]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/euclidean_jordan_algebra.py
eja: do an extra ambient_vector_space() in one method in case its a module.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.categories.magmatic_algebras import MagmaticAlgebras
9 from sage.structure.element import is_Matrix
10 from sage.structure.category_object import normalize_names
11
12 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
13 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
14
15 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
16 @staticmethod
17 def __classcall_private__(cls,
18 field,
19 mult_table,
20 names='e',
21 assume_associative=False,
22 category=None,
23 rank=None,
24 natural_basis=None):
25 n = len(mult_table)
26 mult_table = [b.base_extend(field) for b in mult_table]
27 for b in mult_table:
28 b.set_immutable()
29 if not (is_Matrix(b) and b.dimensions() == (n, n)):
30 raise ValueError("input is not a multiplication table")
31 mult_table = tuple(mult_table)
32
33 cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
34 cat.or_subcategory(category)
35 if assume_associative:
36 cat = cat.Associative()
37
38 names = normalize_names(n, names)
39
40 fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
41 return fda.__classcall__(cls,
42 field,
43 mult_table,
44 assume_associative=assume_associative,
45 names=names,
46 category=cat,
47 rank=rank,
48 natural_basis=natural_basis)
49
50
51 def __init__(self,
52 field,
53 mult_table,
54 names='e',
55 assume_associative=False,
56 category=None,
57 rank=None,
58 natural_basis=None):
59 """
60 EXAMPLES:
61
62 By definition, Jordan multiplication commutes::
63
64 sage: set_random_seed()
65 sage: J = random_eja()
66 sage: x = J.random_element()
67 sage: y = J.random_element()
68 sage: x*y == y*x
69 True
70
71 """
72 self._rank = rank
73 self._natural_basis = natural_basis
74 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
75 fda.__init__(field,
76 mult_table,
77 names=names,
78 category=category)
79
80
81 def _repr_(self):
82 """
83 Return a string representation of ``self``.
84 """
85 fmt = "Euclidean Jordan algebra of degree {} over {}"
86 return fmt.format(self.degree(), self.base_ring())
87
88
89 def inner_product(self, x, y):
90 """
91 The inner product associated with this Euclidean Jordan algebra.
92
93 Defaults to the trace inner product, but can be overridden by
94 subclasses if they are sure that the necessary properties are
95 satisfied.
96
97 EXAMPLES:
98
99 The inner product must satisfy its axiom for this algebra to truly
100 be a Euclidean Jordan Algebra::
101
102 sage: set_random_seed()
103 sage: J = random_eja()
104 sage: x = J.random_element()
105 sage: y = J.random_element()
106 sage: z = J.random_element()
107 sage: (x*y).inner_product(z) == y.inner_product(x*z)
108 True
109
110 """
111 if (not x in self) or (not y in self):
112 raise TypeError("arguments must live in this algebra")
113 return x.trace_inner_product(y)
114
115
116 def natural_basis(self):
117 """
118 Return a more-natural representation of this algebra's basis.
119
120 Every finite-dimensional Euclidean Jordan Algebra is a direct
121 sum of five simple algebras, four of which comprise Hermitian
122 matrices. This method returns the original "natural" basis
123 for our underlying vector space. (Typically, the natural basis
124 is used to construct the multiplication table in the first place.)
125
126 Note that this will always return a matrix. The standard basis
127 in `R^n` will be returned as `n`-by-`1` column matrices.
128
129 EXAMPLES::
130
131 sage: J = RealSymmetricEJA(2)
132 sage: J.basis()
133 Family (e0, e1, e2)
134 sage: J.natural_basis()
135 (
136 [1 0] [0 1] [0 0]
137 [0 0], [1 0], [0 1]
138 )
139
140 ::
141
142 sage: J = JordanSpinEJA(2)
143 sage: J.basis()
144 Family (e0, e1)
145 sage: J.natural_basis()
146 (
147 [1] [0]
148 [0], [1]
149 )
150
151 """
152 if self._natural_basis is None:
153 return tuple( b.vector().column() for b in self.basis() )
154 else:
155 return self._natural_basis
156
157
158 def rank(self):
159 """
160 Return the rank of this EJA.
161 """
162 if self._rank is None:
163 raise ValueError("no rank specified at genesis")
164 else:
165 return self._rank
166
167
168 class Element(FiniteDimensionalAlgebraElement):
169 """
170 An element of a Euclidean Jordan algebra.
171 """
172
173 def __init__(self, A, elt=None):
174 """
175 EXAMPLES:
176
177 The identity in `S^n` is converted to the identity in the EJA::
178
179 sage: J = RealSymmetricEJA(3)
180 sage: I = identity_matrix(QQ,3)
181 sage: J(I) == J.one()
182 True
183
184 This skew-symmetric matrix can't be represented in the EJA::
185
186 sage: J = RealSymmetricEJA(3)
187 sage: A = matrix(QQ,3, lambda i,j: i-j)
188 sage: J(A)
189 Traceback (most recent call last):
190 ...
191 ArithmeticError: vector is not in free module
192
193 """
194 # Goal: if we're given a matrix, and if it lives in our
195 # parent algebra's "natural ambient space," convert it
196 # into an algebra element.
197 #
198 # The catch is, we make a recursive call after converting
199 # the given matrix into a vector that lives in the algebra.
200 # This we need to try the parent class initializer first,
201 # to avoid recursing forever if we're given something that
202 # already fits into the algebra, but also happens to live
203 # in the parent's "natural ambient space" (this happens with
204 # vectors in R^n).
205 try:
206 FiniteDimensionalAlgebraElement.__init__(self, A, elt)
207 except ValueError:
208 natural_basis = A.natural_basis()
209 if elt in natural_basis[0].matrix_space():
210 # Thanks for nothing! Matrix spaces aren't vector
211 # spaces in Sage, so we have to figure out its
212 # natural-basis coordinates ourselves.
213 V = VectorSpace(elt.base_ring(), elt.nrows()**2)
214 W = V.span( _mat2vec(s) for s in natural_basis )
215 coords = W.coordinates(_mat2vec(elt))
216 FiniteDimensionalAlgebraElement.__init__(self, A, coords)
217
218 def __pow__(self, n):
219 """
220 Return ``self`` raised to the power ``n``.
221
222 Jordan algebras are always power-associative; see for
223 example Faraut and Koranyi, Proposition II.1.2 (ii).
224
225 .. WARNING:
226
227 We have to override this because our superclass uses row vectors
228 instead of column vectors! We, on the other hand, assume column
229 vectors everywhere.
230
231 EXAMPLES::
232
233 sage: set_random_seed()
234 sage: x = random_eja().random_element()
235 sage: x.operator_matrix()*x.vector() == (x^2).vector()
236 True
237
238 A few examples of power-associativity::
239
240 sage: set_random_seed()
241 sage: x = random_eja().random_element()
242 sage: x*(x*x)*(x*x) == x^5
243 True
244 sage: (x*x)*(x*x*x) == x^5
245 True
246
247 We also know that powers operator-commute (Koecher, Chapter
248 III, Corollary 1)::
249
250 sage: set_random_seed()
251 sage: x = random_eja().random_element()
252 sage: m = ZZ.random_element(0,10)
253 sage: n = ZZ.random_element(0,10)
254 sage: Lxm = (x^m).operator_matrix()
255 sage: Lxn = (x^n).operator_matrix()
256 sage: Lxm*Lxn == Lxn*Lxm
257 True
258
259 """
260 A = self.parent()
261 if n == 0:
262 return A.one()
263 elif n == 1:
264 return self
265 else:
266 return A( (self.operator_matrix()**(n-1))*self.vector() )
267
268
269 def characteristic_polynomial(self):
270 """
271 Return my characteristic polynomial (if I'm a regular
272 element).
273
274 Eventually this should be implemented in terms of the parent
275 algebra's characteristic polynomial that works for ALL
276 elements.
277 """
278 if self.is_regular():
279 return self.minimal_polynomial()
280 else:
281 raise NotImplementedError('irregular element')
282
283
284 def inner_product(self, other):
285 """
286 Return the parent algebra's inner product of myself and ``other``.
287
288 EXAMPLES:
289
290 The inner product in the Jordan spin algebra is the usual
291 inner product on `R^n` (this example only works because the
292 basis for the Jordan algebra is the standard basis in `R^n`)::
293
294 sage: J = JordanSpinEJA(3)
295 sage: x = vector(QQ,[1,2,3])
296 sage: y = vector(QQ,[4,5,6])
297 sage: x.inner_product(y)
298 32
299 sage: J(x).inner_product(J(y))
300 32
301
302 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
303 multiplication is the usual matrix multiplication in `S^n`,
304 so the inner product of the identity matrix with itself
305 should be the `n`::
306
307 sage: J = RealSymmetricEJA(3)
308 sage: J.one().inner_product(J.one())
309 3
310
311 Likewise, the inner product on `C^n` is `<X,Y> =
312 Re(trace(X*Y))`, where we must necessarily take the real
313 part because the product of Hermitian matrices may not be
314 Hermitian::
315
316 sage: J = ComplexHermitianEJA(3)
317 sage: J.one().inner_product(J.one())
318 3
319
320 Ditto for the quaternions::
321
322 sage: J = QuaternionHermitianEJA(3)
323 sage: J.one().inner_product(J.one())
324 3
325
326 TESTS:
327
328 Ensure that we can always compute an inner product, and that
329 it gives us back a real number::
330
331 sage: set_random_seed()
332 sage: J = random_eja()
333 sage: x = J.random_element()
334 sage: y = J.random_element()
335 sage: x.inner_product(y) in RR
336 True
337
338 """
339 P = self.parent()
340 if not other in P:
341 raise TypeError("'other' must live in the same algebra")
342
343 return P.inner_product(self, other)
344
345
346 def operator_commutes_with(self, other):
347 """
348 Return whether or not this element operator-commutes
349 with ``other``.
350
351 EXAMPLES:
352
353 The definition of a Jordan algebra says that any element
354 operator-commutes with its square::
355
356 sage: set_random_seed()
357 sage: x = random_eja().random_element()
358 sage: x.operator_commutes_with(x^2)
359 True
360
361 TESTS:
362
363 Test Lemma 1 from Chapter III of Koecher::
364
365 sage: set_random_seed()
366 sage: J = random_eja()
367 sage: u = J.random_element()
368 sage: v = J.random_element()
369 sage: lhs = u.operator_commutes_with(u*v)
370 sage: rhs = v.operator_commutes_with(u^2)
371 sage: lhs == rhs
372 True
373
374 """
375 if not other in self.parent():
376 raise TypeError("'other' must live in the same algebra")
377
378 A = self.operator_matrix()
379 B = other.operator_matrix()
380 return (A*B == B*A)
381
382
383 def det(self):
384 """
385 Return my determinant, the product of my eigenvalues.
386
387 EXAMPLES::
388
389 sage: J = JordanSpinEJA(2)
390 sage: e0,e1 = J.gens()
391 sage: x = e0 + e1
392 sage: x.det()
393 0
394 sage: J = JordanSpinEJA(3)
395 sage: e0,e1,e2 = J.gens()
396 sage: x = e0 + e1 + e2
397 sage: x.det()
398 -1
399
400 """
401 cs = self.characteristic_polynomial().coefficients(sparse=False)
402 r = len(cs) - 1
403 if r >= 0:
404 return cs[0] * (-1)**r
405 else:
406 raise ValueError('charpoly had no coefficients')
407
408
409 def inverse(self):
410 """
411 Return the Jordan-multiplicative inverse of this element.
412
413 We can't use the superclass method because it relies on the
414 algebra being associative.
415
416 EXAMPLES:
417
418 The inverse in the spin factor algebra is given in Alizadeh's
419 Example 11.11::
420
421 sage: set_random_seed()
422 sage: n = ZZ.random_element(1,10)
423 sage: J = JordanSpinEJA(n)
424 sage: x = J.random_element()
425 sage: while x.is_zero():
426 ....: x = J.random_element()
427 sage: x_vec = x.vector()
428 sage: x0 = x_vec[0]
429 sage: x_bar = x_vec[1:]
430 sage: coeff = 1/(x0^2 - x_bar.inner_product(x_bar))
431 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
432 sage: x_inverse = coeff*inv_vec
433 sage: x.inverse() == J(x_inverse)
434 True
435
436 TESTS:
437
438 The identity element is its own inverse::
439
440 sage: set_random_seed()
441 sage: J = random_eja()
442 sage: J.one().inverse() == J.one()
443 True
444
445 If an element has an inverse, it acts like one. TODO: this
446 can be a lot less ugly once ``is_invertible`` doesn't crash
447 on irregular elements::
448
449 sage: set_random_seed()
450 sage: J = random_eja()
451 sage: x = J.random_element()
452 sage: try:
453 ....: x.inverse()*x == J.one()
454 ....: except:
455 ....: True
456 True
457
458 """
459 if self.parent().is_associative():
460 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
461 return elt.inverse()
462
463 # TODO: we can do better once the call to is_invertible()
464 # doesn't crash on irregular elements.
465 #if not self.is_invertible():
466 # raise ValueError('element is not invertible')
467
468 # We do this a little different than the usual recursive
469 # call to a finite-dimensional algebra element, because we
470 # wind up with an inverse that lives in the subalgebra and
471 # we need information about the parent to convert it back.
472 V = self.span_of_powers()
473 assoc_subalg = self.subalgebra_generated_by()
474 # Mis-design warning: the basis used for span_of_powers()
475 # and subalgebra_generated_by() must be the same, and in
476 # the same order!
477 elt = assoc_subalg(V.coordinates(self.vector()))
478
479 # This will be in the subalgebra's coordinates...
480 fda_elt = FiniteDimensionalAlgebraElement(assoc_subalg, elt)
481 subalg_inverse = fda_elt.inverse()
482
483 # So we have to convert back...
484 basis = [ self.parent(v) for v in V.basis() ]
485 pairs = zip(subalg_inverse.vector(), basis)
486 return self.parent().linear_combination(pairs)
487
488
489 def is_invertible(self):
490 """
491 Return whether or not this element is invertible.
492
493 We can't use the superclass method because it relies on
494 the algebra being associative.
495
496 ALGORITHM:
497
498 The usual way to do this is to check if the determinant is
499 zero, but we need the characteristic polynomial for the
500 determinant. The minimal polynomial is a lot easier to get,
501 so we use Corollary 2 in Chapter V of Koecher to check
502 whether or not the paren't algebra's zero element is a root
503 of this element's minimal polynomial.
504
505 TESTS:
506
507 The identity element is always invertible::
508
509 sage: set_random_seed()
510 sage: J = random_eja()
511 sage: J.one().is_invertible()
512 True
513
514 The zero element is never invertible::
515
516 sage: set_random_seed()
517 sage: J = random_eja()
518 sage: J.zero().is_invertible()
519 False
520
521 """
522 zero = self.parent().zero()
523 p = self.minimal_polynomial()
524 return not (p(zero) == zero)
525
526
527 def is_nilpotent(self):
528 """
529 Return whether or not some power of this element is zero.
530
531 The superclass method won't work unless we're in an
532 associative algebra, and we aren't. However, we generate
533 an assocoative subalgebra and we're nilpotent there if and
534 only if we're nilpotent here (probably).
535
536 TESTS:
537
538 The identity element is never nilpotent::
539
540 sage: set_random_seed()
541 sage: random_eja().one().is_nilpotent()
542 False
543
544 The additive identity is always nilpotent::
545
546 sage: set_random_seed()
547 sage: random_eja().zero().is_nilpotent()
548 True
549
550 """
551 # The element we're going to call "is_nilpotent()" on.
552 # Either myself, interpreted as an element of a finite-
553 # dimensional algebra, or an element of an associative
554 # subalgebra.
555 elt = None
556
557 if self.parent().is_associative():
558 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
559 else:
560 V = self.span_of_powers()
561 assoc_subalg = self.subalgebra_generated_by()
562 # Mis-design warning: the basis used for span_of_powers()
563 # and subalgebra_generated_by() must be the same, and in
564 # the same order!
565 elt = assoc_subalg(V.coordinates(self.vector()))
566
567 # Recursive call, but should work since elt lives in an
568 # associative algebra.
569 return elt.is_nilpotent()
570
571
572 def is_regular(self):
573 """
574 Return whether or not this is a regular element.
575
576 EXAMPLES:
577
578 The identity element always has degree one, but any element
579 linearly-independent from it is regular::
580
581 sage: J = JordanSpinEJA(5)
582 sage: J.one().is_regular()
583 False
584 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
585 sage: for x in J.gens():
586 ....: (J.one() + x).is_regular()
587 False
588 True
589 True
590 True
591 True
592
593 """
594 return self.degree() == self.parent().rank()
595
596
597 def degree(self):
598 """
599 Compute the degree of this element the straightforward way
600 according to the definition; by appending powers to a list
601 and figuring out its dimension (that is, whether or not
602 they're linearly dependent).
603
604 EXAMPLES::
605
606 sage: J = JordanSpinEJA(4)
607 sage: J.one().degree()
608 1
609 sage: e0,e1,e2,e3 = J.gens()
610 sage: (e0 - e1).degree()
611 2
612
613 In the spin factor algebra (of rank two), all elements that
614 aren't multiples of the identity are regular::
615
616 sage: set_random_seed()
617 sage: n = ZZ.random_element(1,10)
618 sage: J = JordanSpinEJA(n)
619 sage: x = J.random_element()
620 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
621 True
622
623 """
624 return self.span_of_powers().dimension()
625
626
627 def minimal_polynomial(self):
628 """
629 ALGORITHM:
630
631 We restrict ourselves to the associative subalgebra
632 generated by this element, and then return the minimal
633 polynomial of this element's operator matrix (in that
634 subalgebra). This works by Baes Proposition 2.3.16.
635
636 EXAMPLES::
637
638 sage: set_random_seed()
639 sage: x = random_eja().random_element()
640 sage: x.degree() == x.minimal_polynomial().degree()
641 True
642
643 ::
644
645 sage: set_random_seed()
646 sage: x = random_eja().random_element()
647 sage: x.degree() == x.minimal_polynomial().degree()
648 True
649
650 The minimal polynomial and the characteristic polynomial coincide
651 and are known (see Alizadeh, Example 11.11) for all elements of
652 the spin factor algebra that aren't scalar multiples of the
653 identity::
654
655 sage: set_random_seed()
656 sage: n = ZZ.random_element(2,10)
657 sage: J = JordanSpinEJA(n)
658 sage: y = J.random_element()
659 sage: while y == y.coefficient(0)*J.one():
660 ....: y = J.random_element()
661 sage: y0 = y.vector()[0]
662 sage: y_bar = y.vector()[1:]
663 sage: actual = y.minimal_polynomial()
664 sage: x = SR.symbol('x', domain='real')
665 sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
666 sage: bool(actual == expected)
667 True
668
669 """
670 V = self.span_of_powers()
671 assoc_subalg = self.subalgebra_generated_by()
672 # Mis-design warning: the basis used for span_of_powers()
673 # and subalgebra_generated_by() must be the same, and in
674 # the same order!
675 elt = assoc_subalg(V.coordinates(self.vector()))
676 return elt.operator_matrix().minimal_polynomial()
677
678
679 def natural_representation(self):
680 """
681 Return a more-natural representation of this element.
682
683 Every finite-dimensional Euclidean Jordan Algebra is a
684 direct sum of five simple algebras, four of which comprise
685 Hermitian matrices. This method returns the original
686 "natural" representation of this element as a Hermitian
687 matrix, if it has one. If not, you get the usual representation.
688
689 EXAMPLES::
690
691 sage: J = ComplexHermitianEJA(3)
692 sage: J.one()
693 e0 + e5 + e8
694 sage: J.one().natural_representation()
695 [1 0 0 0 0 0]
696 [0 1 0 0 0 0]
697 [0 0 1 0 0 0]
698 [0 0 0 1 0 0]
699 [0 0 0 0 1 0]
700 [0 0 0 0 0 1]
701
702 ::
703
704 sage: J = QuaternionHermitianEJA(3)
705 sage: J.one()
706 e0 + e9 + e14
707 sage: J.one().natural_representation()
708 [1 0 0 0 0 0 0 0 0 0 0 0]
709 [0 1 0 0 0 0 0 0 0 0 0 0]
710 [0 0 1 0 0 0 0 0 0 0 0 0]
711 [0 0 0 1 0 0 0 0 0 0 0 0]
712 [0 0 0 0 1 0 0 0 0 0 0 0]
713 [0 0 0 0 0 1 0 0 0 0 0 0]
714 [0 0 0 0 0 0 1 0 0 0 0 0]
715 [0 0 0 0 0 0 0 1 0 0 0 0]
716 [0 0 0 0 0 0 0 0 1 0 0 0]
717 [0 0 0 0 0 0 0 0 0 1 0 0]
718 [0 0 0 0 0 0 0 0 0 0 1 0]
719 [0 0 0 0 0 0 0 0 0 0 0 1]
720
721 """
722 B = self.parent().natural_basis()
723 W = B[0].matrix_space()
724 return W.linear_combination(zip(self.vector(), B))
725
726
727 def operator_matrix(self):
728 """
729 Return the matrix that represents left- (or right-)
730 multiplication by this element in the parent algebra.
731
732 We have to override this because the superclass method
733 returns a matrix that acts on row vectors (that is, on
734 the right).
735
736 EXAMPLES:
737
738 Test the first polarization identity from my notes, Koecher Chapter
739 III, or from Baes (2.3)::
740
741 sage: set_random_seed()
742 sage: J = random_eja()
743 sage: x = J.random_element()
744 sage: y = J.random_element()
745 sage: Lx = x.operator_matrix()
746 sage: Ly = y.operator_matrix()
747 sage: Lxx = (x*x).operator_matrix()
748 sage: Lxy = (x*y).operator_matrix()
749 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
750 True
751
752 Test the second polarization identity from my notes or from
753 Baes (2.4)::
754
755 sage: set_random_seed()
756 sage: J = random_eja()
757 sage: x = J.random_element()
758 sage: y = J.random_element()
759 sage: z = J.random_element()
760 sage: Lx = x.operator_matrix()
761 sage: Ly = y.operator_matrix()
762 sage: Lz = z.operator_matrix()
763 sage: Lzy = (z*y).operator_matrix()
764 sage: Lxy = (x*y).operator_matrix()
765 sage: Lxz = (x*z).operator_matrix()
766 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
767 True
768
769 Test the third polarization identity from my notes or from
770 Baes (2.5)::
771
772 sage: set_random_seed()
773 sage: J = random_eja()
774 sage: u = J.random_element()
775 sage: y = J.random_element()
776 sage: z = J.random_element()
777 sage: Lu = u.operator_matrix()
778 sage: Ly = y.operator_matrix()
779 sage: Lz = z.operator_matrix()
780 sage: Lzy = (z*y).operator_matrix()
781 sage: Luy = (u*y).operator_matrix()
782 sage: Luz = (u*z).operator_matrix()
783 sage: Luyz = (u*(y*z)).operator_matrix()
784 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
785 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
786 sage: bool(lhs == rhs)
787 True
788
789 """
790 fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
791 return fda_elt.matrix().transpose()
792
793
794 def quadratic_representation(self, other=None):
795 """
796 Return the quadratic representation of this element.
797
798 EXAMPLES:
799
800 The explicit form in the spin factor algebra is given by
801 Alizadeh's Example 11.12::
802
803 sage: set_random_seed()
804 sage: n = ZZ.random_element(1,10)
805 sage: J = JordanSpinEJA(n)
806 sage: x = J.random_element()
807 sage: x_vec = x.vector()
808 sage: x0 = x_vec[0]
809 sage: x_bar = x_vec[1:]
810 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
811 sage: B = 2*x0*x_bar.row()
812 sage: C = 2*x0*x_bar.column()
813 sage: D = identity_matrix(QQ, n-1)
814 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
815 sage: D = D + 2*x_bar.tensor_product(x_bar)
816 sage: Q = block_matrix(2,2,[A,B,C,D])
817 sage: Q == x.quadratic_representation()
818 True
819
820 Test all of the properties from Theorem 11.2 in Alizadeh::
821
822 sage: set_random_seed()
823 sage: J = random_eja()
824 sage: x = J.random_element()
825 sage: y = J.random_element()
826
827 Property 1:
828
829 sage: actual = x.quadratic_representation(y)
830 sage: expected = ( (x+y).quadratic_representation()
831 ....: -x.quadratic_representation()
832 ....: -y.quadratic_representation() ) / 2
833 sage: actual == expected
834 True
835
836 Property 2:
837
838 sage: alpha = QQ.random_element()
839 sage: actual = (alpha*x).quadratic_representation()
840 sage: expected = (alpha^2)*x.quadratic_representation()
841 sage: actual == expected
842 True
843
844 Property 5:
845
846 sage: Qy = y.quadratic_representation()
847 sage: actual = J(Qy*x.vector()).quadratic_representation()
848 sage: expected = Qy*x.quadratic_representation()*Qy
849 sage: actual == expected
850 True
851
852 Property 6:
853
854 sage: k = ZZ.random_element(1,10)
855 sage: actual = (x^k).quadratic_representation()
856 sage: expected = (x.quadratic_representation())^k
857 sage: actual == expected
858 True
859
860 """
861 if other is None:
862 other=self
863 elif not other in self.parent():
864 raise TypeError("'other' must live in the same algebra")
865
866 L = self.operator_matrix()
867 M = other.operator_matrix()
868 return ( L*M + M*L - (self*other).operator_matrix() )
869
870
871 def span_of_powers(self):
872 """
873 Return the vector space spanned by successive powers of
874 this element.
875 """
876 # The dimension of the subalgebra can't be greater than
877 # the big algebra, so just put everything into a list
878 # and let span() get rid of the excess.
879 #
880 # We do the extra ambient_vector_space() in case we're messing
881 # with polynomials and the direct parent is a module.
882 V = self.vector().parent().ambient_vector_space()
883 return V.span( (self**d).vector() for d in xrange(V.dimension()) )
884
885
886 def subalgebra_generated_by(self):
887 """
888 Return the associative subalgebra of the parent EJA generated
889 by this element.
890
891 TESTS::
892
893 sage: set_random_seed()
894 sage: x = random_eja().random_element()
895 sage: x.subalgebra_generated_by().is_associative()
896 True
897
898 Squaring in the subalgebra should be the same thing as
899 squaring in the superalgebra::
900
901 sage: set_random_seed()
902 sage: x = random_eja().random_element()
903 sage: u = x.subalgebra_generated_by().random_element()
904 sage: u.operator_matrix()*u.vector() == (u**2).vector()
905 True
906
907 """
908 # First get the subspace spanned by the powers of myself...
909 V = self.span_of_powers()
910 F = self.base_ring()
911
912 # Now figure out the entries of the right-multiplication
913 # matrix for the successive basis elements b0, b1,... of
914 # that subspace.
915 mats = []
916 for b_right in V.basis():
917 eja_b_right = self.parent()(b_right)
918 b_right_rows = []
919 # The first row of the right-multiplication matrix by
920 # b1 is what we get if we apply that matrix to b1. The
921 # second row of the right multiplication matrix by b1
922 # is what we get when we apply that matrix to b2...
923 #
924 # IMPORTANT: this assumes that all vectors are COLUMN
925 # vectors, unlike our superclass (which uses row vectors).
926 for b_left in V.basis():
927 eja_b_left = self.parent()(b_left)
928 # Multiply in the original EJA, but then get the
929 # coordinates from the subalgebra in terms of its
930 # basis.
931 this_row = V.coordinates((eja_b_left*eja_b_right).vector())
932 b_right_rows.append(this_row)
933 b_right_matrix = matrix(F, b_right_rows)
934 mats.append(b_right_matrix)
935
936 # It's an algebra of polynomials in one element, and EJAs
937 # are power-associative.
938 #
939 # TODO: choose generator names intelligently.
940 return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
941
942
943 def subalgebra_idempotent(self):
944 """
945 Find an idempotent in the associative subalgebra I generate
946 using Proposition 2.3.5 in Baes.
947
948 TESTS::
949
950 sage: set_random_seed()
951 sage: J = RealCartesianProductEJA(5)
952 sage: c = J.random_element().subalgebra_idempotent()
953 sage: c^2 == c
954 True
955 sage: J = JordanSpinEJA(5)
956 sage: c = J.random_element().subalgebra_idempotent()
957 sage: c^2 == c
958 True
959
960 """
961 if self.is_nilpotent():
962 raise ValueError("this only works with non-nilpotent elements!")
963
964 V = self.span_of_powers()
965 J = self.subalgebra_generated_by()
966 # Mis-design warning: the basis used for span_of_powers()
967 # and subalgebra_generated_by() must be the same, and in
968 # the same order!
969 u = J(V.coordinates(self.vector()))
970
971 # The image of the matrix of left-u^m-multiplication
972 # will be minimal for some natural number s...
973 s = 0
974 minimal_dim = V.dimension()
975 for i in xrange(1, V.dimension()):
976 this_dim = (u**i).operator_matrix().image().dimension()
977 if this_dim < minimal_dim:
978 minimal_dim = this_dim
979 s = i
980
981 # Now minimal_matrix should correspond to the smallest
982 # non-zero subspace in Baes's (or really, Koecher's)
983 # proposition.
984 #
985 # However, we need to restrict the matrix to work on the
986 # subspace... or do we? Can't we just solve, knowing that
987 # A(c) = u^(s+1) should have a solution in the big space,
988 # too?
989 #
990 # Beware, solve_right() means that we're using COLUMN vectors.
991 # Our FiniteDimensionalAlgebraElement superclass uses rows.
992 u_next = u**(s+1)
993 A = u_next.operator_matrix()
994 c_coordinates = A.solve_right(u_next.vector())
995
996 # Now c_coordinates is the idempotent we want, but it's in
997 # the coordinate system of the subalgebra.
998 #
999 # We need the basis for J, but as elements of the parent algebra.
1000 #
1001 basis = [self.parent(v) for v in V.basis()]
1002 return self.parent().linear_combination(zip(c_coordinates, basis))
1003
1004
1005 def trace(self):
1006 """
1007 Return my trace, the sum of my eigenvalues.
1008
1009 EXAMPLES::
1010
1011 sage: J = JordanSpinEJA(3)
1012 sage: e0,e1,e2 = J.gens()
1013 sage: x = e0 + e1 + e2
1014 sage: x.trace()
1015 2
1016
1017 """
1018 cs = self.characteristic_polynomial().coefficients(sparse=False)
1019 if len(cs) >= 2:
1020 return -1*cs[-2]
1021 else:
1022 raise ValueError('charpoly had fewer than 2 coefficients')
1023
1024
1025 def trace_inner_product(self, other):
1026 """
1027 Return the trace inner product of myself and ``other``.
1028 """
1029 if not other in self.parent():
1030 raise TypeError("'other' must live in the same algebra")
1031
1032 return (self*other).trace()
1033
1034
1035 class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
1036 """
1037 Return the Euclidean Jordan Algebra corresponding to the set
1038 `R^n` under the Hadamard product.
1039
1040 Note: this is nothing more than the Cartesian product of ``n``
1041 copies of the spin algebra. Once Cartesian product algebras
1042 are implemented, this can go.
1043
1044 EXAMPLES:
1045
1046 This multiplication table can be verified by hand::
1047
1048 sage: J = RealCartesianProductEJA(3)
1049 sage: e0,e1,e2 = J.gens()
1050 sage: e0*e0
1051 e0
1052 sage: e0*e1
1053 0
1054 sage: e0*e2
1055 0
1056 sage: e1*e1
1057 e1
1058 sage: e1*e2
1059 0
1060 sage: e2*e2
1061 e2
1062
1063 """
1064 @staticmethod
1065 def __classcall_private__(cls, n, field=QQ):
1066 # The FiniteDimensionalAlgebra constructor takes a list of
1067 # matrices, the ith representing right multiplication by the ith
1068 # basis element in the vector space. So if e_1 = (1,0,0), then
1069 # right (Hadamard) multiplication of x by e_1 picks out the first
1070 # component of x; and likewise for the ith basis element e_i.
1071 Qs = [ matrix(field, n, n, lambda k,j: 1*(k == j == i))
1072 for i in xrange(n) ]
1073
1074 fdeja = super(RealCartesianProductEJA, cls)
1075 return fdeja.__classcall_private__(cls, field, Qs, rank=n)
1076
1077 def inner_product(self, x, y):
1078 return _usual_ip(x,y)
1079
1080
1081 def random_eja():
1082 """
1083 Return a "random" finite-dimensional Euclidean Jordan Algebra.
1084
1085 ALGORITHM:
1086
1087 For now, we choose a random natural number ``n`` (greater than zero)
1088 and then give you back one of the following:
1089
1090 * The cartesian product of the rational numbers ``n`` times; this is
1091 ``QQ^n`` with the Hadamard product.
1092
1093 * The Jordan spin algebra on ``QQ^n``.
1094
1095 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
1096 product.
1097
1098 * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
1099 in the space of ``2n``-by-``2n`` real symmetric matrices.
1100
1101 * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
1102 in the space of ``4n``-by-``4n`` real symmetric matrices.
1103
1104 Later this might be extended to return Cartesian products of the
1105 EJAs above.
1106
1107 TESTS::
1108
1109 sage: random_eja()
1110 Euclidean Jordan algebra of degree...
1111
1112 """
1113 n = ZZ.random_element(1,5)
1114 constructor = choice([RealCartesianProductEJA,
1115 JordanSpinEJA,
1116 RealSymmetricEJA,
1117 ComplexHermitianEJA,
1118 QuaternionHermitianEJA])
1119 return constructor(n, field=QQ)
1120
1121
1122
1123 def _real_symmetric_basis(n, field=QQ):
1124 """
1125 Return a basis for the space of real symmetric n-by-n matrices.
1126 """
1127 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1128 # coordinates.
1129 S = []
1130 for i in xrange(n):
1131 for j in xrange(i+1):
1132 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1133 if i == j:
1134 Sij = Eij
1135 else:
1136 # Beware, orthogonal but not normalized!
1137 Sij = Eij + Eij.transpose()
1138 S.append(Sij)
1139 return tuple(S)
1140
1141
1142 def _complex_hermitian_basis(n, field=QQ):
1143 """
1144 Returns a basis for the space of complex Hermitian n-by-n matrices.
1145
1146 TESTS::
1147
1148 sage: set_random_seed()
1149 sage: n = ZZ.random_element(1,5)
1150 sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
1151 True
1152
1153 """
1154 F = QuadraticField(-1, 'I')
1155 I = F.gen()
1156
1157 # This is like the symmetric case, but we need to be careful:
1158 #
1159 # * We want conjugate-symmetry, not just symmetry.
1160 # * The diagonal will (as a result) be real.
1161 #
1162 S = []
1163 for i in xrange(n):
1164 for j in xrange(i+1):
1165 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1166 if i == j:
1167 Sij = _embed_complex_matrix(Eij)
1168 S.append(Sij)
1169 else:
1170 # Beware, orthogonal but not normalized! The second one
1171 # has a minus because it's conjugated.
1172 Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
1173 S.append(Sij_real)
1174 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
1175 S.append(Sij_imag)
1176 return tuple(S)
1177
1178
1179 def _quaternion_hermitian_basis(n, field=QQ):
1180 """
1181 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1182
1183 TESTS::
1184
1185 sage: set_random_seed()
1186 sage: n = ZZ.random_element(1,5)
1187 sage: all( M.is_symmetric() for M in _quaternion_hermitian_basis(n) )
1188 True
1189
1190 """
1191 Q = QuaternionAlgebra(QQ,-1,-1)
1192 I,J,K = Q.gens()
1193
1194 # This is like the symmetric case, but we need to be careful:
1195 #
1196 # * We want conjugate-symmetry, not just symmetry.
1197 # * The diagonal will (as a result) be real.
1198 #
1199 S = []
1200 for i in xrange(n):
1201 for j in xrange(i+1):
1202 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1203 if i == j:
1204 Sij = _embed_quaternion_matrix(Eij)
1205 S.append(Sij)
1206 else:
1207 # Beware, orthogonal but not normalized! The second,
1208 # third, and fourth ones have a minus because they're
1209 # conjugated.
1210 Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
1211 S.append(Sij_real)
1212 Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
1213 S.append(Sij_I)
1214 Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
1215 S.append(Sij_J)
1216 Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
1217 S.append(Sij_K)
1218 return tuple(S)
1219
1220
1221 def _mat2vec(m):
1222 return vector(m.base_ring(), m.list())
1223
1224 def _vec2mat(v):
1225 return matrix(v.base_ring(), sqrt(v.degree()), v.list())
1226
1227 def _multiplication_table_from_matrix_basis(basis):
1228 """
1229 At least three of the five simple Euclidean Jordan algebras have the
1230 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1231 multiplication on the right is matrix multiplication. Given a basis
1232 for the underlying matrix space, this function returns a
1233 multiplication table (obtained by looping through the basis
1234 elements) for an algebra of those matrices. A reordered copy
1235 of the basis is also returned to work around the fact that
1236 the ``span()`` in this function will change the order of the basis
1237 from what we think it is, to... something else.
1238 """
1239 # In S^2, for example, we nominally have four coordinates even
1240 # though the space is of dimension three only. The vector space V
1241 # is supposed to hold the entire long vector, and the subspace W
1242 # of V will be spanned by the vectors that arise from symmetric
1243 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1244 field = basis[0].base_ring()
1245 dimension = basis[0].nrows()
1246
1247 V = VectorSpace(field, dimension**2)
1248 W = V.span( _mat2vec(s) for s in basis )
1249
1250 # Taking the span above reorders our basis (thanks, jerk!) so we
1251 # need to put our "matrix basis" in the same order as the
1252 # (reordered) vector basis.
1253 S = tuple( _vec2mat(b) for b in W.basis() )
1254
1255 Qs = []
1256 for s in S:
1257 # Brute force the multiplication-by-s matrix by looping
1258 # through all elements of the basis and doing the computation
1259 # to find out what the corresponding row should be. BEWARE:
1260 # these multiplication tables won't be symmetric! It therefore
1261 # becomes REALLY IMPORTANT that the underlying algebra
1262 # constructor uses ROW vectors and not COLUMN vectors. That's
1263 # why we're computing rows here and not columns.
1264 Q_rows = []
1265 for t in S:
1266 this_row = _mat2vec((s*t + t*s)/2)
1267 Q_rows.append(W.coordinates(this_row))
1268 Q = matrix(field, W.dimension(), Q_rows)
1269 Qs.append(Q)
1270
1271 return (Qs, S)
1272
1273
1274 def _embed_complex_matrix(M):
1275 """
1276 Embed the n-by-n complex matrix ``M`` into the space of real
1277 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1278 bi` to the block matrix ``[[a,b],[-b,a]]``.
1279
1280 EXAMPLES::
1281
1282 sage: F = QuadraticField(-1,'i')
1283 sage: x1 = F(4 - 2*i)
1284 sage: x2 = F(1 + 2*i)
1285 sage: x3 = F(-i)
1286 sage: x4 = F(6)
1287 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1288 sage: _embed_complex_matrix(M)
1289 [ 4 -2| 1 2]
1290 [ 2 4|-2 1]
1291 [-----+-----]
1292 [ 0 -1| 6 0]
1293 [ 1 0| 0 6]
1294
1295 TESTS:
1296
1297 Embedding is a homomorphism (isomorphism, in fact)::
1298
1299 sage: set_random_seed()
1300 sage: n = ZZ.random_element(5)
1301 sage: F = QuadraticField(-1, 'i')
1302 sage: X = random_matrix(F, n)
1303 sage: Y = random_matrix(F, n)
1304 sage: actual = _embed_complex_matrix(X) * _embed_complex_matrix(Y)
1305 sage: expected = _embed_complex_matrix(X*Y)
1306 sage: actual == expected
1307 True
1308
1309 """
1310 n = M.nrows()
1311 if M.ncols() != n:
1312 raise ValueError("the matrix 'M' must be square")
1313 field = M.base_ring()
1314 blocks = []
1315 for z in M.list():
1316 a = z.real()
1317 b = z.imag()
1318 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1319
1320 # We can drop the imaginaries here.
1321 return block_matrix(field.base_ring(), n, blocks)
1322
1323
1324 def _unembed_complex_matrix(M):
1325 """
1326 The inverse of _embed_complex_matrix().
1327
1328 EXAMPLES::
1329
1330 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1331 ....: [-2, 1, -4, 3],
1332 ....: [ 9, 10, 11, 12],
1333 ....: [-10, 9, -12, 11] ])
1334 sage: _unembed_complex_matrix(A)
1335 [ 2*i + 1 4*i + 3]
1336 [ 10*i + 9 12*i + 11]
1337
1338 TESTS:
1339
1340 Unembedding is the inverse of embedding::
1341
1342 sage: set_random_seed()
1343 sage: F = QuadraticField(-1, 'i')
1344 sage: M = random_matrix(F, 3)
1345 sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
1346 True
1347
1348 """
1349 n = ZZ(M.nrows())
1350 if M.ncols() != n:
1351 raise ValueError("the matrix 'M' must be square")
1352 if not n.mod(2).is_zero():
1353 raise ValueError("the matrix 'M' must be a complex embedding")
1354
1355 F = QuadraticField(-1, 'i')
1356 i = F.gen()
1357
1358 # Go top-left to bottom-right (reading order), converting every
1359 # 2-by-2 block we see to a single complex element.
1360 elements = []
1361 for k in xrange(n/2):
1362 for j in xrange(n/2):
1363 submat = M[2*k:2*k+2,2*j:2*j+2]
1364 if submat[0,0] != submat[1,1]:
1365 raise ValueError('bad on-diagonal submatrix')
1366 if submat[0,1] != -submat[1,0]:
1367 raise ValueError('bad off-diagonal submatrix')
1368 z = submat[0,0] + submat[0,1]*i
1369 elements.append(z)
1370
1371 return matrix(F, n/2, elements)
1372
1373
1374 def _embed_quaternion_matrix(M):
1375 """
1376 Embed the n-by-n quaternion matrix ``M`` into the space of real
1377 matrices of size 4n-by-4n by first sending each quaternion entry
1378 `z = a + bi + cj + dk` to the block-complex matrix
1379 ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
1380 a real matrix.
1381
1382 EXAMPLES::
1383
1384 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1385 sage: i,j,k = Q.gens()
1386 sage: x = 1 + 2*i + 3*j + 4*k
1387 sage: M = matrix(Q, 1, [[x]])
1388 sage: _embed_quaternion_matrix(M)
1389 [ 1 2 3 4]
1390 [-2 1 -4 3]
1391 [-3 4 1 -2]
1392 [-4 -3 2 1]
1393
1394 Embedding is a homomorphism (isomorphism, in fact)::
1395
1396 sage: set_random_seed()
1397 sage: n = ZZ.random_element(5)
1398 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1399 sage: X = random_matrix(Q, n)
1400 sage: Y = random_matrix(Q, n)
1401 sage: actual = _embed_quaternion_matrix(X)*_embed_quaternion_matrix(Y)
1402 sage: expected = _embed_quaternion_matrix(X*Y)
1403 sage: actual == expected
1404 True
1405
1406 """
1407 quaternions = M.base_ring()
1408 n = M.nrows()
1409 if M.ncols() != n:
1410 raise ValueError("the matrix 'M' must be square")
1411
1412 F = QuadraticField(-1, 'i')
1413 i = F.gen()
1414
1415 blocks = []
1416 for z in M.list():
1417 t = z.coefficient_tuple()
1418 a = t[0]
1419 b = t[1]
1420 c = t[2]
1421 d = t[3]
1422 cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
1423 [-c + d*i, a - b*i]])
1424 blocks.append(_embed_complex_matrix(cplx_matrix))
1425
1426 # We should have real entries by now, so use the realest field
1427 # we've got for the return value.
1428 return block_matrix(quaternions.base_ring(), n, blocks)
1429
1430
1431 def _unembed_quaternion_matrix(M):
1432 """
1433 The inverse of _embed_quaternion_matrix().
1434
1435 EXAMPLES::
1436
1437 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1438 ....: [-2, 1, -4, 3],
1439 ....: [-3, 4, 1, -2],
1440 ....: [-4, -3, 2, 1]])
1441 sage: _unembed_quaternion_matrix(M)
1442 [1 + 2*i + 3*j + 4*k]
1443
1444 TESTS:
1445
1446 Unembedding is the inverse of embedding::
1447
1448 sage: set_random_seed()
1449 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1450 sage: M = random_matrix(Q, 3)
1451 sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
1452 True
1453
1454 """
1455 n = ZZ(M.nrows())
1456 if M.ncols() != n:
1457 raise ValueError("the matrix 'M' must be square")
1458 if not n.mod(4).is_zero():
1459 raise ValueError("the matrix 'M' must be a complex embedding")
1460
1461 Q = QuaternionAlgebra(QQ,-1,-1)
1462 i,j,k = Q.gens()
1463
1464 # Go top-left to bottom-right (reading order), converting every
1465 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1466 # quaternion block.
1467 elements = []
1468 for l in xrange(n/4):
1469 for m in xrange(n/4):
1470 submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
1471 if submat[0,0] != submat[1,1].conjugate():
1472 raise ValueError('bad on-diagonal submatrix')
1473 if submat[0,1] != -submat[1,0].conjugate():
1474 raise ValueError('bad off-diagonal submatrix')
1475 z = submat[0,0].real() + submat[0,0].imag()*i
1476 z += submat[0,1].real()*j + submat[0,1].imag()*k
1477 elements.append(z)
1478
1479 return matrix(Q, n/4, elements)
1480
1481
1482 # The usual inner product on R^n.
1483 def _usual_ip(x,y):
1484 return x.vector().inner_product(y.vector())
1485
1486 # The inner product used for the real symmetric simple EJA.
1487 # We keep it as a separate function because e.g. the complex
1488 # algebra uses the same inner product, except divided by 2.
1489 def _matrix_ip(X,Y):
1490 X_mat = X.natural_representation()
1491 Y_mat = Y.natural_representation()
1492 return (X_mat*Y_mat).trace()
1493
1494
1495 class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
1496 """
1497 The rank-n simple EJA consisting of real symmetric n-by-n
1498 matrices, the usual symmetric Jordan product, and the trace inner
1499 product. It has dimension `(n^2 + n)/2` over the reals.
1500
1501 EXAMPLES::
1502
1503 sage: J = RealSymmetricEJA(2)
1504 sage: e0, e1, e2 = J.gens()
1505 sage: e0*e0
1506 e0
1507 sage: e1*e1
1508 e0 + e2
1509 sage: e2*e2
1510 e2
1511
1512 TESTS:
1513
1514 The degree of this algebra is `(n^2 + n) / 2`::
1515
1516 sage: set_random_seed()
1517 sage: n = ZZ.random_element(1,5)
1518 sage: J = RealSymmetricEJA(n)
1519 sage: J.degree() == (n^2 + n)/2
1520 True
1521
1522 The Jordan multiplication is what we think it is::
1523
1524 sage: set_random_seed()
1525 sage: n = ZZ.random_element(1,5)
1526 sage: J = RealSymmetricEJA(n)
1527 sage: x = J.random_element()
1528 sage: y = J.random_element()
1529 sage: actual = (x*y).natural_representation()
1530 sage: X = x.natural_representation()
1531 sage: Y = y.natural_representation()
1532 sage: expected = (X*Y + Y*X)/2
1533 sage: actual == expected
1534 True
1535 sage: J(expected) == x*y
1536 True
1537
1538 """
1539 @staticmethod
1540 def __classcall_private__(cls, n, field=QQ):
1541 S = _real_symmetric_basis(n, field=field)
1542 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1543
1544 fdeja = super(RealSymmetricEJA, cls)
1545 return fdeja.__classcall_private__(cls,
1546 field,
1547 Qs,
1548 rank=n,
1549 natural_basis=T)
1550
1551 def inner_product(self, x, y):
1552 return _matrix_ip(x,y)
1553
1554
1555 class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
1556 """
1557 The rank-n simple EJA consisting of complex Hermitian n-by-n
1558 matrices over the real numbers, the usual symmetric Jordan product,
1559 and the real-part-of-trace inner product. It has dimension `n^2` over
1560 the reals.
1561
1562 TESTS:
1563
1564 The degree of this algebra is `n^2`::
1565
1566 sage: set_random_seed()
1567 sage: n = ZZ.random_element(1,5)
1568 sage: J = ComplexHermitianEJA(n)
1569 sage: J.degree() == n^2
1570 True
1571
1572 The Jordan multiplication is what we think it is::
1573
1574 sage: set_random_seed()
1575 sage: n = ZZ.random_element(1,5)
1576 sage: J = ComplexHermitianEJA(n)
1577 sage: x = J.random_element()
1578 sage: y = J.random_element()
1579 sage: actual = (x*y).natural_representation()
1580 sage: X = x.natural_representation()
1581 sage: Y = y.natural_representation()
1582 sage: expected = (X*Y + Y*X)/2
1583 sage: actual == expected
1584 True
1585 sage: J(expected) == x*y
1586 True
1587
1588 """
1589 @staticmethod
1590 def __classcall_private__(cls, n, field=QQ):
1591 S = _complex_hermitian_basis(n)
1592 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1593
1594 fdeja = super(ComplexHermitianEJA, cls)
1595 return fdeja.__classcall_private__(cls,
1596 field,
1597 Qs,
1598 rank=n,
1599 natural_basis=T)
1600
1601 def inner_product(self, x, y):
1602 # Since a+bi on the diagonal is represented as
1603 #
1604 # a + bi = [ a b ]
1605 # [ -b a ],
1606 #
1607 # we'll double-count the "a" entries if we take the trace of
1608 # the embedding.
1609 return _matrix_ip(x,y)/2
1610
1611
1612 class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
1613 """
1614 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1615 matrices, the usual symmetric Jordan product, and the
1616 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1617 the reals.
1618
1619 TESTS:
1620
1621 The degree of this algebra is `n^2`::
1622
1623 sage: set_random_seed()
1624 sage: n = ZZ.random_element(1,5)
1625 sage: J = QuaternionHermitianEJA(n)
1626 sage: J.degree() == 2*(n^2) - n
1627 True
1628
1629 The Jordan multiplication is what we think it is::
1630
1631 sage: set_random_seed()
1632 sage: n = ZZ.random_element(1,5)
1633 sage: J = QuaternionHermitianEJA(n)
1634 sage: x = J.random_element()
1635 sage: y = J.random_element()
1636 sage: actual = (x*y).natural_representation()
1637 sage: X = x.natural_representation()
1638 sage: Y = y.natural_representation()
1639 sage: expected = (X*Y + Y*X)/2
1640 sage: actual == expected
1641 True
1642 sage: J(expected) == x*y
1643 True
1644
1645 """
1646 @staticmethod
1647 def __classcall_private__(cls, n, field=QQ):
1648 S = _quaternion_hermitian_basis(n)
1649 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1650
1651 fdeja = super(QuaternionHermitianEJA, cls)
1652 return fdeja.__classcall_private__(cls,
1653 field,
1654 Qs,
1655 rank=n,
1656 natural_basis=T)
1657
1658 def inner_product(self, x, y):
1659 # Since a+bi+cj+dk on the diagonal is represented as
1660 #
1661 # a + bi +cj + dk = [ a b c d]
1662 # [ -b a -d c]
1663 # [ -c d a -b]
1664 # [ -d -c b a],
1665 #
1666 # we'll quadruple-count the "a" entries if we take the trace of
1667 # the embedding.
1668 return _matrix_ip(x,y)/4
1669
1670
1671 class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
1672 """
1673 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1674 with the usual inner product and jordan product ``x*y =
1675 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1676 the reals.
1677
1678 EXAMPLES:
1679
1680 This multiplication table can be verified by hand::
1681
1682 sage: J = JordanSpinEJA(4)
1683 sage: e0,e1,e2,e3 = J.gens()
1684 sage: e0*e0
1685 e0
1686 sage: e0*e1
1687 e1
1688 sage: e0*e2
1689 e2
1690 sage: e0*e3
1691 e3
1692 sage: e1*e2
1693 0
1694 sage: e1*e3
1695 0
1696 sage: e2*e3
1697 0
1698
1699 """
1700 @staticmethod
1701 def __classcall_private__(cls, n, field=QQ):
1702 Qs = []
1703 id_matrix = identity_matrix(field, n)
1704 for i in xrange(n):
1705 ei = id_matrix.column(i)
1706 Qi = zero_matrix(field, n)
1707 Qi.set_row(0, ei)
1708 Qi.set_column(0, ei)
1709 Qi += diagonal_matrix(n, [ei[0]]*n)
1710 # The addition of the diagonal matrix adds an extra ei[0] in the
1711 # upper-left corner of the matrix.
1712 Qi[0,0] = Qi[0,0] * ~field(2)
1713 Qs.append(Qi)
1714
1715 # The rank of the spin algebra is two, unless we're in a
1716 # one-dimensional ambient space (because the rank is bounded by
1717 # the ambient dimension).
1718 fdeja = super(JordanSpinEJA, cls)
1719 return fdeja.__classcall_private__(cls, field, Qs, rank=min(n,2))
1720
1721 def inner_product(self, x, y):
1722 return _usual_ip(x,y)