]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/euclidean_jordan_algebra.py
eja: rename matrix() to operator_matrix().
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.categories.magmatic_algebras import MagmaticAlgebras
9 from sage.structure.element import is_Matrix
10 from sage.structure.category_object import normalize_names
11
12 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
13 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
14
15 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
16 @staticmethod
17 def __classcall_private__(cls,
18 field,
19 mult_table,
20 names='e',
21 assume_associative=False,
22 category=None,
23 rank=None):
24 n = len(mult_table)
25 mult_table = [b.base_extend(field) for b in mult_table]
26 for b in mult_table:
27 b.set_immutable()
28 if not (is_Matrix(b) and b.dimensions() == (n, n)):
29 raise ValueError("input is not a multiplication table")
30 mult_table = tuple(mult_table)
31
32 cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
33 cat.or_subcategory(category)
34 if assume_associative:
35 cat = cat.Associative()
36
37 names = normalize_names(n, names)
38
39 fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
40 return fda.__classcall__(cls,
41 field,
42 mult_table,
43 assume_associative=assume_associative,
44 names=names,
45 category=cat,
46 rank=rank)
47
48
49 def __init__(self, field,
50 mult_table,
51 names='e',
52 assume_associative=False,
53 category=None,
54 rank=None):
55 """
56 EXAMPLES:
57
58 By definition, Jordan multiplication commutes::
59
60 sage: set_random_seed()
61 sage: J = random_eja()
62 sage: x = J.random_element()
63 sage: y = J.random_element()
64 sage: x*y == y*x
65 True
66
67 """
68 self._rank = rank
69 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
70 fda.__init__(field,
71 mult_table,
72 names=names,
73 category=category)
74
75
76 def _repr_(self):
77 """
78 Return a string representation of ``self``.
79 """
80 fmt = "Euclidean Jordan algebra of degree {} over {}"
81 return fmt.format(self.degree(), self.base_ring())
82
83 def rank(self):
84 """
85 Return the rank of this EJA.
86 """
87 if self._rank is None:
88 raise ValueError("no rank specified at genesis")
89 else:
90 return self._rank
91
92
93 class Element(FiniteDimensionalAlgebraElement):
94 """
95 An element of a Euclidean Jordan algebra.
96 """
97
98 def __pow__(self, n):
99 """
100 Return ``self`` raised to the power ``n``.
101
102 Jordan algebras are always power-associative; see for
103 example Faraut and Koranyi, Proposition II.1.2 (ii).
104
105 .. WARNING:
106
107 We have to override this because our superclass uses row vectors
108 instead of column vectors! We, on the other hand, assume column
109 vectors everywhere.
110
111 EXAMPLES::
112
113 sage: set_random_seed()
114 sage: x = random_eja().random_element()
115 sage: x.operator_matrix()*x.vector() == (x^2).vector()
116 True
117
118 A few examples of power-associativity::
119
120 sage: set_random_seed()
121 sage: x = random_eja().random_element()
122 sage: x*(x*x)*(x*x) == x^5
123 True
124 sage: (x*x)*(x*x*x) == x^5
125 True
126
127 We also know that powers operator-commute (Koecher, Chapter
128 III, Corollary 1)::
129
130 sage: set_random_seed()
131 sage: x = random_eja().random_element()
132 sage: m = ZZ.random_element(0,10)
133 sage: n = ZZ.random_element(0,10)
134 sage: Lxm = (x^m).operator_matrix()
135 sage: Lxn = (x^n).operator_matrix()
136 sage: Lxm*Lxn == Lxn*Lxm
137 True
138
139 """
140 A = self.parent()
141 if n == 0:
142 return A.one()
143 elif n == 1:
144 return self
145 else:
146 return A( (self.operator_matrix()**(n-1))*self.vector() )
147
148
149 def characteristic_polynomial(self):
150 """
151 Return my characteristic polynomial (if I'm a regular
152 element).
153
154 Eventually this should be implemented in terms of the parent
155 algebra's characteristic polynomial that works for ALL
156 elements.
157 """
158 if self.is_regular():
159 return self.minimal_polynomial()
160 else:
161 raise NotImplementedError('irregular element')
162
163
164 def operator_commutes_with(self, other):
165 """
166 Return whether or not this element operator-commutes
167 with ``other``.
168
169 EXAMPLES:
170
171 The definition of a Jordan algebra says that any element
172 operator-commutes with its square::
173
174 sage: set_random_seed()
175 sage: x = random_eja().random_element()
176 sage: x.operator_commutes_with(x^2)
177 True
178
179 TESTS:
180
181 Test Lemma 1 from Chapter III of Koecher::
182
183 sage: set_random_seed()
184 sage: J = random_eja()
185 sage: u = J.random_element()
186 sage: v = J.random_element()
187 sage: lhs = u.operator_commutes_with(u*v)
188 sage: rhs = v.operator_commutes_with(u^2)
189 sage: lhs == rhs
190 True
191
192 """
193 if not other in self.parent():
194 raise ArgumentError("'other' must live in the same algebra")
195
196 A = self.operator_matrix()
197 B = other.operator_matrix()
198 return (A*B == B*A)
199
200
201 def det(self):
202 """
203 Return my determinant, the product of my eigenvalues.
204
205 EXAMPLES::
206
207 sage: J = JordanSpinSimpleEJA(2)
208 sage: e0,e1 = J.gens()
209 sage: x = e0 + e1
210 sage: x.det()
211 0
212 sage: J = JordanSpinSimpleEJA(3)
213 sage: e0,e1,e2 = J.gens()
214 sage: x = e0 + e1 + e2
215 sage: x.det()
216 -1
217
218 """
219 cs = self.characteristic_polynomial().coefficients(sparse=False)
220 r = len(cs) - 1
221 if r >= 0:
222 return cs[0] * (-1)**r
223 else:
224 raise ValueError('charpoly had no coefficients')
225
226
227 def inverse(self):
228 """
229 Return the Jordan-multiplicative inverse of this element.
230
231 We can't use the superclass method because it relies on the
232 algebra being associative.
233
234 EXAMPLES:
235
236 The inverse in the spin factor algebra is given in Alizadeh's
237 Example 11.11::
238
239 sage: set_random_seed()
240 sage: n = ZZ.random_element(1,10)
241 sage: J = JordanSpinSimpleEJA(n)
242 sage: x = J.random_element()
243 sage: while x.is_zero():
244 ....: x = J.random_element()
245 sage: x_vec = x.vector()
246 sage: x0 = x_vec[0]
247 sage: x_bar = x_vec[1:]
248 sage: coeff = 1/(x0^2 - x_bar.inner_product(x_bar))
249 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
250 sage: x_inverse = coeff*inv_vec
251 sage: x.inverse() == J(x_inverse)
252 True
253
254 TESTS:
255
256 The identity element is its own inverse::
257
258 sage: set_random_seed()
259 sage: J = random_eja()
260 sage: J.one().inverse() == J.one()
261 True
262
263 If an element has an inverse, it acts like one. TODO: this
264 can be a lot less ugly once ``is_invertible`` doesn't crash
265 on irregular elements::
266
267 sage: set_random_seed()
268 sage: J = random_eja()
269 sage: x = J.random_element()
270 sage: try:
271 ....: x.inverse()*x == J.one()
272 ....: except:
273 ....: True
274 True
275
276 """
277 if self.parent().is_associative():
278 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
279 return elt.inverse()
280
281 # TODO: we can do better once the call to is_invertible()
282 # doesn't crash on irregular elements.
283 #if not self.is_invertible():
284 # raise ArgumentError('element is not invertible')
285
286 # We do this a little different than the usual recursive
287 # call to a finite-dimensional algebra element, because we
288 # wind up with an inverse that lives in the subalgebra and
289 # we need information about the parent to convert it back.
290 V = self.span_of_powers()
291 assoc_subalg = self.subalgebra_generated_by()
292 # Mis-design warning: the basis used for span_of_powers()
293 # and subalgebra_generated_by() must be the same, and in
294 # the same order!
295 elt = assoc_subalg(V.coordinates(self.vector()))
296
297 # This will be in the subalgebra's coordinates...
298 fda_elt = FiniteDimensionalAlgebraElement(assoc_subalg, elt)
299 subalg_inverse = fda_elt.inverse()
300
301 # So we have to convert back...
302 basis = [ self.parent(v) for v in V.basis() ]
303 pairs = zip(subalg_inverse.vector(), basis)
304 return self.parent().linear_combination(pairs)
305
306
307 def is_invertible(self):
308 """
309 Return whether or not this element is invertible.
310
311 We can't use the superclass method because it relies on
312 the algebra being associative.
313 """
314 return not self.det().is_zero()
315
316
317 def is_nilpotent(self):
318 """
319 Return whether or not some power of this element is zero.
320
321 The superclass method won't work unless we're in an
322 associative algebra, and we aren't. However, we generate
323 an assocoative subalgebra and we're nilpotent there if and
324 only if we're nilpotent here (probably).
325
326 TESTS:
327
328 The identity element is never nilpotent::
329
330 sage: set_random_seed()
331 sage: random_eja().one().is_nilpotent()
332 False
333
334 The additive identity is always nilpotent::
335
336 sage: set_random_seed()
337 sage: random_eja().zero().is_nilpotent()
338 True
339
340 """
341 # The element we're going to call "is_nilpotent()" on.
342 # Either myself, interpreted as an element of a finite-
343 # dimensional algebra, or an element of an associative
344 # subalgebra.
345 elt = None
346
347 if self.parent().is_associative():
348 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
349 else:
350 V = self.span_of_powers()
351 assoc_subalg = self.subalgebra_generated_by()
352 # Mis-design warning: the basis used for span_of_powers()
353 # and subalgebra_generated_by() must be the same, and in
354 # the same order!
355 elt = assoc_subalg(V.coordinates(self.vector()))
356
357 # Recursive call, but should work since elt lives in an
358 # associative algebra.
359 return elt.is_nilpotent()
360
361
362 def is_regular(self):
363 """
364 Return whether or not this is a regular element.
365
366 EXAMPLES:
367
368 The identity element always has degree one, but any element
369 linearly-independent from it is regular::
370
371 sage: J = JordanSpinSimpleEJA(5)
372 sage: J.one().is_regular()
373 False
374 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
375 sage: for x in J.gens():
376 ....: (J.one() + x).is_regular()
377 False
378 True
379 True
380 True
381 True
382
383 """
384 return self.degree() == self.parent().rank()
385
386
387 def degree(self):
388 """
389 Compute the degree of this element the straightforward way
390 according to the definition; by appending powers to a list
391 and figuring out its dimension (that is, whether or not
392 they're linearly dependent).
393
394 EXAMPLES::
395
396 sage: J = JordanSpinSimpleEJA(4)
397 sage: J.one().degree()
398 1
399 sage: e0,e1,e2,e3 = J.gens()
400 sage: (e0 - e1).degree()
401 2
402
403 In the spin factor algebra (of rank two), all elements that
404 aren't multiples of the identity are regular::
405
406 sage: set_random_seed()
407 sage: n = ZZ.random_element(1,10)
408 sage: J = JordanSpinSimpleEJA(n)
409 sage: x = J.random_element()
410 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
411 True
412
413 """
414 return self.span_of_powers().dimension()
415
416
417 def operator_matrix(self):
418 """
419 Return the matrix that represents left- (or right-)
420 multiplication by this element in the parent algebra.
421
422 We have to override this because the superclass method
423 returns a matrix that acts on row vectors (that is, on
424 the right).
425
426 EXAMPLES:
427
428 Test the first polarization identity from my notes, Koecher Chapter
429 III, or from Baes (2.3)::
430
431 sage: set_random_seed()
432 sage: J = random_eja()
433 sage: x = J.random_element()
434 sage: y = J.random_element()
435 sage: Lx = x.operator_matrix()
436 sage: Ly = y.operator_matrix()
437 sage: Lxx = (x*x).operator_matrix()
438 sage: Lxy = (x*y).operator_matrix()
439 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
440 True
441
442 Test the second polarization identity from my notes or from
443 Baes (2.4)::
444
445 sage: set_random_seed()
446 sage: J = random_eja()
447 sage: x = J.random_element()
448 sage: y = J.random_element()
449 sage: z = J.random_element()
450 sage: Lx = x.operator_matrix()
451 sage: Ly = y.operator_matrix()
452 sage: Lz = z.operator_matrix()
453 sage: Lzy = (z*y).operator_matrix()
454 sage: Lxy = (x*y).operator_matrix()
455 sage: Lxz = (x*z).operator_matrix()
456 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
457 True
458
459 Test the third polarization identity from my notes or from
460 Baes (2.5)::
461
462 sage: set_random_seed()
463 sage: J = random_eja()
464 sage: u = J.random_element()
465 sage: y = J.random_element()
466 sage: z = J.random_element()
467 sage: Lu = u.operator_matrix()
468 sage: Ly = y.operator_matrix()
469 sage: Lz = z.operator_matrix()
470 sage: Lzy = (z*y).operator_matrix()
471 sage: Luy = (u*y).operator_matrix()
472 sage: Luz = (u*z).operator_matrix()
473 sage: Luyz = (u*(y*z)).operator_matrix()
474 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
475 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
476 sage: bool(lhs == rhs)
477 True
478
479 """
480 fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
481 return fda_elt.matrix().transpose()
482
483
484
485 def minimal_polynomial(self):
486 """
487 EXAMPLES::
488
489 sage: set_random_seed()
490 sage: x = random_eja().random_element()
491 sage: x.degree() == x.minimal_polynomial().degree()
492 True
493
494 ::
495
496 sage: set_random_seed()
497 sage: x = random_eja().random_element()
498 sage: x.degree() == x.minimal_polynomial().degree()
499 True
500
501 The minimal polynomial and the characteristic polynomial coincide
502 and are known (see Alizadeh, Example 11.11) for all elements of
503 the spin factor algebra that aren't scalar multiples of the
504 identity::
505
506 sage: set_random_seed()
507 sage: n = ZZ.random_element(2,10)
508 sage: J = JordanSpinSimpleEJA(n)
509 sage: y = J.random_element()
510 sage: while y == y.coefficient(0)*J.one():
511 ....: y = J.random_element()
512 sage: y0 = y.vector()[0]
513 sage: y_bar = y.vector()[1:]
514 sage: actual = y.minimal_polynomial()
515 sage: x = SR.symbol('x', domain='real')
516 sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
517 sage: bool(actual == expected)
518 True
519
520 """
521 # The element we're going to call "minimal_polynomial()" on.
522 # Either myself, interpreted as an element of a finite-
523 # dimensional algebra, or an element of an associative
524 # subalgebra.
525 elt = None
526
527 if self.parent().is_associative():
528 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
529 else:
530 V = self.span_of_powers()
531 assoc_subalg = self.subalgebra_generated_by()
532 # Mis-design warning: the basis used for span_of_powers()
533 # and subalgebra_generated_by() must be the same, and in
534 # the same order!
535 elt = assoc_subalg(V.coordinates(self.vector()))
536
537 # Recursive call, but should work since elt lives in an
538 # associative algebra.
539 return elt.minimal_polynomial()
540
541
542 def quadratic_representation(self, other=None):
543 """
544 Return the quadratic representation of this element.
545
546 EXAMPLES:
547
548 The explicit form in the spin factor algebra is given by
549 Alizadeh's Example 11.12::
550
551 sage: set_random_seed()
552 sage: n = ZZ.random_element(1,10)
553 sage: J = JordanSpinSimpleEJA(n)
554 sage: x = J.random_element()
555 sage: x_vec = x.vector()
556 sage: x0 = x_vec[0]
557 sage: x_bar = x_vec[1:]
558 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
559 sage: B = 2*x0*x_bar.row()
560 sage: C = 2*x0*x_bar.column()
561 sage: D = identity_matrix(QQ, n-1)
562 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
563 sage: D = D + 2*x_bar.tensor_product(x_bar)
564 sage: Q = block_matrix(2,2,[A,B,C,D])
565 sage: Q == x.quadratic_representation()
566 True
567
568 Test all of the properties from Theorem 11.2 in Alizadeh::
569
570 sage: set_random_seed()
571 sage: J = random_eja()
572 sage: x = J.random_element()
573 sage: y = J.random_element()
574
575 Property 1:
576
577 sage: actual = x.quadratic_representation(y)
578 sage: expected = ( (x+y).quadratic_representation()
579 ....: -x.quadratic_representation()
580 ....: -y.quadratic_representation() ) / 2
581 sage: actual == expected
582 True
583
584 Property 2:
585
586 sage: alpha = QQ.random_element()
587 sage: actual = (alpha*x).quadratic_representation()
588 sage: expected = (alpha^2)*x.quadratic_representation()
589 sage: actual == expected
590 True
591
592 Property 5:
593
594 sage: Qy = y.quadratic_representation()
595 sage: actual = J(Qy*x.vector()).quadratic_representation()
596 sage: expected = Qy*x.quadratic_representation()*Qy
597 sage: actual == expected
598 True
599
600 Property 6:
601
602 sage: k = ZZ.random_element(1,10)
603 sage: actual = (x^k).quadratic_representation()
604 sage: expected = (x.quadratic_representation())^k
605 sage: actual == expected
606 True
607
608 """
609 if other is None:
610 other=self
611 elif not other in self.parent():
612 raise ArgumentError("'other' must live in the same algebra")
613
614 L = self.operator_matrix()
615 M = other.operator_matrix()
616 return ( L*M + M*L - (self*other).operator_matrix() )
617
618
619 def span_of_powers(self):
620 """
621 Return the vector space spanned by successive powers of
622 this element.
623 """
624 # The dimension of the subalgebra can't be greater than
625 # the big algebra, so just put everything into a list
626 # and let span() get rid of the excess.
627 V = self.vector().parent()
628 return V.span( (self**d).vector() for d in xrange(V.dimension()) )
629
630
631 def subalgebra_generated_by(self):
632 """
633 Return the associative subalgebra of the parent EJA generated
634 by this element.
635
636 TESTS::
637
638 sage: set_random_seed()
639 sage: x = random_eja().random_element()
640 sage: x.subalgebra_generated_by().is_associative()
641 True
642
643 Squaring in the subalgebra should be the same thing as
644 squaring in the superalgebra::
645
646 sage: set_random_seed()
647 sage: x = random_eja().random_element()
648 sage: u = x.subalgebra_generated_by().random_element()
649 sage: u.operator_matrix()*u.vector() == (u**2).vector()
650 True
651
652 """
653 # First get the subspace spanned by the powers of myself...
654 V = self.span_of_powers()
655 F = self.base_ring()
656
657 # Now figure out the entries of the right-multiplication
658 # matrix for the successive basis elements b0, b1,... of
659 # that subspace.
660 mats = []
661 for b_right in V.basis():
662 eja_b_right = self.parent()(b_right)
663 b_right_rows = []
664 # The first row of the right-multiplication matrix by
665 # b1 is what we get if we apply that matrix to b1. The
666 # second row of the right multiplication matrix by b1
667 # is what we get when we apply that matrix to b2...
668 #
669 # IMPORTANT: this assumes that all vectors are COLUMN
670 # vectors, unlike our superclass (which uses row vectors).
671 for b_left in V.basis():
672 eja_b_left = self.parent()(b_left)
673 # Multiply in the original EJA, but then get the
674 # coordinates from the subalgebra in terms of its
675 # basis.
676 this_row = V.coordinates((eja_b_left*eja_b_right).vector())
677 b_right_rows.append(this_row)
678 b_right_matrix = matrix(F, b_right_rows)
679 mats.append(b_right_matrix)
680
681 # It's an algebra of polynomials in one element, and EJAs
682 # are power-associative.
683 #
684 # TODO: choose generator names intelligently.
685 return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
686
687
688 def subalgebra_idempotent(self):
689 """
690 Find an idempotent in the associative subalgebra I generate
691 using Proposition 2.3.5 in Baes.
692
693 TESTS::
694
695 sage: set_random_seed()
696 sage: J = eja_rn(5)
697 sage: c = J.random_element().subalgebra_idempotent()
698 sage: c^2 == c
699 True
700 sage: J = JordanSpinSimpleEJA(5)
701 sage: c = J.random_element().subalgebra_idempotent()
702 sage: c^2 == c
703 True
704
705 """
706 if self.is_nilpotent():
707 raise ValueError("this only works with non-nilpotent elements!")
708
709 V = self.span_of_powers()
710 J = self.subalgebra_generated_by()
711 # Mis-design warning: the basis used for span_of_powers()
712 # and subalgebra_generated_by() must be the same, and in
713 # the same order!
714 u = J(V.coordinates(self.vector()))
715
716 # The image of the matrix of left-u^m-multiplication
717 # will be minimal for some natural number s...
718 s = 0
719 minimal_dim = V.dimension()
720 for i in xrange(1, V.dimension()):
721 this_dim = (u**i).operator_matrix().image().dimension()
722 if this_dim < minimal_dim:
723 minimal_dim = this_dim
724 s = i
725
726 # Now minimal_matrix should correspond to the smallest
727 # non-zero subspace in Baes's (or really, Koecher's)
728 # proposition.
729 #
730 # However, we need to restrict the matrix to work on the
731 # subspace... or do we? Can't we just solve, knowing that
732 # A(c) = u^(s+1) should have a solution in the big space,
733 # too?
734 #
735 # Beware, solve_right() means that we're using COLUMN vectors.
736 # Our FiniteDimensionalAlgebraElement superclass uses rows.
737 u_next = u**(s+1)
738 A = u_next.operator_matrix()
739 c_coordinates = A.solve_right(u_next.vector())
740
741 # Now c_coordinates is the idempotent we want, but it's in
742 # the coordinate system of the subalgebra.
743 #
744 # We need the basis for J, but as elements of the parent algebra.
745 #
746 basis = [self.parent(v) for v in V.basis()]
747 return self.parent().linear_combination(zip(c_coordinates, basis))
748
749
750 def trace(self):
751 """
752 Return my trace, the sum of my eigenvalues.
753
754 EXAMPLES::
755
756 sage: J = JordanSpinSimpleEJA(3)
757 sage: e0,e1,e2 = J.gens()
758 sage: x = e0 + e1 + e2
759 sage: x.trace()
760 2
761
762 """
763 cs = self.characteristic_polynomial().coefficients(sparse=False)
764 if len(cs) >= 2:
765 return -1*cs[-2]
766 else:
767 raise ValueError('charpoly had fewer than 2 coefficients')
768
769
770 def trace_inner_product(self, other):
771 """
772 Return the trace inner product of myself and ``other``.
773 """
774 if not other in self.parent():
775 raise ArgumentError("'other' must live in the same algebra")
776
777 return (self*other).trace()
778
779
780 def eja_rn(dimension, field=QQ):
781 """
782 Return the Euclidean Jordan Algebra corresponding to the set
783 `R^n` under the Hadamard product.
784
785 EXAMPLES:
786
787 This multiplication table can be verified by hand::
788
789 sage: J = eja_rn(3)
790 sage: e0,e1,e2 = J.gens()
791 sage: e0*e0
792 e0
793 sage: e0*e1
794 0
795 sage: e0*e2
796 0
797 sage: e1*e1
798 e1
799 sage: e1*e2
800 0
801 sage: e2*e2
802 e2
803
804 """
805 # The FiniteDimensionalAlgebra constructor takes a list of
806 # matrices, the ith representing right multiplication by the ith
807 # basis element in the vector space. So if e_1 = (1,0,0), then
808 # right (Hadamard) multiplication of x by e_1 picks out the first
809 # component of x; and likewise for the ith basis element e_i.
810 Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
811 for i in xrange(dimension) ]
812
813 return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
814
815
816
817 def random_eja():
818 """
819 Return a "random" finite-dimensional Euclidean Jordan Algebra.
820
821 ALGORITHM:
822
823 For now, we choose a random natural number ``n`` (greater than zero)
824 and then give you back one of the following:
825
826 * The cartesian product of the rational numbers ``n`` times; this is
827 ``QQ^n`` with the Hadamard product.
828
829 * The Jordan spin algebra on ``QQ^n``.
830
831 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
832 product.
833
834 Later this might be extended to return Cartesian products of the
835 EJAs above.
836
837 TESTS::
838
839 sage: random_eja()
840 Euclidean Jordan algebra of degree...
841
842 """
843 n = ZZ.random_element(1,5)
844 constructor = choice([eja_rn,
845 JordanSpinSimpleEJA,
846 RealSymmetricSimpleEJA,
847 ComplexHermitianSimpleEJA])
848 return constructor(n, field=QQ)
849
850
851
852 def _real_symmetric_basis(n, field=QQ):
853 """
854 Return a basis for the space of real symmetric n-by-n matrices.
855 """
856 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
857 # coordinates.
858 S = []
859 for i in xrange(n):
860 for j in xrange(i+1):
861 Eij = matrix(field, n, lambda k,l: k==i and l==j)
862 if i == j:
863 Sij = Eij
864 else:
865 # Beware, orthogonal but not normalized!
866 Sij = Eij + Eij.transpose()
867 S.append(Sij)
868 return S
869
870
871 def _complex_hermitian_basis(n, field=QQ):
872 """
873 Returns a basis for the space of complex Hermitian n-by-n matrices.
874
875 TESTS::
876
877 sage: set_random_seed()
878 sage: n = ZZ.random_element(1,5)
879 sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
880 True
881
882 """
883 F = QuadraticField(-1, 'I')
884 I = F.gen()
885
886 # This is like the symmetric case, but we need to be careful:
887 #
888 # * We want conjugate-symmetry, not just symmetry.
889 # * The diagonal will (as a result) be real.
890 #
891 S = []
892 for i in xrange(n):
893 for j in xrange(i+1):
894 Eij = matrix(field, n, lambda k,l: k==i and l==j)
895 if i == j:
896 Sij = _embed_complex_matrix(Eij)
897 S.append(Sij)
898 else:
899 # Beware, orthogonal but not normalized! The second one
900 # has a minus because it's conjugated.
901 Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
902 S.append(Sij_real)
903 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
904 S.append(Sij_imag)
905 return S
906
907
908 def _multiplication_table_from_matrix_basis(basis):
909 """
910 At least three of the five simple Euclidean Jordan algebras have the
911 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
912 multiplication on the right is matrix multiplication. Given a basis
913 for the underlying matrix space, this function returns a
914 multiplication table (obtained by looping through the basis
915 elements) for an algebra of those matrices.
916 """
917 # In S^2, for example, we nominally have four coordinates even
918 # though the space is of dimension three only. The vector space V
919 # is supposed to hold the entire long vector, and the subspace W
920 # of V will be spanned by the vectors that arise from symmetric
921 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
922 field = basis[0].base_ring()
923 dimension = basis[0].nrows()
924
925 def mat2vec(m):
926 return vector(field, m.list())
927
928 def vec2mat(v):
929 return matrix(field, dimension, v.list())
930
931 V = VectorSpace(field, dimension**2)
932 W = V.span( mat2vec(s) for s in basis )
933
934 # Taking the span above reorders our basis (thanks, jerk!) so we
935 # need to put our "matrix basis" in the same order as the
936 # (reordered) vector basis.
937 S = [ vec2mat(b) for b in W.basis() ]
938
939 Qs = []
940 for s in S:
941 # Brute force the multiplication-by-s matrix by looping
942 # through all elements of the basis and doing the computation
943 # to find out what the corresponding row should be. BEWARE:
944 # these multiplication tables won't be symmetric! It therefore
945 # becomes REALLY IMPORTANT that the underlying algebra
946 # constructor uses ROW vectors and not COLUMN vectors. That's
947 # why we're computing rows here and not columns.
948 Q_rows = []
949 for t in S:
950 this_row = mat2vec((s*t + t*s)/2)
951 Q_rows.append(W.coordinates(this_row))
952 Q = matrix(field, W.dimension(), Q_rows)
953 Qs.append(Q)
954
955 return Qs
956
957
958 def _embed_complex_matrix(M):
959 """
960 Embed the n-by-n complex matrix ``M`` into the space of real
961 matrices of size 2n-by-2n via the map the sends each entry `z = a +
962 bi` to the block matrix ``[[a,b],[-b,a]]``.
963
964 EXAMPLES::
965
966 sage: F = QuadraticField(-1,'i')
967 sage: x1 = F(4 - 2*i)
968 sage: x2 = F(1 + 2*i)
969 sage: x3 = F(-i)
970 sage: x4 = F(6)
971 sage: M = matrix(F,2,[x1,x2,x3,x4])
972 sage: _embed_complex_matrix(M)
973 [ 4 2| 1 -2]
974 [-2 4| 2 1]
975 [-----+-----]
976 [ 0 1| 6 0]
977 [-1 0| 0 6]
978
979 """
980 n = M.nrows()
981 if M.ncols() != n:
982 raise ArgumentError("the matrix 'M' must be square")
983 field = M.base_ring()
984 blocks = []
985 for z in M.list():
986 a = z.real()
987 b = z.imag()
988 blocks.append(matrix(field, 2, [[a,-b],[b,a]]))
989
990 # We can drop the imaginaries here.
991 return block_matrix(field.base_ring(), n, blocks)
992
993
994 def _unembed_complex_matrix(M):
995 """
996 The inverse of _embed_complex_matrix().
997
998 EXAMPLES::
999
1000 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1001 ....: [-2, 1, -4, 3],
1002 ....: [ 9, 10, 11, 12],
1003 ....: [-10, 9, -12, 11] ])
1004 sage: _unembed_complex_matrix(A)
1005 [ -2*i + 1 -4*i + 3]
1006 [ -10*i + 9 -12*i + 11]
1007 """
1008 n = ZZ(M.nrows())
1009 if M.ncols() != n:
1010 raise ArgumentError("the matrix 'M' must be square")
1011 if not n.mod(2).is_zero():
1012 raise ArgumentError("the matrix 'M' must be a complex embedding")
1013
1014 F = QuadraticField(-1, 'i')
1015 i = F.gen()
1016
1017 # Go top-left to bottom-right (reading order), converting every
1018 # 2-by-2 block we see to a single complex element.
1019 elements = []
1020 for k in xrange(n/2):
1021 for j in xrange(n/2):
1022 submat = M[2*k:2*k+2,2*j:2*j+2]
1023 if submat[0,0] != submat[1,1]:
1024 raise ArgumentError('bad real submatrix')
1025 if submat[0,1] != -submat[1,0]:
1026 raise ArgumentError('bad imag submatrix')
1027 z = submat[0,0] + submat[1,0]*i
1028 elements.append(z)
1029
1030 return matrix(F, n/2, elements)
1031
1032
1033 def RealSymmetricSimpleEJA(n, field=QQ):
1034 """
1035 The rank-n simple EJA consisting of real symmetric n-by-n
1036 matrices, the usual symmetric Jordan product, and the trace inner
1037 product. It has dimension `(n^2 + n)/2` over the reals.
1038
1039 EXAMPLES::
1040
1041 sage: J = RealSymmetricSimpleEJA(2)
1042 sage: e0, e1, e2 = J.gens()
1043 sage: e0*e0
1044 e0
1045 sage: e1*e1
1046 e0 + e2
1047 sage: e2*e2
1048 e2
1049
1050 TESTS:
1051
1052 The degree of this algebra is `(n^2 + n) / 2`::
1053
1054 sage: set_random_seed()
1055 sage: n = ZZ.random_element(1,5)
1056 sage: J = RealSymmetricSimpleEJA(n)
1057 sage: J.degree() == (n^2 + n)/2
1058 True
1059
1060 """
1061 S = _real_symmetric_basis(n, field=field)
1062 Qs = _multiplication_table_from_matrix_basis(S)
1063
1064 return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=n)
1065
1066
1067 def ComplexHermitianSimpleEJA(n, field=QQ):
1068 """
1069 The rank-n simple EJA consisting of complex Hermitian n-by-n
1070 matrices over the real numbers, the usual symmetric Jordan product,
1071 and the real-part-of-trace inner product. It has dimension `n^2` over
1072 the reals.
1073
1074 TESTS:
1075
1076 The degree of this algebra is `n^2`::
1077
1078 sage: set_random_seed()
1079 sage: n = ZZ.random_element(1,5)
1080 sage: J = ComplexHermitianSimpleEJA(n)
1081 sage: J.degree() == n^2
1082 True
1083
1084 """
1085 S = _complex_hermitian_basis(n)
1086 Qs = _multiplication_table_from_matrix_basis(S)
1087 return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n)
1088
1089
1090 def QuaternionHermitianSimpleEJA(n):
1091 """
1092 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1093 matrices, the usual symmetric Jordan product, and the
1094 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1095 the reals.
1096 """
1097 pass
1098
1099 def OctonionHermitianSimpleEJA(n):
1100 """
1101 This shit be crazy. It has dimension 27 over the reals.
1102 """
1103 n = 3
1104 pass
1105
1106 def JordanSpinSimpleEJA(n, field=QQ):
1107 """
1108 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1109 with the usual inner product and jordan product ``x*y =
1110 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1111 the reals.
1112
1113 EXAMPLES:
1114
1115 This multiplication table can be verified by hand::
1116
1117 sage: J = JordanSpinSimpleEJA(4)
1118 sage: e0,e1,e2,e3 = J.gens()
1119 sage: e0*e0
1120 e0
1121 sage: e0*e1
1122 e1
1123 sage: e0*e2
1124 e2
1125 sage: e0*e3
1126 e3
1127 sage: e1*e2
1128 0
1129 sage: e1*e3
1130 0
1131 sage: e2*e3
1132 0
1133
1134 In one dimension, this is the reals under multiplication::
1135
1136 sage: J1 = JordanSpinSimpleEJA(1)
1137 sage: J2 = eja_rn(1)
1138 sage: J1 == J2
1139 True
1140
1141 """
1142 Qs = []
1143 id_matrix = identity_matrix(field, n)
1144 for i in xrange(n):
1145 ei = id_matrix.column(i)
1146 Qi = zero_matrix(field, n)
1147 Qi.set_row(0, ei)
1148 Qi.set_column(0, ei)
1149 Qi += diagonal_matrix(n, [ei[0]]*n)
1150 # The addition of the diagonal matrix adds an extra ei[0] in the
1151 # upper-left corner of the matrix.
1152 Qi[0,0] = Qi[0,0] * ~field(2)
1153 Qs.append(Qi)
1154
1155 # The rank of the spin factor algebra is two, UNLESS we're in a
1156 # one-dimensional ambient space (the rank is bounded by the
1157 # ambient dimension).
1158 return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=min(n,2))