raise ValueError("input is not a multiplication table")
30 mult_table = tuple(mult_table)
31
32 cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
33 cat.or_subcategory(category)
34 if assume_associative:
35 cat = cat.Associative()
36
37 names = normalize_names(n, names)
38
39 fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
40 return fda.__classcall__(cls,
41 field,
42 mult_table,
43 assume_associative=assume_associative,
44 names=names,
45 category=cat,
46 rank=rank)
47
48
49 def __init__(self, field,
50 mult_table,
51 names='e',
52 assume_associative=False,
53 category=None,
54 rank=None):
55 """
56 EXAMPLES:
57
58 By definition, Jordan multiplication commutes::
59
60 sage: set_random_seed()
61 sage: J = random_eja()
62 sage: x = J.random_element()
63 sage: y = J.random_element()
64 sage: x*y == y*x
65 True
66
67 """
68 self._rank = rank
69 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
70 fda.__init__(field,
71 mult_table,
72 names=names,
73 category=category)
74
75
76 def _repr_(self):
77 """
78 Return a string representation of ``self``.
79 """
80 fmt = "Euclidean Jordan algebra of degree {} over {}"
81 return fmt.format(self.degree(), self.base_ring())
82
83 def rank(self):
84 """
85 Return the rank of this EJA.
86 """
87 if self._rank is None:
88 raise ValueError("no rank specified at genesis")
89 else:
90 return self._rank
91
92
93 class Element(FiniteDimensionalAlgebraElement):
94 """
95 An element of a Euclidean Jordan algebra.
96 """
97
98 def __pow__(self, n):
99 """
100 Return ``self`` raised to the power ``n``.
101
102 Jordan algebras are always power-associative; see for
103 example Faraut and Koranyi, Proposition II.1.2 (ii).
104
105 .. WARNING:
106
107 We have to override this because our superclass uses row vectors
108 instead of column vectors! We, on the other hand, assume column
109 vectors everywhere.
110
111 EXAMPLES::
112
113 sage: set_random_seed()
114 sage: x = random_eja().random_element()
115 sage: x.matrix()*x.vector() == (x^2).vector()
116 True
117
118 A few examples of power-associativity::
119
120 sage: set_random_seed()
121 sage: x = random_eja().random_element()
122 sage: x*(x*x)*(x*x) == x^5
123 True
124 sage: (x*x)*(x*x*x) == x^5
125 True
126
127 We also know that powers operator-commute (Koecher, Chapter
128 III, Corollary 1)::
129
130 sage: set_random_seed()
131 sage: x = random_eja().random_element()
132 sage: m = ZZ.random_element(0,10)
133 sage: n = ZZ.random_element(0,10)
134 sage: Lxm = (x^m).matrix()
135 sage: Lxn = (x^n).matrix()
136 sage: Lxm*Lxn == Lxn*Lxm
137 True
138
139 """
140 A = self.parent()
141 if n == 0:
142 return A.one()
143 elif n == 1:
144 return self
145 else:
146 return A.element_class(A, (self.matrix()**(n-1))*self.vector())
147
148
149 def characteristic_polynomial(self):
150 """
151 Return my characteristic polynomial (if I'm a regular
152 element).
153
154 Eventually this should be implemented in terms of the parent
155 algebra's characteristic polynomial that works for ALL
156 elements.
157 """
158 if self.is_regular():
159 return self.minimal_polynomial()
160 else:
161 raise NotImplementedError('irregular element')
162
163
164 def operator_commutes_with(self, other):
165 """
166 Return whether or not this element operator-commutes
167 with ``other``.
168
169 EXAMPLES:
170
171 The definition of a Jordan algebra says that any element
172 operator-commutes with its square::
173
174 sage: set_random_seed()
175 sage: x = random_eja().random_element()
176 sage: x.operator_commutes_with(x^2)
177 True
178
179 TESTS:
180
181 Test Lemma 1 from Chapter III of Koecher::
182
183 sage: set_random_seed()
184 sage: J = random_eja()
185 sage: u = J.random_element()
186 sage: v = J.random_element()
187 sage: lhs = u.operator_commutes_with(u*v)
188 sage: rhs = v.operator_commutes_with(u^2)
189 sage: lhs == rhs
190 True
191
192 """
193 if not other in self.parent():
194 raise ArgumentError("'other' must live in the same algebra")
195
196 A = self.matrix()
197 B = other.matrix()
198 return (A*B == B*A)
199
200
201 def det(self):
202 """
203 Return my determinant, the product of my eigenvalues.
204
205 EXAMPLES::
206
207 sage: J = JordanSpinSimpleEJA(2)
208 sage: e0,e1 = J.gens()
209 sage: x = e0 + e1
210 sage: x.det()
211 0
212 sage: J = JordanSpinSimpleEJA(3)
213 sage: e0,e1,e2 = J.gens()
214 sage: x = e0 + e1 + e2
215 sage: x.det()
216 -1
217
218 """
219 cs = self.characteristic_polynomial().coefficients(sparse=False)
220 r = len(cs) - 1
221 if r >= 0:
222 return cs[0] * (-1)**r
223 else:
224 raise ValueError('charpoly had no coefficients')
225
226
227 def inverse(self):
228 """
229 Return the Jordan-multiplicative inverse of this element.
230
231 We can't use the superclass method because it relies on the
232 algebra being associative.
233
234 EXAMPLES:
235
236 The inverse in the spin factor algebra is given in Alizadeh's
237 Example 11.11::
238
239 sage: set_random_seed()
240 sage: n = ZZ.random_element(1,10)
241 sage: J = JordanSpinSimpleEJA(n)
242 sage: x = J.random_element()
243 sage: while x.is_zero():
244 ....: x = J.random_element()
245 sage: x_vec = x.vector()
246 sage: x0 = x_vec[0]
247 sage: x_bar = x_vec[1:]
248 sage: coeff = 1/(x0^2 - x_bar.inner_product(x_bar))
249 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
250 sage: x_inverse = coeff*inv_vec
251 sage: x.inverse() == J(x_inverse)
252 True
253
254 TESTS:
255
256 The identity element is its own inverse::
257
258 sage: set_random_seed()
259 sage: J = random_eja()
260 sage: J.one().inverse() == J.one()
261 True
262
263 If an element has an inverse, it acts like one. TODO: this
264 can be a lot less ugly once ``is_invertible`` doesn't crash
265 on irregular elements::
266
267 sage: set_random_seed()
268 sage: J = random_eja()
269 sage: x = J.random_element()
270 sage: try:
271 ....: x.inverse()*x == J.one()
272 ....: except:
273 ....: True
274 True
275
276 """
277 if self.parent().is_associative():
278 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
279 return elt.inverse()
280
281 # TODO: we can do better once the call to is_invertible()
282 # doesn't crash on irregular elements.
283 #if not self.is_invertible():
284 # raise ArgumentError('element is not invertible')
285
286 # We do this a little different than the usual recursive
287 # call to a finite-dimensional algebra element, because we
288 # wind up with an inverse that lives in the subalgebra and
289 # we need information about the parent to convert it back.
290 V = self.span_of_powers()
291 assoc_subalg = self.subalgebra_generated_by()
292 # Mis-design warning: the basis used for span_of_powers()
293 # and subalgebra_generated_by() must be the same, and in
294 # the same order!
295 elt = assoc_subalg(V.coordinates(self.vector()))
296
297 # This will be in the subalgebra's coordinates...
298 fda_elt = FiniteDimensionalAlgebraElement(assoc_subalg, elt)
299 subalg_inverse = fda_elt.inverse()
300
301 # So we have to convert back...
302 basis = [ self.parent(v) for v in V.basis() ]
303 pairs = zip(subalg_inverse.vector(), basis)
304 return self.parent().linear_combination(pairs)
305
306
307 def is_invertible(self):
308 """
309 Return whether or not this element is invertible.
310
311 We can't use the superclass method because it relies on
312 the algebra being associative.
313 """
314 return not self.det().is_zero()
315
316
317 def is_nilpotent(self):
318 """
319 Return whether or not some power of this element is zero.
320
321 The superclass method won't work unless we're in an
322 associative algebra, and we aren't. However, we generate
323 an assocoative subalgebra and we're nilpotent there if and
324 only if we're nilpotent here (probably).
325
326 TESTS:
327
328 The identity element is never nilpotent::
329
330 sage: set_random_seed()
331 sage: random_eja().one().is_nilpotent()
332 False
333
334 The additive identity is always nilpotent::
335
336 sage: set_random_seed()
337 sage: random_eja().zero().is_nilpotent()
338 True
339
340 """
341 # The element we're going to call "is_nilpotent()" on.
342 # Either myself, interpreted as an element of a finite-
343 # dimensional algebra, or an element of an associative
344 # subalgebra.
345 elt = None
346
347 if self.parent().is_associative():
348 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
349 else:
350 V = self.span_of_powers()
351 assoc_subalg = self.subalgebra_generated_by()
352 # Mis-design warning: the basis used for span_of_powers()
353 # and subalgebra_generated_by() must be the same, and in
354 # the same order!
355 elt = assoc_subalg(V.coordinates(self.vector()))
356
357 # Recursive call, but should work since elt lives in an
358 # associative algebra.
359 return elt.is_nilpotent()
360
361
362 def is_regular(self):
363 """
364 Return whether or not this is a regular element.
365
366 EXAMPLES:
367
368 The identity element always has degree one, but any element
369 linearly-independent from it is regular::
370
371 sage: J = JordanSpinSimpleEJA(5)
372 sage: J.one().is_regular()
373 False
374 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
375 sage: for x in J.gens():
376 ....: (J.one() + x).is_regular()
377 False
378 True
379 True
380 True
381 True
382
383 """
384 return self.degree() == self.parent().rank()
385
386
387 def degree(self):
388 """
389 Compute the degree of this element the straightforward way
390 according to the definition; by appending powers to a list
391 and figuring out its dimension (that is, whether or not
392 they're linearly dependent).
393
394 EXAMPLES::
395
396 sage: J = JordanSpinSimpleEJA(4)
397 sage: J.one().degree()
398 1
399 sage: e0,e1,e2,e3 = J.gens()
400 sage: (e0 - e1).degree()
401 2
402
403 In the spin factor algebra (of rank two), all elements that
404 aren't multiples of the identity are regular::
405
406 sage: set_random_seed()
407 sage: n = ZZ.random_element(1,10)
408 sage: J = JordanSpinSimpleEJA(n)
409 sage: x = J.random_element()
410 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
411 True
412
413 """
414 return self.span_of_powers().dimension()
415
416
417 def matrix(self):
418 """
419 Return the matrix that represents left- (or right-)
420 multiplication by this element in the parent algebra.
421
422 We have to override this because the superclass method
423 returns a matrix that acts on row vectors (that is, on
424 the right).
425
426 EXAMPLES:
427
428 Test the first polarization identity from my notes, Koecher Chapter
429 III, or from Baes (2.3)::
430
431 sage: set_random_seed()
432 sage: J = random_eja()
433 sage: x = J.random_element()
434 sage: y = J.random_element()
435 sage: Lx = x.matrix()
436 sage: Ly = y.matrix()
437 sage: Lxx = (x*x).matrix()
438 sage: Lxy = (x*y).matrix()
439 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
440 True
441
442 Test the second polarization identity from my notes or from
443 Baes (2.4)::
444
445 sage: set_random_seed()
446 sage: J = random_eja()
447 sage: x = J.random_element()
448 sage: y = J.random_element()
449 sage: z = J.random_element()
450 sage: Lx = x.matrix()
451 sage: Ly = y.matrix()
452 sage: Lz = z.matrix()
453 sage: Lzy = (z*y).matrix()
454 sage: Lxy = (x*y).matrix()
455 sage: Lxz = (x*z).matrix()
456 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
457 True
458
459 Test the third polarization identity from my notes or from
460 Baes (2.5)::
461
462 sage: set_random_seed()
463 sage: J = random_eja()
464 sage: u = J.random_element()
465 sage: y = J.random_element()
466 sage: z = J.random_element()
467 sage: Lu = u.matrix()
468 sage: Ly = y.matrix()
469 sage: Lz = z.matrix()
470 sage: Lzy = (z*y).matrix()
471 sage: Luy = (u*y).matrix()
472 sage: Luz = (u*z).matrix()
473 sage: Luyz = (u*(y*z)).matrix()
474 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
475 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
476 sage: bool(lhs == rhs)
477 True
478
479 """
480 fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
481 return fda_elt.matrix().transpose()
482
483
484 def minimal_polynomial(self):
485 """
486 EXAMPLES::
487
488 sage: set_random_seed()
489 sage: x = random_eja().random_element()
490 sage: x.degree() == x.minimal_polynomial().degree()
491 True
492
493 ::
494
495 sage: set_random_seed()
496 sage: x = random_eja().random_element()
497 sage: x.degree() == x.minimal_polynomial().degree()
498 True
499
500 The minimal polynomial and the characteristic polynomial coincide
501 and are known (see Alizadeh, Example 11.11) for all elements of
502 the spin factor algebra that aren't scalar multiples of the
503 identity::
504
505 sage: set_random_seed()
506 sage: n = ZZ.random_element(2,10)
507 sage: J = JordanSpinSimpleEJA(n)
508 sage: y = J.random_element()
509 sage: while y == y.coefficient(0)*J.one():
510 ....: y = J.random_element()
511 sage: y0 = y.vector()[0]
512 sage: y_bar = y.vector()[1:]
513 sage: actual = y.minimal_polynomial()
514 sage: x = SR.symbol('x', domain='real')
515 sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
516 sage: bool(actual == expected)
517 True
518
519 """
520 # The element we're going to call "minimal_polynomial()" on.
521 # Either myself, interpreted as an element of a finite-
522 # dimensional algebra, or an element of an associative
523 # subalgebra.
524 elt = None
525
526 if self.parent().is_associative():
527 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
528 else:
529 V = self.span_of_powers()
530 assoc_subalg = self.subalgebra_generated_by()
531 # Mis-design warning: the basis used for span_of_powers()
532 # and subalgebra_generated_by() must be the same, and in
533 # the same order!
534 elt = assoc_subalg(V.coordinates(self.vector()))
535
536 # Recursive call, but should work since elt lives in an
537 # associative algebra.
538 return elt.minimal_polynomial()
539
540
541 def quadratic_representation(self, other=None):
542 """
543 Return the quadratic representation of this element.
544
545 EXAMPLES:
546
547 The explicit form in the spin factor algebra is given by
548 Alizadeh's Example 11.12::
549
550 sage: set_random_seed()
551 sage: n = ZZ.random_element(1,10)
552 sage: J = JordanSpinSimpleEJA(n)
553 sage: x = J.random_element()
554 sage: x_vec = x.vector()
555 sage: x0 = x_vec[0]
556 sage: x_bar = x_vec[1:]
557 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
558 sage: B = 2*x0*x_bar.row()
559 sage: C = 2*x0*x_bar.column()
560 sage: D = identity_matrix(QQ, n-1)
561 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
562 sage: D = D + 2*x_bar.tensor_product(x_bar)
563 sage: Q = block_matrix(2,2,[A,B,C,D])
564 sage: Q == x.quadratic_representation()
565 True
566
567 Test all of the properties from Theorem 11.2 in Alizadeh::
568
569 sage: set_random_seed()
570 sage: J = random_eja()
571 sage: x = J.random_element()
572 sage: y = J.random_element()
573
574 Property 1:
575
576 sage: actual = x.quadratic_representation(y)
577 sage: expected = ( (x+y).quadratic_representation()
578 ....: -x.quadratic_representation()
579 ....: -y.quadratic_representation() ) / 2
580 sage: actual == expected
581 True
582
583 Property 2:
584
585 sage: alpha = QQ.random_element()
586 sage: actual = (alpha*x).quadratic_representation()
587 sage: expected = (alpha^2)*x.quadratic_representation()
588 sage: actual == expected
589 True
590
591 Property 5:
592
593 sage: Qy = y.quadratic_representation()
594 sage: actual = J(Qy*x.vector()).quadratic_representation()
595 sage: expected = Qy*x.quadratic_representation()*Qy
596 sage: actual == expected
597 True
598
599 Property 6:
600
601 sage: k = ZZ.random_element(1,10)
602 sage: actual = (x^k).quadratic_representation()
603 sage: expected = (x.quadratic_representation())^k
604 sage: actual == expected
605 True
606
607 """
608 if other is None:
609 other=self
610 elif not other in self.parent():
611 raise ArgumentError("'other' must live in the same algebra")
612
613 return ( self.matrix()*other.matrix()
614 + other.matrix()*self.matrix()
615 - (self*other).matrix() )
616
617
618 def span_of_powers(self):
619 """
620 Return the vector space spanned by successive powers of
621 this element.
622 """
623 # The dimension of the subalgebra can't be greater than
624 # the big algebra, so just put everything into a list
625 # and let span() get rid of the excess.
626 V = self.vector().parent()
627 return V.span( (self**d).vector() for d in xrange(V.dimension()) )
628
629
630 def subalgebra_generated_by(self):
631 """
632 Return the associative subalgebra of the parent EJA generated
633 by this element.
634
635 TESTS::
636
637 sage: set_random_seed()
638 sage: x = random_eja().random_element()
639 sage: x.subalgebra_generated_by().is_associative()
640 True
641
642 Squaring in the subalgebra should be the same thing as
643 squaring in the superalgebra::
644
645 sage: set_random_seed()
646 sage: x = random_eja().random_element()
647 sage: u = x.subalgebra_generated_by().random_element()
648 sage: u.matrix()*u.vector() == (u**2).vector()
649 True
650
651 """
652 # First get the subspace spanned by the powers of myself...
653 V = self.span_of_powers()
654 F = self.base_ring()
655
656 # Now figure out the entries of the right-multiplication
657 # matrix for the successive basis elements b0, b1,... of
658 # that subspace.
659 mats = []
660 for b_right in V.basis():
661 eja_b_right = self.parent()(b_right)
662 b_right_rows = []
663 # The first row of the right-multiplication matrix by
664 # b1 is what we get if we apply that matrix to b1. The
665 # second row of the right multiplication matrix by b1
666 # is what we get when we apply that matrix to b2...
667 #
668 # IMPORTANT: this assumes that all vectors are COLUMN
669 # vectors, unlike our superclass (which uses row vectors).
670 for b_left in V.basis():
671 eja_b_left = self.parent()(b_left)
672 # Multiply in the original EJA, but then get the
673 # coordinates from the subalgebra in terms of its
674 # basis.
675 this_row = V.coordinates((eja_b_left*eja_b_right).vector())
676 b_right_rows.append(this_row)
677 b_right_matrix = matrix(F, b_right_rows)
678 mats.append(b_right_matrix)
679
680 # It's an algebra of polynomials in one element, and EJAs
681 # are power-associative.
682 #
683 # TODO: choose generator names intelligently.
684 return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
685
686
687 def subalgebra_idempotent(self):
688 """
689 Find an idempotent in the associative subalgebra I generate
690 using Proposition 2.3.5 in Baes.
691
692 TESTS::
693
694 sage: set_random_seed()
695 sage: J = eja_rn(5)
696 sage: c = J.random_element().subalgebra_idempotent()
697 sage: c^2 == c
698 True
699 sage: J = JordanSpinSimpleEJA(5)
700 sage: c = J.random_element().subalgebra_idempotent()
701 sage: c^2 == c
702 True
703
704 """
705 if self.is_nilpotent():
706 raise ValueError("this only works with non-nilpotent elements!")
707
708 V = self.span_of_powers()
709 J = self.subalgebra_generated_by()
710 # Mis-design warning: the basis used for span_of_powers()
711 # and subalgebra_generated_by() must be the same, and in
712 # the same order!
713 u = J(V.coordinates(self.vector()))
714
715 # The image of the matrix of left-u^m-multiplication
716 # will be minimal for some natural number s...
717 s = 0
718 minimal_dim = V.dimension()
719 for i in xrange(1, V.dimension()):
720 this_dim = (u**i).matrix().image().dimension()
721 if this_dim < minimal_dim:
722 minimal_dim = this_dim
723 s = i
724
725 # Now minimal_matrix should correspond to the smallest
726 # non-zero subspace in Baes's (or really, Koecher's)
727 # proposition.
728 #
729 # However, we need to restrict the matrix to work on the
730 # subspace... or do we? Can't we just solve, knowing that
731 # A(c) = u^(s+1) should have a solution in the big space,
732 # too?
733 #
734 # Beware, solve_right() means that we're using COLUMN vectors.
735 # Our FiniteDimensionalAlgebraElement superclass uses rows.
736 u_next = u**(s+1)
737 A = u_next.matrix()
738 c_coordinates = A.solve_right(u_next.vector())
739
740 # Now c_coordinates is the idempotent we want, but it's in
741 # the coordinate system of the subalgebra.
742 #
743 # We need the basis for J, but as elements of the parent algebra.
744 #
745 basis = [self.parent(v) for v in V.basis()]
746 return self.parent().linear_combination(zip(c_coordinates, basis))
747
748
749 def trace(self):
750 """
751 Return my trace, the sum of my eigenvalues.
752
753 EXAMPLES::
754
755 sage: J = JordanSpinSimpleEJA(3)
756 sage: e0,e1,e2 = J.gens()
757 sage: x = e0 + e1 + e2
758 sage: x.trace()
759 2
760
761 """
762 cs = self.characteristic_polynomial().coefficients(sparse=False)
763 if len(cs) >= 2:
764 return -1*cs[-2]
765 else:
766 raise ValueError('charpoly had fewer than 2 coefficients')
767
768
769 def trace_inner_product(self, other):
770 """
771 Return the trace inner product of myself and ``other``.
772 """
773 if not other in self.parent():
774 raise ArgumentError("'other' must live in the same algebra")
775
776 return (self*other).trace()
777
778
779 def eja_rn(dimension, field=QQ):
780 """
781 Return the Euclidean Jordan Algebra corresponding to the set
782 `R^n` under the Hadamard product.
783
784 EXAMPLES:
785
786 This multiplication table can be verified by hand::
787
788 sage: J = eja_rn(3)
789 sage: e0,e1,e2 = J.gens()
790 sage: e0*e0
791 e0
792 sage: e0*e1
793 0
794 sage: e0*e2
795 0
796 sage: e1*e1
797 e1
798 sage: e1*e2
799 0
800 sage: e2*e2
801 e2
802
803 """
804 # The FiniteDimensionalAlgebra constructor takes a list of
805 # matrices, the ith representing right multiplication by the ith
806 # basis element in the vector space. So if e_1 = (1,0,0), then
807 # right (Hadamard) multiplication of x by e_1 picks out the first
808 # component of x; and likewise for the ith basis element e_i.
809 Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
810 for i in xrange(dimension) ]
811
812 return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
813
814
815
816 def random_eja():
817 """
818 Return a "random" finite-dimensional Euclidean Jordan Algebra.
819
820 ALGORITHM:
821
822 For now, we choose a random natural number ``n`` (greater than zero)
823 and then give you back one of the following:
824
825 * The cartesian product of the rational numbers ``n`` times; this is
826 ``QQ^n`` with the Hadamard product.
827
828 * The Jordan spin algebra on ``QQ^n``.
829
830 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
831 product.
832
833 Later this might be extended to return Cartesian products of the
834 EJAs above.
835
836 TESTS::
837
838 sage: random_eja()
839 Euclidean Jordan algebra of degree...
840
841 """
842 n = ZZ.random_element(1,5)
843 constructor = choice([eja_rn,
844 JordanSpinSimpleEJA,
845 RealSymmetricSimpleEJA,
846 ComplexHermitianSimpleEJA])
847 return constructor(n, field=QQ)
848
849
850
851 def _real_symmetric_basis(n, field=QQ):
852 """
853 Return a basis for the space of real symmetric n-by-n matrices.
854 """
855 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
856 # coordinates.
857 S = []
858 for i in xrange(n):
859 for j in xrange(i+1):
860 Eij = matrix(field, n, lambda k,l: k==i and l==j)
861 if i == j:
862 Sij = Eij
863 else:
864 # Beware, orthogonal but not normalized!
865 Sij = Eij + Eij.transpose()
866 S.append(Sij)
867 return S
868
869
870 def _complex_hermitian_basis(n, field=QQ):
871 """
872 Returns a basis for the space of complex Hermitian n-by-n matrices.
873
874 TESTS::
875
876 sage: set_random_seed()
877 sage: n = ZZ.random_element(1,5)
878 sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
879 True
880
881 """
882 F = QuadraticField(-1, 'I')
883 I = F.gen()
884
885 # This is like the symmetric case, but we need to be careful:
886 #
887 # * We want conjugate-symmetry, not just symmetry.
888 # * The diagonal will (as a result) be real.
889 #
890 S = []
891 for i in xrange(n):
892 for j in xrange(i+1):
893 Eij = matrix(field, n, lambda k,l: k==i and l==j)
894 if i == j:
895 Sij = _embed_complex_matrix(Eij)
896 S.append(Sij)
897 else:
898 # Beware, orthogonal but not normalized! The second one
899 # has a minus because it's conjugated.
900 Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
901 S.append(Sij_real)
902 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
903 S.append(Sij_imag)
904 return S
905
906
907 def _multiplication_table_from_matrix_basis(basis):
908 """
909 At least three of the five simple Euclidean Jordan algebras have the
910 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
911 multiplication on the right is matrix multiplication. Given a basis
912 for the underlying matrix space, this function returns a
913 multiplication table (obtained by looping through the basis
914 elements) for an algebra of those matrices.
915 """
916 # In S^2, for example, we nominally have four coordinates even
917 # though the space is of dimension three only. The vector space V
918 # is supposed to hold the entire long vector, and the subspace W
919 # of V will be spanned by the vectors that arise from symmetric
920 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
921 field = basis[0].base_ring()
922 dimension = basis[0].nrows()
923
924 def mat2vec(m):
925 return vector(field, m.list())
926
927 def vec2mat(v):
928 return matrix(field, dimension, v.list())
929
930 V = VectorSpace(field, dimension**2)
931 W = V.span( mat2vec(s) for s in basis )
932
933 # Taking the span above reorders our basis (thanks, jerk!) so we
934 # need to put our "matrix basis" in the same order as the
935 # (reordered) vector basis.
936 S = [ vec2mat(b) for b in W.basis() ]
937
938 Qs = []
939 for s in S:
940 # Brute force the multiplication-by-s matrix by looping
941 # through all elements of the basis and doing the computation
942 # to find out what the corresponding row should be. BEWARE:
943 # these multiplication tables won't be symmetric! It therefore
944 # becomes REALLY IMPORTANT that the underlying algebra
945 # constructor uses ROW vectors and not COLUMN vectors. That's
946 # why we're computing rows here and not columns.
947 Q_rows = []
948 for t in S:
949 this_row = mat2vec((s*t + t*s)/2)
950 Q_rows.append(W.coordinates(this_row))
951 Q = matrix(field, W.dimension(), Q_rows)
952 Qs.append(Q)
953
954 return Qs
955
956
957 def _embed_complex_matrix(M):
958 """
959 Embed the n-by-n complex matrix ``M`` into the space of real
960 matrices of size 2n-by-2n via the map the sends each entry `z = a +
961 bi` to the block matrix ``[[a,b],[-b,a]]``.
962
963 EXAMPLES::
964
965 sage: F = QuadraticField(-1,'i')
966 sage: x1 = F(4 - 2*i)
967 sage: x2 = F(1 + 2*i)
968 sage: x3 = F(-i)
969 sage: x4 = F(6)
970 sage: M = matrix(F,2,[x1,x2,x3,x4])
971 sage: _embed_complex_matrix(M)
972 [ 4 2| 1 -2]
973 [-2 4| 2 1]
974 [-----+-----]
975 [ 0 1| 6 0]
976 [-1 0| 0 6]
977
978 """
979 n = M.nrows()
980 if M.ncols() != n:
981 raise ArgumentError("the matrix 'M' must be square")
982 field = M.base_ring()
983 blocks = []
984 for z in M.list():
985 a = z.real()
986 b = z.imag()
987 blocks.append(matrix(field, 2, [[a,-b],[b,a]]))
988
989 # We can drop the imaginaries here.
990 return block_matrix(field.base_ring(), n, blocks)
991
992
993 def _unembed_complex_matrix(M):
994 """
995 The inverse of _embed_complex_matrix().
996
997 EXAMPLES::
998
999 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1000 ....: [-2, 1, -4, 3],
1001 ....: [ 9, 10, 11, 12],
1002 ....: [-10, 9, -12, 11] ])
1003 sage: _unembed_complex_matrix(A)
1004 [ -2*i + 1 -4*i + 3]
1005 [ -10*i + 9 -12*i + 11]
1006 """
1007 n = ZZ(M.nrows())
1008 if M.ncols() != n:
1009 raise ArgumentError("the matrix 'M' must be square")
1010 if not n.mod(2).is_zero():
1011 raise ArgumentError("the matrix 'M' must be a complex embedding")
1012
1013 F = QuadraticField(-1, 'i')
1014 i = F.gen()
1015
1016 # Go top-left to bottom-right (reading order), converting every
1017 # 2-by-2 block we see to a single complex element.
1018 elements = []
1019 for k in xrange(n/2):
1020 for j in xrange(n/2):
1021 submat = M[2*k:2*k+2,2*j:2*j+2]
1022 if submat[0,0] != submat[1,1]:
1023 raise ArgumentError('bad real submatrix')
1024 if submat[0,1] != -submat[1,0]:
1025 raise ArgumentError('bad imag submatrix')
1026 z = submat[0,0] + submat[1,0]*i
1027 elements.append(z)
1028
1029 return matrix(F, n/2, elements)
1030
1031
1032 def RealSymmetricSimpleEJA(n, field=QQ):
1033 """
1034 The rank-n simple EJA consisting of real symmetric n-by-n
1035 matrices, the usual symmetric Jordan product, and the trace inner
1036 product. It has dimension `(n^2 + n)/2` over the reals.
1037
1038 EXAMPLES::
1039
1040 sage: J = RealSymmetricSimpleEJA(2)
1041 sage: e0, e1, e2 = J.gens()
1042 sage: e0*e0
1043 e0
1044 sage: e1*e1
1045 e0 + e2
1046 sage: e2*e2
1047 e2
1048
1049 TESTS:
1050
1051 The degree of this algebra is `(n^2 + n) / 2`::
1052
1053 sage: set_random_seed()
1054 sage: n = ZZ.random_element(1,5)
1055 sage: J = RealSymmetricSimpleEJA(n)
1056 sage: J.degree() == (n^2 + n)/2
1057 True
1058
1059 """
1060 S = _real_symmetric_basis(n, field=field)
1061 Qs = _multiplication_table_from_matrix_basis(S)
1062
1063 return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=n)
1064
1065
1066 def ComplexHermitianSimpleEJA(n, field=QQ):
1067 """
1068 The rank-n simple EJA consisting of complex Hermitian n-by-n
1069 matrices over the real numbers, the usual symmetric Jordan product,
1070 and the real-part-of-trace inner product. It has dimension `n^2` over
1071 the reals.
1072
1073 TESTS:
1074
1075 The degree of this algebra is `n^2`::
1076
1077 sage: set_random_seed()
1078 sage: n = ZZ.random_element(1,5)
1079 sage: J = ComplexHermitianSimpleEJA(n)
1080 sage: J.degree() == n^2
1081 True
1082
1083 """
1084 S = _complex_hermitian_basis(n)
1085 Qs = _multiplication_table_from_matrix_basis(S)
1086 return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n)
1087
1088
1089 def QuaternionHermitianSimpleEJA(n):
1090 """
1091 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1092 matrices, the usual symmetric Jordan product, and the
1093 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1094 the reals.
1095 """
1096 pass
1097
1098 def OctonionHermitianSimpleEJA(n):
1099 """
1100 This shit be crazy. It has dimension 27 over the reals.
1101 """
1102 n = 3
1103 pass
1104
1105 def JordanSpinSimpleEJA(n, field=QQ):
1106 """
1107 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1108 with the usual inner product and jordan product ``x*y =
1109 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1110 the reals.
1111
1112 EXAMPLES:
1113
1114 This multiplication table can be verified by hand::
1115
1116 sage: J = JordanSpinSimpleEJA(4)
1117 sage: e0,e1,e2,e3 = J.gens()
1118 sage: e0*e0
1119 e0
1120 sage: e0*e1
1121 e1
1122 sage: e0*e2
1123 e2
1124 sage: e0*e3
1125 e3
1126 sage: e1*e2
1127 0
1128 sage: e1*e3
1129 0
1130 sage: e2*e3
1131 0
1132
1133 In one dimension, this is the reals under multiplication::
1134
1135 sage: J1 = JordanSpinSimpleEJA(1)
1136 sage: J2 = eja_rn(1)
1137 sage: J1 == J2
1138 True
1139
1140 """
1141 Qs = []
1142 id_matrix = identity_matrix(field, n)
1143 for i in xrange(n):
1144 ei = id_matrix.column(i)
1145 Qi = zero_matrix(field, n)
1146 Qi.set_row(0, ei)
1147 Qi.set_column(0, ei)
1148 Qi += diagonal_matrix(n, [ei[0]]*n)
1149 # The addition of the diagonal matrix adds an extra ei[0] in the
1150 # upper-left corner of the matrix.
1151 Qi[0,0] = Qi[0,0] * ~field(2)
1152 Qs.append(Qi)
1153
1154 # The rank of the spin factor algebra is two, UNLESS we're in a
1155 # one-dimensional ambient space (the rank is bounded by the
1156 # ambient dimension).
1157 return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=min(n,2))