]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/euclidean_jordan_algebra.py
eja: add two more tests to ensure the Jordan product is correct.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.categories.magmatic_algebras import MagmaticAlgebras
9 from sage.structure.element import is_Matrix
10 from sage.structure.category_object import normalize_names
11
12 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
13 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
14
15 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
16 @staticmethod
17 def __classcall_private__(cls,
18 field,
19 mult_table,
20 names='e',
21 assume_associative=False,
22 category=None,
23 rank=None,
24 natural_basis=None,
25 inner_product=None):
26 n = len(mult_table)
27 mult_table = [b.base_extend(field) for b in mult_table]
28 for b in mult_table:
29 b.set_immutable()
30 if not (is_Matrix(b) and b.dimensions() == (n, n)):
31 raise ValueError("input is not a multiplication table")
32 mult_table = tuple(mult_table)
33
34 cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
35 cat.or_subcategory(category)
36 if assume_associative:
37 cat = cat.Associative()
38
39 names = normalize_names(n, names)
40
41 fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
42 return fda.__classcall__(cls,
43 field,
44 mult_table,
45 assume_associative=assume_associative,
46 names=names,
47 category=cat,
48 rank=rank,
49 natural_basis=natural_basis,
50 inner_product=inner_product)
51
52
53 def __init__(self, field,
54 mult_table,
55 names='e',
56 assume_associative=False,
57 category=None,
58 rank=None,
59 natural_basis=None,
60 inner_product=None):
61 """
62 EXAMPLES:
63
64 By definition, Jordan multiplication commutes::
65
66 sage: set_random_seed()
67 sage: J = random_eja()
68 sage: x = J.random_element()
69 sage: y = J.random_element()
70 sage: x*y == y*x
71 True
72
73 """
74 self._rank = rank
75 self._natural_basis = natural_basis
76 self._inner_product = inner_product
77 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
78 fda.__init__(field,
79 mult_table,
80 names=names,
81 category=category)
82
83
84 def _repr_(self):
85 """
86 Return a string representation of ``self``.
87 """
88 fmt = "Euclidean Jordan algebra of degree {} over {}"
89 return fmt.format(self.degree(), self.base_ring())
90
91
92 def inner_product(self, x, y):
93 """
94 The inner product associated with this Euclidean Jordan algebra.
95
96 Will default to the trace inner product if nothing else.
97
98 EXAMPLES:
99
100 The inner product must satisfy its axiom for this algebra to truly
101 be a Euclidean Jordan Algebra::
102
103 sage: set_random_seed()
104 sage: J = random_eja()
105 sage: x = J.random_element()
106 sage: y = J.random_element()
107 sage: z = J.random_element()
108 sage: (x*y).inner_product(z) == y.inner_product(x*z)
109 True
110
111 """
112 if (not x in self) or (not y in self):
113 raise TypeError("arguments must live in this algebra")
114 if self._inner_product is None:
115 return x.trace_inner_product(y)
116 else:
117 return self._inner_product(x,y)
118
119
120 def natural_basis(self):
121 """
122 Return a more-natural representation of this algebra's basis.
123
124 Every finite-dimensional Euclidean Jordan Algebra is a direct
125 sum of five simple algebras, four of which comprise Hermitian
126 matrices. This method returns the original "natural" basis
127 for our underlying vector space. (Typically, the natural basis
128 is used to construct the multiplication table in the first place.)
129
130 Note that this will always return a matrix. The standard basis
131 in `R^n` will be returned as `n`-by-`1` column matrices.
132
133 EXAMPLES::
134
135 sage: J = RealSymmetricSimpleEJA(2)
136 sage: J.basis()
137 Family (e0, e1, e2)
138 sage: J.natural_basis()
139 (
140 [1 0] [0 1] [0 0]
141 [0 0], [1 0], [0 1]
142 )
143
144 ::
145
146 sage: J = JordanSpinSimpleEJA(2)
147 sage: J.basis()
148 Family (e0, e1)
149 sage: J.natural_basis()
150 (
151 [1] [0]
152 [0], [1]
153 )
154
155 """
156 if self._natural_basis is None:
157 return tuple( b.vector().column() for b in self.basis() )
158 else:
159 return self._natural_basis
160
161
162 def rank(self):
163 """
164 Return the rank of this EJA.
165 """
166 if self._rank is None:
167 raise ValueError("no rank specified at genesis")
168 else:
169 return self._rank
170
171
172 class Element(FiniteDimensionalAlgebraElement):
173 """
174 An element of a Euclidean Jordan algebra.
175 """
176
177 def __init__(self, A, elt=None):
178 """
179 EXAMPLES:
180
181 The identity in `S^n` is converted to the identity in the EJA::
182
183 sage: J = RealSymmetricSimpleEJA(3)
184 sage: I = identity_matrix(QQ,3)
185 sage: J(I) == J.one()
186 True
187
188 This skew-symmetric matrix can't be represented in the EJA::
189
190 sage: J = RealSymmetricSimpleEJA(3)
191 sage: A = matrix(QQ,3, lambda i,j: i-j)
192 sage: J(A)
193 Traceback (most recent call last):
194 ...
195 ArithmeticError: vector is not in free module
196
197 """
198 # Goal: if we're given a matrix, and if it lives in our
199 # parent algebra's "natural ambient space," convert it
200 # into an algebra element.
201 #
202 # The catch is, we make a recursive call after converting
203 # the given matrix into a vector that lives in the algebra.
204 # This we need to try the parent class initializer first,
205 # to avoid recursing forever if we're given something that
206 # already fits into the algebra, but also happens to live
207 # in the parent's "natural ambient space" (this happens with
208 # vectors in R^n).
209 try:
210 FiniteDimensionalAlgebraElement.__init__(self, A, elt)
211 except ValueError:
212 natural_basis = A.natural_basis()
213 if elt in natural_basis[0].matrix_space():
214 # Thanks for nothing! Matrix spaces aren't vector
215 # spaces in Sage, so we have to figure out its
216 # natural-basis coordinates ourselves.
217 V = VectorSpace(elt.base_ring(), elt.nrows()**2)
218 W = V.span( _mat2vec(s) for s in natural_basis )
219 coords = W.coordinates(_mat2vec(elt))
220 FiniteDimensionalAlgebraElement.__init__(self, A, coords)
221
222 def __pow__(self, n):
223 """
224 Return ``self`` raised to the power ``n``.
225
226 Jordan algebras are always power-associative; see for
227 example Faraut and Koranyi, Proposition II.1.2 (ii).
228
229 .. WARNING:
230
231 We have to override this because our superclass uses row vectors
232 instead of column vectors! We, on the other hand, assume column
233 vectors everywhere.
234
235 EXAMPLES::
236
237 sage: set_random_seed()
238 sage: x = random_eja().random_element()
239 sage: x.operator_matrix()*x.vector() == (x^2).vector()
240 True
241
242 A few examples of power-associativity::
243
244 sage: set_random_seed()
245 sage: x = random_eja().random_element()
246 sage: x*(x*x)*(x*x) == x^5
247 True
248 sage: (x*x)*(x*x*x) == x^5
249 True
250
251 We also know that powers operator-commute (Koecher, Chapter
252 III, Corollary 1)::
253
254 sage: set_random_seed()
255 sage: x = random_eja().random_element()
256 sage: m = ZZ.random_element(0,10)
257 sage: n = ZZ.random_element(0,10)
258 sage: Lxm = (x^m).operator_matrix()
259 sage: Lxn = (x^n).operator_matrix()
260 sage: Lxm*Lxn == Lxn*Lxm
261 True
262
263 """
264 A = self.parent()
265 if n == 0:
266 return A.one()
267 elif n == 1:
268 return self
269 else:
270 return A( (self.operator_matrix()**(n-1))*self.vector() )
271
272
273 def characteristic_polynomial(self):
274 """
275 Return my characteristic polynomial (if I'm a regular
276 element).
277
278 Eventually this should be implemented in terms of the parent
279 algebra's characteristic polynomial that works for ALL
280 elements.
281 """
282 if self.is_regular():
283 return self.minimal_polynomial()
284 else:
285 raise NotImplementedError('irregular element')
286
287
288 def inner_product(self, other):
289 """
290 Return the parent algebra's inner product of myself and ``other``.
291
292 EXAMPLES:
293
294 The inner product in the Jordan spin algebra is the usual
295 inner product on `R^n` (this example only works because the
296 basis for the Jordan algebra is the standard basis in `R^n`)::
297
298 sage: J = JordanSpinSimpleEJA(3)
299 sage: x = vector(QQ,[1,2,3])
300 sage: y = vector(QQ,[4,5,6])
301 sage: x.inner_product(y)
302 32
303 sage: J(x).inner_product(J(y))
304 32
305
306 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
307 multiplication is the usual matrix multiplication in `S^n`,
308 so the inner product of the identity matrix with itself
309 should be the `n`::
310
311 sage: J = RealSymmetricSimpleEJA(3)
312 sage: J.one().inner_product(J.one())
313 3
314
315 Likewise, the inner product on `C^n` is `<X,Y> =
316 Re(trace(X*Y))`, where we must necessarily take the real
317 part because the product of Hermitian matrices may not be
318 Hermitian::
319
320 sage: J = ComplexHermitianSimpleEJA(3)
321 sage: J.one().inner_product(J.one())
322 3
323
324 TESTS:
325
326 Ensure that we can always compute an inner product, and that
327 it gives us back a real number::
328
329 sage: set_random_seed()
330 sage: J = random_eja()
331 sage: x = J.random_element()
332 sage: y = J.random_element()
333 sage: x.inner_product(y) in RR
334 True
335
336 """
337 P = self.parent()
338 if not other in P:
339 raise TypeError("'other' must live in the same algebra")
340
341 return P.inner_product(self, other)
342
343
344 def operator_commutes_with(self, other):
345 """
346 Return whether or not this element operator-commutes
347 with ``other``.
348
349 EXAMPLES:
350
351 The definition of a Jordan algebra says that any element
352 operator-commutes with its square::
353
354 sage: set_random_seed()
355 sage: x = random_eja().random_element()
356 sage: x.operator_commutes_with(x^2)
357 True
358
359 TESTS:
360
361 Test Lemma 1 from Chapter III of Koecher::
362
363 sage: set_random_seed()
364 sage: J = random_eja()
365 sage: u = J.random_element()
366 sage: v = J.random_element()
367 sage: lhs = u.operator_commutes_with(u*v)
368 sage: rhs = v.operator_commutes_with(u^2)
369 sage: lhs == rhs
370 True
371
372 """
373 if not other in self.parent():
374 raise TypeError("'other' must live in the same algebra")
375
376 A = self.operator_matrix()
377 B = other.operator_matrix()
378 return (A*B == B*A)
379
380
381 def det(self):
382 """
383 Return my determinant, the product of my eigenvalues.
384
385 EXAMPLES::
386
387 sage: J = JordanSpinSimpleEJA(2)
388 sage: e0,e1 = J.gens()
389 sage: x = e0 + e1
390 sage: x.det()
391 0
392 sage: J = JordanSpinSimpleEJA(3)
393 sage: e0,e1,e2 = J.gens()
394 sage: x = e0 + e1 + e2
395 sage: x.det()
396 -1
397
398 """
399 cs = self.characteristic_polynomial().coefficients(sparse=False)
400 r = len(cs) - 1
401 if r >= 0:
402 return cs[0] * (-1)**r
403 else:
404 raise ValueError('charpoly had no coefficients')
405
406
407 def inverse(self):
408 """
409 Return the Jordan-multiplicative inverse of this element.
410
411 We can't use the superclass method because it relies on the
412 algebra being associative.
413
414 EXAMPLES:
415
416 The inverse in the spin factor algebra is given in Alizadeh's
417 Example 11.11::
418
419 sage: set_random_seed()
420 sage: n = ZZ.random_element(1,10)
421 sage: J = JordanSpinSimpleEJA(n)
422 sage: x = J.random_element()
423 sage: while x.is_zero():
424 ....: x = J.random_element()
425 sage: x_vec = x.vector()
426 sage: x0 = x_vec[0]
427 sage: x_bar = x_vec[1:]
428 sage: coeff = 1/(x0^2 - x_bar.inner_product(x_bar))
429 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
430 sage: x_inverse = coeff*inv_vec
431 sage: x.inverse() == J(x_inverse)
432 True
433
434 TESTS:
435
436 The identity element is its own inverse::
437
438 sage: set_random_seed()
439 sage: J = random_eja()
440 sage: J.one().inverse() == J.one()
441 True
442
443 If an element has an inverse, it acts like one. TODO: this
444 can be a lot less ugly once ``is_invertible`` doesn't crash
445 on irregular elements::
446
447 sage: set_random_seed()
448 sage: J = random_eja()
449 sage: x = J.random_element()
450 sage: try:
451 ....: x.inverse()*x == J.one()
452 ....: except:
453 ....: True
454 True
455
456 """
457 if self.parent().is_associative():
458 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
459 return elt.inverse()
460
461 # TODO: we can do better once the call to is_invertible()
462 # doesn't crash on irregular elements.
463 #if not self.is_invertible():
464 # raise ValueError('element is not invertible')
465
466 # We do this a little different than the usual recursive
467 # call to a finite-dimensional algebra element, because we
468 # wind up with an inverse that lives in the subalgebra and
469 # we need information about the parent to convert it back.
470 V = self.span_of_powers()
471 assoc_subalg = self.subalgebra_generated_by()
472 # Mis-design warning: the basis used for span_of_powers()
473 # and subalgebra_generated_by() must be the same, and in
474 # the same order!
475 elt = assoc_subalg(V.coordinates(self.vector()))
476
477 # This will be in the subalgebra's coordinates...
478 fda_elt = FiniteDimensionalAlgebraElement(assoc_subalg, elt)
479 subalg_inverse = fda_elt.inverse()
480
481 # So we have to convert back...
482 basis = [ self.parent(v) for v in V.basis() ]
483 pairs = zip(subalg_inverse.vector(), basis)
484 return self.parent().linear_combination(pairs)
485
486
487 def is_invertible(self):
488 """
489 Return whether or not this element is invertible.
490
491 We can't use the superclass method because it relies on
492 the algebra being associative.
493 """
494 return not self.det().is_zero()
495
496
497 def is_nilpotent(self):
498 """
499 Return whether or not some power of this element is zero.
500
501 The superclass method won't work unless we're in an
502 associative algebra, and we aren't. However, we generate
503 an assocoative subalgebra and we're nilpotent there if and
504 only if we're nilpotent here (probably).
505
506 TESTS:
507
508 The identity element is never nilpotent::
509
510 sage: set_random_seed()
511 sage: random_eja().one().is_nilpotent()
512 False
513
514 The additive identity is always nilpotent::
515
516 sage: set_random_seed()
517 sage: random_eja().zero().is_nilpotent()
518 True
519
520 """
521 # The element we're going to call "is_nilpotent()" on.
522 # Either myself, interpreted as an element of a finite-
523 # dimensional algebra, or an element of an associative
524 # subalgebra.
525 elt = None
526
527 if self.parent().is_associative():
528 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
529 else:
530 V = self.span_of_powers()
531 assoc_subalg = self.subalgebra_generated_by()
532 # Mis-design warning: the basis used for span_of_powers()
533 # and subalgebra_generated_by() must be the same, and in
534 # the same order!
535 elt = assoc_subalg(V.coordinates(self.vector()))
536
537 # Recursive call, but should work since elt lives in an
538 # associative algebra.
539 return elt.is_nilpotent()
540
541
542 def is_regular(self):
543 """
544 Return whether or not this is a regular element.
545
546 EXAMPLES:
547
548 The identity element always has degree one, but any element
549 linearly-independent from it is regular::
550
551 sage: J = JordanSpinSimpleEJA(5)
552 sage: J.one().is_regular()
553 False
554 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
555 sage: for x in J.gens():
556 ....: (J.one() + x).is_regular()
557 False
558 True
559 True
560 True
561 True
562
563 """
564 return self.degree() == self.parent().rank()
565
566
567 def degree(self):
568 """
569 Compute the degree of this element the straightforward way
570 according to the definition; by appending powers to a list
571 and figuring out its dimension (that is, whether or not
572 they're linearly dependent).
573
574 EXAMPLES::
575
576 sage: J = JordanSpinSimpleEJA(4)
577 sage: J.one().degree()
578 1
579 sage: e0,e1,e2,e3 = J.gens()
580 sage: (e0 - e1).degree()
581 2
582
583 In the spin factor algebra (of rank two), all elements that
584 aren't multiples of the identity are regular::
585
586 sage: set_random_seed()
587 sage: n = ZZ.random_element(1,10)
588 sage: J = JordanSpinSimpleEJA(n)
589 sage: x = J.random_element()
590 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
591 True
592
593 """
594 return self.span_of_powers().dimension()
595
596
597 def minimal_polynomial(self):
598 """
599 EXAMPLES::
600
601 sage: set_random_seed()
602 sage: x = random_eja().random_element()
603 sage: x.degree() == x.minimal_polynomial().degree()
604 True
605
606 ::
607
608 sage: set_random_seed()
609 sage: x = random_eja().random_element()
610 sage: x.degree() == x.minimal_polynomial().degree()
611 True
612
613 The minimal polynomial and the characteristic polynomial coincide
614 and are known (see Alizadeh, Example 11.11) for all elements of
615 the spin factor algebra that aren't scalar multiples of the
616 identity::
617
618 sage: set_random_seed()
619 sage: n = ZZ.random_element(2,10)
620 sage: J = JordanSpinSimpleEJA(n)
621 sage: y = J.random_element()
622 sage: while y == y.coefficient(0)*J.one():
623 ....: y = J.random_element()
624 sage: y0 = y.vector()[0]
625 sage: y_bar = y.vector()[1:]
626 sage: actual = y.minimal_polynomial()
627 sage: x = SR.symbol('x', domain='real')
628 sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
629 sage: bool(actual == expected)
630 True
631
632 """
633 # The element we're going to call "minimal_polynomial()" on.
634 # Either myself, interpreted as an element of a finite-
635 # dimensional algebra, or an element of an associative
636 # subalgebra.
637 elt = None
638
639 if self.parent().is_associative():
640 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
641 else:
642 V = self.span_of_powers()
643 assoc_subalg = self.subalgebra_generated_by()
644 # Mis-design warning: the basis used for span_of_powers()
645 # and subalgebra_generated_by() must be the same, and in
646 # the same order!
647 elt = assoc_subalg(V.coordinates(self.vector()))
648
649 # Recursive call, but should work since elt lives in an
650 # associative algebra.
651 return elt.minimal_polynomial()
652
653
654 def natural_representation(self):
655 """
656 Return a more-natural representation of this element.
657
658 Every finite-dimensional Euclidean Jordan Algebra is a
659 direct sum of five simple algebras, four of which comprise
660 Hermitian matrices. This method returns the original
661 "natural" representation of this element as a Hermitian
662 matrix, if it has one. If not, you get the usual representation.
663
664 EXAMPLES::
665
666 sage: J = ComplexHermitianSimpleEJA(3)
667 sage: J.one()
668 e0 + e5 + e8
669 sage: J.one().natural_representation()
670 [1 0 0 0 0 0]
671 [0 1 0 0 0 0]
672 [0 0 1 0 0 0]
673 [0 0 0 1 0 0]
674 [0 0 0 0 1 0]
675 [0 0 0 0 0 1]
676
677 """
678 B = self.parent().natural_basis()
679 W = B[0].matrix_space()
680 return W.linear_combination(zip(self.vector(), B))
681
682
683 def operator_matrix(self):
684 """
685 Return the matrix that represents left- (or right-)
686 multiplication by this element in the parent algebra.
687
688 We have to override this because the superclass method
689 returns a matrix that acts on row vectors (that is, on
690 the right).
691
692 EXAMPLES:
693
694 Test the first polarization identity from my notes, Koecher Chapter
695 III, or from Baes (2.3)::
696
697 sage: set_random_seed()
698 sage: J = random_eja()
699 sage: x = J.random_element()
700 sage: y = J.random_element()
701 sage: Lx = x.operator_matrix()
702 sage: Ly = y.operator_matrix()
703 sage: Lxx = (x*x).operator_matrix()
704 sage: Lxy = (x*y).operator_matrix()
705 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
706 True
707
708 Test the second polarization identity from my notes or from
709 Baes (2.4)::
710
711 sage: set_random_seed()
712 sage: J = random_eja()
713 sage: x = J.random_element()
714 sage: y = J.random_element()
715 sage: z = J.random_element()
716 sage: Lx = x.operator_matrix()
717 sage: Ly = y.operator_matrix()
718 sage: Lz = z.operator_matrix()
719 sage: Lzy = (z*y).operator_matrix()
720 sage: Lxy = (x*y).operator_matrix()
721 sage: Lxz = (x*z).operator_matrix()
722 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
723 True
724
725 Test the third polarization identity from my notes or from
726 Baes (2.5)::
727
728 sage: set_random_seed()
729 sage: J = random_eja()
730 sage: u = J.random_element()
731 sage: y = J.random_element()
732 sage: z = J.random_element()
733 sage: Lu = u.operator_matrix()
734 sage: Ly = y.operator_matrix()
735 sage: Lz = z.operator_matrix()
736 sage: Lzy = (z*y).operator_matrix()
737 sage: Luy = (u*y).operator_matrix()
738 sage: Luz = (u*z).operator_matrix()
739 sage: Luyz = (u*(y*z)).operator_matrix()
740 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
741 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
742 sage: bool(lhs == rhs)
743 True
744
745 """
746 fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
747 return fda_elt.matrix().transpose()
748
749
750 def quadratic_representation(self, other=None):
751 """
752 Return the quadratic representation of this element.
753
754 EXAMPLES:
755
756 The explicit form in the spin factor algebra is given by
757 Alizadeh's Example 11.12::
758
759 sage: set_random_seed()
760 sage: n = ZZ.random_element(1,10)
761 sage: J = JordanSpinSimpleEJA(n)
762 sage: x = J.random_element()
763 sage: x_vec = x.vector()
764 sage: x0 = x_vec[0]
765 sage: x_bar = x_vec[1:]
766 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
767 sage: B = 2*x0*x_bar.row()
768 sage: C = 2*x0*x_bar.column()
769 sage: D = identity_matrix(QQ, n-1)
770 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
771 sage: D = D + 2*x_bar.tensor_product(x_bar)
772 sage: Q = block_matrix(2,2,[A,B,C,D])
773 sage: Q == x.quadratic_representation()
774 True
775
776 Test all of the properties from Theorem 11.2 in Alizadeh::
777
778 sage: set_random_seed()
779 sage: J = random_eja()
780 sage: x = J.random_element()
781 sage: y = J.random_element()
782
783 Property 1:
784
785 sage: actual = x.quadratic_representation(y)
786 sage: expected = ( (x+y).quadratic_representation()
787 ....: -x.quadratic_representation()
788 ....: -y.quadratic_representation() ) / 2
789 sage: actual == expected
790 True
791
792 Property 2:
793
794 sage: alpha = QQ.random_element()
795 sage: actual = (alpha*x).quadratic_representation()
796 sage: expected = (alpha^2)*x.quadratic_representation()
797 sage: actual == expected
798 True
799
800 Property 5:
801
802 sage: Qy = y.quadratic_representation()
803 sage: actual = J(Qy*x.vector()).quadratic_representation()
804 sage: expected = Qy*x.quadratic_representation()*Qy
805 sage: actual == expected
806 True
807
808 Property 6:
809
810 sage: k = ZZ.random_element(1,10)
811 sage: actual = (x^k).quadratic_representation()
812 sage: expected = (x.quadratic_representation())^k
813 sage: actual == expected
814 True
815
816 """
817 if other is None:
818 other=self
819 elif not other in self.parent():
820 raise TypeError("'other' must live in the same algebra")
821
822 L = self.operator_matrix()
823 M = other.operator_matrix()
824 return ( L*M + M*L - (self*other).operator_matrix() )
825
826
827 def span_of_powers(self):
828 """
829 Return the vector space spanned by successive powers of
830 this element.
831 """
832 # The dimension of the subalgebra can't be greater than
833 # the big algebra, so just put everything into a list
834 # and let span() get rid of the excess.
835 V = self.vector().parent()
836 return V.span( (self**d).vector() for d in xrange(V.dimension()) )
837
838
839 def subalgebra_generated_by(self):
840 """
841 Return the associative subalgebra of the parent EJA generated
842 by this element.
843
844 TESTS::
845
846 sage: set_random_seed()
847 sage: x = random_eja().random_element()
848 sage: x.subalgebra_generated_by().is_associative()
849 True
850
851 Squaring in the subalgebra should be the same thing as
852 squaring in the superalgebra::
853
854 sage: set_random_seed()
855 sage: x = random_eja().random_element()
856 sage: u = x.subalgebra_generated_by().random_element()
857 sage: u.operator_matrix()*u.vector() == (u**2).vector()
858 True
859
860 """
861 # First get the subspace spanned by the powers of myself...
862 V = self.span_of_powers()
863 F = self.base_ring()
864
865 # Now figure out the entries of the right-multiplication
866 # matrix for the successive basis elements b0, b1,... of
867 # that subspace.
868 mats = []
869 for b_right in V.basis():
870 eja_b_right = self.parent()(b_right)
871 b_right_rows = []
872 # The first row of the right-multiplication matrix by
873 # b1 is what we get if we apply that matrix to b1. The
874 # second row of the right multiplication matrix by b1
875 # is what we get when we apply that matrix to b2...
876 #
877 # IMPORTANT: this assumes that all vectors are COLUMN
878 # vectors, unlike our superclass (which uses row vectors).
879 for b_left in V.basis():
880 eja_b_left = self.parent()(b_left)
881 # Multiply in the original EJA, but then get the
882 # coordinates from the subalgebra in terms of its
883 # basis.
884 this_row = V.coordinates((eja_b_left*eja_b_right).vector())
885 b_right_rows.append(this_row)
886 b_right_matrix = matrix(F, b_right_rows)
887 mats.append(b_right_matrix)
888
889 # It's an algebra of polynomials in one element, and EJAs
890 # are power-associative.
891 #
892 # TODO: choose generator names intelligently.
893 return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
894
895
896 def subalgebra_idempotent(self):
897 """
898 Find an idempotent in the associative subalgebra I generate
899 using Proposition 2.3.5 in Baes.
900
901 TESTS::
902
903 sage: set_random_seed()
904 sage: J = eja_rn(5)
905 sage: c = J.random_element().subalgebra_idempotent()
906 sage: c^2 == c
907 True
908 sage: J = JordanSpinSimpleEJA(5)
909 sage: c = J.random_element().subalgebra_idempotent()
910 sage: c^2 == c
911 True
912
913 """
914 if self.is_nilpotent():
915 raise ValueError("this only works with non-nilpotent elements!")
916
917 V = self.span_of_powers()
918 J = self.subalgebra_generated_by()
919 # Mis-design warning: the basis used for span_of_powers()
920 # and subalgebra_generated_by() must be the same, and in
921 # the same order!
922 u = J(V.coordinates(self.vector()))
923
924 # The image of the matrix of left-u^m-multiplication
925 # will be minimal for some natural number s...
926 s = 0
927 minimal_dim = V.dimension()
928 for i in xrange(1, V.dimension()):
929 this_dim = (u**i).operator_matrix().image().dimension()
930 if this_dim < minimal_dim:
931 minimal_dim = this_dim
932 s = i
933
934 # Now minimal_matrix should correspond to the smallest
935 # non-zero subspace in Baes's (or really, Koecher's)
936 # proposition.
937 #
938 # However, we need to restrict the matrix to work on the
939 # subspace... or do we? Can't we just solve, knowing that
940 # A(c) = u^(s+1) should have a solution in the big space,
941 # too?
942 #
943 # Beware, solve_right() means that we're using COLUMN vectors.
944 # Our FiniteDimensionalAlgebraElement superclass uses rows.
945 u_next = u**(s+1)
946 A = u_next.operator_matrix()
947 c_coordinates = A.solve_right(u_next.vector())
948
949 # Now c_coordinates is the idempotent we want, but it's in
950 # the coordinate system of the subalgebra.
951 #
952 # We need the basis for J, but as elements of the parent algebra.
953 #
954 basis = [self.parent(v) for v in V.basis()]
955 return self.parent().linear_combination(zip(c_coordinates, basis))
956
957
958 def trace(self):
959 """
960 Return my trace, the sum of my eigenvalues.
961
962 EXAMPLES::
963
964 sage: J = JordanSpinSimpleEJA(3)
965 sage: e0,e1,e2 = J.gens()
966 sage: x = e0 + e1 + e2
967 sage: x.trace()
968 2
969
970 """
971 cs = self.characteristic_polynomial().coefficients(sparse=False)
972 if len(cs) >= 2:
973 return -1*cs[-2]
974 else:
975 raise ValueError('charpoly had fewer than 2 coefficients')
976
977
978 def trace_inner_product(self, other):
979 """
980 Return the trace inner product of myself and ``other``.
981 """
982 if not other in self.parent():
983 raise TypeError("'other' must live in the same algebra")
984
985 return (self*other).trace()
986
987
988 def eja_rn(dimension, field=QQ):
989 """
990 Return the Euclidean Jordan Algebra corresponding to the set
991 `R^n` under the Hadamard product.
992
993 EXAMPLES:
994
995 This multiplication table can be verified by hand::
996
997 sage: J = eja_rn(3)
998 sage: e0,e1,e2 = J.gens()
999 sage: e0*e0
1000 e0
1001 sage: e0*e1
1002 0
1003 sage: e0*e2
1004 0
1005 sage: e1*e1
1006 e1
1007 sage: e1*e2
1008 0
1009 sage: e2*e2
1010 e2
1011
1012 """
1013 # The FiniteDimensionalAlgebra constructor takes a list of
1014 # matrices, the ith representing right multiplication by the ith
1015 # basis element in the vector space. So if e_1 = (1,0,0), then
1016 # right (Hadamard) multiplication of x by e_1 picks out the first
1017 # component of x; and likewise for the ith basis element e_i.
1018 Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
1019 for i in xrange(dimension) ]
1020
1021 return FiniteDimensionalEuclideanJordanAlgebra(field,
1022 Qs,
1023 rank=dimension,
1024 inner_product=_usual_ip)
1025
1026
1027
1028 def random_eja():
1029 """
1030 Return a "random" finite-dimensional Euclidean Jordan Algebra.
1031
1032 ALGORITHM:
1033
1034 For now, we choose a random natural number ``n`` (greater than zero)
1035 and then give you back one of the following:
1036
1037 * The cartesian product of the rational numbers ``n`` times; this is
1038 ``QQ^n`` with the Hadamard product.
1039
1040 * The Jordan spin algebra on ``QQ^n``.
1041
1042 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
1043 product.
1044
1045 Later this might be extended to return Cartesian products of the
1046 EJAs above.
1047
1048 TESTS::
1049
1050 sage: random_eja()
1051 Euclidean Jordan algebra of degree...
1052
1053 """
1054 n = ZZ.random_element(1,5)
1055 constructor = choice([eja_rn,
1056 JordanSpinSimpleEJA,
1057 RealSymmetricSimpleEJA,
1058 ComplexHermitianSimpleEJA])
1059 return constructor(n, field=QQ)
1060
1061
1062
1063 def _real_symmetric_basis(n, field=QQ):
1064 """
1065 Return a basis for the space of real symmetric n-by-n matrices.
1066 """
1067 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1068 # coordinates.
1069 S = []
1070 for i in xrange(n):
1071 for j in xrange(i+1):
1072 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1073 if i == j:
1074 Sij = Eij
1075 else:
1076 # Beware, orthogonal but not normalized!
1077 Sij = Eij + Eij.transpose()
1078 S.append(Sij)
1079 return tuple(S)
1080
1081
1082 def _complex_hermitian_basis(n, field=QQ):
1083 """
1084 Returns a basis for the space of complex Hermitian n-by-n matrices.
1085
1086 TESTS::
1087
1088 sage: set_random_seed()
1089 sage: n = ZZ.random_element(1,5)
1090 sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
1091 True
1092
1093 """
1094 F = QuadraticField(-1, 'I')
1095 I = F.gen()
1096
1097 # This is like the symmetric case, but we need to be careful:
1098 #
1099 # * We want conjugate-symmetry, not just symmetry.
1100 # * The diagonal will (as a result) be real.
1101 #
1102 S = []
1103 for i in xrange(n):
1104 for j in xrange(i+1):
1105 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1106 if i == j:
1107 Sij = _embed_complex_matrix(Eij)
1108 S.append(Sij)
1109 else:
1110 # Beware, orthogonal but not normalized! The second one
1111 # has a minus because it's conjugated.
1112 Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
1113 S.append(Sij_real)
1114 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
1115 S.append(Sij_imag)
1116 return tuple(S)
1117
1118
1119 def _mat2vec(m):
1120 return vector(m.base_ring(), m.list())
1121
1122 def _vec2mat(v):
1123 return matrix(v.base_ring(), sqrt(v.degree()), v.list())
1124
1125 def _multiplication_table_from_matrix_basis(basis):
1126 """
1127 At least three of the five simple Euclidean Jordan algebras have the
1128 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1129 multiplication on the right is matrix multiplication. Given a basis
1130 for the underlying matrix space, this function returns a
1131 multiplication table (obtained by looping through the basis
1132 elements) for an algebra of those matrices. A reordered copy
1133 of the basis is also returned to work around the fact that
1134 the ``span()`` in this function will change the order of the basis
1135 from what we think it is, to... something else.
1136 """
1137 # In S^2, for example, we nominally have four coordinates even
1138 # though the space is of dimension three only. The vector space V
1139 # is supposed to hold the entire long vector, and the subspace W
1140 # of V will be spanned by the vectors that arise from symmetric
1141 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1142 field = basis[0].base_ring()
1143 dimension = basis[0].nrows()
1144
1145 V = VectorSpace(field, dimension**2)
1146 W = V.span( _mat2vec(s) for s in basis )
1147
1148 # Taking the span above reorders our basis (thanks, jerk!) so we
1149 # need to put our "matrix basis" in the same order as the
1150 # (reordered) vector basis.
1151 S = tuple( _vec2mat(b) for b in W.basis() )
1152
1153 Qs = []
1154 for s in S:
1155 # Brute force the multiplication-by-s matrix by looping
1156 # through all elements of the basis and doing the computation
1157 # to find out what the corresponding row should be. BEWARE:
1158 # these multiplication tables won't be symmetric! It therefore
1159 # becomes REALLY IMPORTANT that the underlying algebra
1160 # constructor uses ROW vectors and not COLUMN vectors. That's
1161 # why we're computing rows here and not columns.
1162 Q_rows = []
1163 for t in S:
1164 this_row = _mat2vec((s*t + t*s)/2)
1165 Q_rows.append(W.coordinates(this_row))
1166 Q = matrix(field, W.dimension(), Q_rows)
1167 Qs.append(Q)
1168
1169 return (Qs, S)
1170
1171
1172 def _embed_complex_matrix(M):
1173 """
1174 Embed the n-by-n complex matrix ``M`` into the space of real
1175 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1176 bi` to the block matrix ``[[a,b],[-b,a]]``.
1177
1178 EXAMPLES::
1179
1180 sage: F = QuadraticField(-1,'i')
1181 sage: x1 = F(4 - 2*i)
1182 sage: x2 = F(1 + 2*i)
1183 sage: x3 = F(-i)
1184 sage: x4 = F(6)
1185 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1186 sage: _embed_complex_matrix(M)
1187 [ 4 -2| 1 2]
1188 [ 2 4|-2 1]
1189 [-----+-----]
1190 [ 0 -1| 6 0]
1191 [ 1 0| 0 6]
1192
1193 """
1194 n = M.nrows()
1195 if M.ncols() != n:
1196 raise ValueError("the matrix 'M' must be square")
1197 field = M.base_ring()
1198 blocks = []
1199 for z in M.list():
1200 a = z.real()
1201 b = z.imag()
1202 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1203
1204 # We can drop the imaginaries here.
1205 return block_matrix(field.base_ring(), n, blocks)
1206
1207
1208 def _unembed_complex_matrix(M):
1209 """
1210 The inverse of _embed_complex_matrix().
1211
1212 EXAMPLES::
1213
1214 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1215 ....: [-2, 1, -4, 3],
1216 ....: [ 9, 10, 11, 12],
1217 ....: [-10, 9, -12, 11] ])
1218 sage: _unembed_complex_matrix(A)
1219 [ 2*i + 1 4*i + 3]
1220 [ 10*i + 9 12*i + 11]
1221
1222 TESTS::
1223
1224 sage: set_random_seed()
1225 sage: F = QuadraticField(-1, 'i')
1226 sage: M = random_matrix(F, 3)
1227 sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
1228 True
1229
1230 """
1231 n = ZZ(M.nrows())
1232 if M.ncols() != n:
1233 raise ValueError("the matrix 'M' must be square")
1234 if not n.mod(2).is_zero():
1235 raise ValueError("the matrix 'M' must be a complex embedding")
1236
1237 F = QuadraticField(-1, 'i')
1238 i = F.gen()
1239
1240 # Go top-left to bottom-right (reading order), converting every
1241 # 2-by-2 block we see to a single complex element.
1242 elements = []
1243 for k in xrange(n/2):
1244 for j in xrange(n/2):
1245 submat = M[2*k:2*k+2,2*j:2*j+2]
1246 if submat[0,0] != submat[1,1]:
1247 raise ValueError('bad on-diagonal submatrix')
1248 if submat[0,1] != -submat[1,0]:
1249 raise ValueError('bad off-diagonal submatrix')
1250 z = submat[0,0] + submat[0,1]*i
1251 elements.append(z)
1252
1253 return matrix(F, n/2, elements)
1254
1255
1256 def _embed_quaternion_matrix(M):
1257 """
1258 Embed the n-by-n quaternion matrix ``M`` into the space of real
1259 matrices of size 4n-by-4n by first sending each quaternion entry
1260 `z = a + bi + cj + dk` to the block-complex matrix
1261 ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
1262 a real matrix.
1263
1264 EXAMPLES::
1265
1266 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1267 sage: i,j,k = Q.gens()
1268 sage: x = 1 + 2*i + 3*j + 4*k
1269 sage: M = matrix(Q, 1, [[x]])
1270 sage: _embed_quaternion_matrix(M)
1271 [ 1 2 3 4]
1272 [-2 1 -4 3]
1273 [-3 4 1 -2]
1274 [-4 -3 2 1]
1275
1276 """
1277 quaternions = M.base_ring()
1278 n = M.nrows()
1279 if M.ncols() != n:
1280 raise ValueError("the matrix 'M' must be square")
1281
1282 F = QuadraticField(-1, 'i')
1283 i = F.gen()
1284
1285 blocks = []
1286 for z in M.list():
1287 t = z.coefficient_tuple()
1288 a = t[0]
1289 b = t[1]
1290 c = t[2]
1291 d = t[3]
1292 cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
1293 [-c + d*i, a - b*i]])
1294 blocks.append(_embed_complex_matrix(cplx_matrix))
1295
1296 # We should have real entries by now, so use the realest field
1297 # we've got for the return value.
1298 return block_matrix(quaternions.base_ring(), n, blocks)
1299
1300
1301 def _unembed_quaternion_matrix(M):
1302 """
1303 The inverse of _embed_quaternion_matrix().
1304
1305 EXAMPLES::
1306
1307 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1308 ....: [-2, 1, -4, 3],
1309 ....: [-3, 4, 1, -2],
1310 ....: [-4, -3, 2, 1]])
1311 sage: _unembed_quaternion_matrix(M)
1312 [1 + 2*i + 3*j + 4*k]
1313
1314 TESTS::
1315
1316 sage: set_random_seed()
1317 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1318 sage: M = random_matrix(Q, 3)
1319 sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
1320 True
1321
1322 """
1323 n = ZZ(M.nrows())
1324 if M.ncols() != n:
1325 raise ValueError("the matrix 'M' must be square")
1326 if not n.mod(4).is_zero():
1327 raise ValueError("the matrix 'M' must be a complex embedding")
1328
1329 Q = QuaternionAlgebra(QQ,-1,-1)
1330 i,j,k = Q.gens()
1331
1332 # Go top-left to bottom-right (reading order), converting every
1333 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1334 # quaternion block.
1335 elements = []
1336 for l in xrange(n/4):
1337 for m in xrange(n/4):
1338 submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
1339 if submat[0,0] != submat[1,1].conjugate():
1340 raise ValueError('bad on-diagonal submatrix')
1341 if submat[0,1] != -submat[1,0].conjugate():
1342 raise ValueError('bad off-diagonal submatrix')
1343 z = submat[0,0].real() + submat[0,0].imag()*i
1344 z += submat[0,1].real()*j + submat[0,1].imag()*k
1345 elements.append(z)
1346
1347 return matrix(Q, n/4, elements)
1348
1349
1350 # The usual inner product on R^n.
1351 def _usual_ip(x,y):
1352 return x.vector().inner_product(y.vector())
1353
1354 # The inner product used for the real symmetric simple EJA.
1355 # We keep it as a separate function because e.g. the complex
1356 # algebra uses the same inner product, except divided by 2.
1357 def _matrix_ip(X,Y):
1358 X_mat = X.natural_representation()
1359 Y_mat = Y.natural_representation()
1360 return (X_mat*Y_mat).trace()
1361
1362
1363 def RealSymmetricSimpleEJA(n, field=QQ):
1364 """
1365 The rank-n simple EJA consisting of real symmetric n-by-n
1366 matrices, the usual symmetric Jordan product, and the trace inner
1367 product. It has dimension `(n^2 + n)/2` over the reals.
1368
1369 EXAMPLES::
1370
1371 sage: J = RealSymmetricSimpleEJA(2)
1372 sage: e0, e1, e2 = J.gens()
1373 sage: e0*e0
1374 e0
1375 sage: e1*e1
1376 e0 + e2
1377 sage: e2*e2
1378 e2
1379
1380 TESTS:
1381
1382 The degree of this algebra is `(n^2 + n) / 2`::
1383
1384 sage: set_random_seed()
1385 sage: n = ZZ.random_element(1,5)
1386 sage: J = RealSymmetricSimpleEJA(n)
1387 sage: J.degree() == (n^2 + n)/2
1388 True
1389
1390 The Jordan multiplication is what we think it is::
1391
1392 sage: set_random_seed()
1393 sage: n = ZZ.random_element(1,5)
1394 sage: J = RealSymmetricSimpleEJA(n)
1395 sage: x = J.random_element()
1396 sage: y = J.random_element()
1397 sage: actual = (x*y).natural_representation()
1398 sage: X = x.natural_representation()
1399 sage: Y = y.natural_representation()
1400 sage: expected = (X*Y + Y*X)/2
1401 sage: actual == expected
1402 True
1403 sage: J(expected) == x*y
1404 True
1405
1406 """
1407 S = _real_symmetric_basis(n, field=field)
1408 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1409
1410 return FiniteDimensionalEuclideanJordanAlgebra(field,
1411 Qs,
1412 rank=n,
1413 natural_basis=T,
1414 inner_product=_matrix_ip)
1415
1416
1417 def ComplexHermitianSimpleEJA(n, field=QQ):
1418 """
1419 The rank-n simple EJA consisting of complex Hermitian n-by-n
1420 matrices over the real numbers, the usual symmetric Jordan product,
1421 and the real-part-of-trace inner product. It has dimension `n^2` over
1422 the reals.
1423
1424 TESTS:
1425
1426 The degree of this algebra is `n^2`::
1427
1428 sage: set_random_seed()
1429 sage: n = ZZ.random_element(1,5)
1430 sage: J = ComplexHermitianSimpleEJA(n)
1431 sage: J.degree() == n^2
1432 True
1433
1434 The Jordan multiplication is what we think it is::
1435
1436 sage: set_random_seed()
1437 sage: n = ZZ.random_element(1,5)
1438 sage: J = ComplexHermitianSimpleEJA(n)
1439 sage: x = J.random_element()
1440 sage: y = J.random_element()
1441 sage: actual = (x*y).natural_representation()
1442 sage: X = x.natural_representation()
1443 sage: Y = y.natural_representation()
1444 sage: expected = (X*Y + Y*X)/2
1445 sage: actual == expected
1446 True
1447 sage: J(expected) == x*y
1448 True
1449
1450 """
1451 S = _complex_hermitian_basis(n)
1452 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1453
1454 # Since a+bi on the diagonal is represented as
1455 #
1456 # a + bi = [ a b ]
1457 # [ -b a ],
1458 #
1459 # we'll double-count the "a" entries if we take the trace of
1460 # the embedding.
1461 ip = lambda X,Y: _matrix_ip(X,Y)/2
1462
1463 return FiniteDimensionalEuclideanJordanAlgebra(field,
1464 Qs,
1465 rank=n,
1466 natural_basis=T,
1467 inner_product=ip)
1468
1469
1470 def QuaternionHermitianSimpleEJA(n):
1471 """
1472 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1473 matrices, the usual symmetric Jordan product, and the
1474 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1475 the reals.
1476 """
1477 pass
1478
1479 def OctonionHermitianSimpleEJA(n):
1480 """
1481 This shit be crazy. It has dimension 27 over the reals.
1482 """
1483 n = 3
1484 pass
1485
1486 def JordanSpinSimpleEJA(n, field=QQ):
1487 """
1488 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1489 with the usual inner product and jordan product ``x*y =
1490 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1491 the reals.
1492
1493 EXAMPLES:
1494
1495 This multiplication table can be verified by hand::
1496
1497 sage: J = JordanSpinSimpleEJA(4)
1498 sage: e0,e1,e2,e3 = J.gens()
1499 sage: e0*e0
1500 e0
1501 sage: e0*e1
1502 e1
1503 sage: e0*e2
1504 e2
1505 sage: e0*e3
1506 e3
1507 sage: e1*e2
1508 0
1509 sage: e1*e3
1510 0
1511 sage: e2*e3
1512 0
1513
1514 In one dimension, this is the reals under multiplication::
1515
1516 sage: J1 = JordanSpinSimpleEJA(1)
1517 sage: J2 = eja_rn(1)
1518 sage: J1 == J2
1519 True
1520
1521 """
1522 Qs = []
1523 id_matrix = identity_matrix(field, n)
1524 for i in xrange(n):
1525 ei = id_matrix.column(i)
1526 Qi = zero_matrix(field, n)
1527 Qi.set_row(0, ei)
1528 Qi.set_column(0, ei)
1529 Qi += diagonal_matrix(n, [ei[0]]*n)
1530 # The addition of the diagonal matrix adds an extra ei[0] in the
1531 # upper-left corner of the matrix.
1532 Qi[0,0] = Qi[0,0] * ~field(2)
1533 Qs.append(Qi)
1534
1535 # The rank of the spin factor algebra is two, UNLESS we're in a
1536 # one-dimensional ambient space (the rank is bounded by the
1537 # ambient dimension).
1538 return FiniteDimensionalEuclideanJordanAlgebra(field,
1539 Qs,
1540 rank=min(n,2),
1541 inner_product=_usual_ip)