]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/euclidean_jordan_algebra.py
eja: factor out mat2vec() and vec2mat() helper functions.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.categories.magmatic_algebras import MagmaticAlgebras
9 from sage.structure.element import is_Matrix
10 from sage.structure.category_object import normalize_names
11
12 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
13 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
14
15 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
16 @staticmethod
17 def __classcall_private__(cls,
18 field,
19 mult_table,
20 names='e',
21 assume_associative=False,
22 category=None,
23 rank=None,
24 natural_basis=None,
25 inner_product=None):
26 n = len(mult_table)
27 mult_table = [b.base_extend(field) for b in mult_table]
28 for b in mult_table:
29 b.set_immutable()
30 if not (is_Matrix(b) and b.dimensions() == (n, n)):
31 raise ValueError("input is not a multiplication table")
32 mult_table = tuple(mult_table)
33
34 cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
35 cat.or_subcategory(category)
36 if assume_associative:
37 cat = cat.Associative()
38
39 names = normalize_names(n, names)
40
41 fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
42 return fda.__classcall__(cls,
43 field,
44 mult_table,
45 assume_associative=assume_associative,
46 names=names,
47 category=cat,
48 rank=rank,
49 natural_basis=natural_basis,
50 inner_product=inner_product)
51
52
53 def __init__(self, field,
54 mult_table,
55 names='e',
56 assume_associative=False,
57 category=None,
58 rank=None,
59 natural_basis=None,
60 inner_product=None):
61 """
62 EXAMPLES:
63
64 By definition, Jordan multiplication commutes::
65
66 sage: set_random_seed()
67 sage: J = random_eja()
68 sage: x = J.random_element()
69 sage: y = J.random_element()
70 sage: x*y == y*x
71 True
72
73 """
74 self._rank = rank
75 self._natural_basis = natural_basis
76 self._inner_product = inner_product
77 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
78 fda.__init__(field,
79 mult_table,
80 names=names,
81 category=category)
82
83
84 def _repr_(self):
85 """
86 Return a string representation of ``self``.
87 """
88 fmt = "Euclidean Jordan algebra of degree {} over {}"
89 return fmt.format(self.degree(), self.base_ring())
90
91
92 def inner_product(self, x, y):
93 """
94 The inner product associated with this Euclidean Jordan algebra.
95
96 Will default to the trace inner product if nothing else.
97 """
98 if (not x in self) or (not y in self):
99 raise TypeError("arguments must live in this algebra")
100 if self._inner_product is None:
101 return x.trace_inner_product(y)
102 else:
103 return self._inner_product(x,y)
104
105
106 def natural_basis(self):
107 """
108 Return a more-natural representation of this algebra's basis.
109
110 Every finite-dimensional Euclidean Jordan Algebra is a direct
111 sum of five simple algebras, four of which comprise Hermitian
112 matrices. This method returns the original "natural" basis
113 for our underlying vector space. (Typically, the natural basis
114 is used to construct the multiplication table in the first place.)
115
116 Note that this will always return a matrix. The standard basis
117 in `R^n` will be returned as `n`-by-`1` column matrices.
118
119 EXAMPLES::
120
121 sage: J = RealSymmetricSimpleEJA(2)
122 sage: J.basis()
123 Family (e0, e1, e2)
124 sage: J.natural_basis()
125 (
126 [1 0] [0 1] [0 0]
127 [0 0], [1 0], [0 1]
128 )
129
130 ::
131
132 sage: J = JordanSpinSimpleEJA(2)
133 sage: J.basis()
134 Family (e0, e1)
135 sage: J.natural_basis()
136 (
137 [1] [0]
138 [0], [1]
139 )
140
141 """
142 if self._natural_basis is None:
143 return tuple( b.vector().column() for b in self.basis() )
144 else:
145 return self._natural_basis
146
147
148 def rank(self):
149 """
150 Return the rank of this EJA.
151 """
152 if self._rank is None:
153 raise ValueError("no rank specified at genesis")
154 else:
155 return self._rank
156
157
158 class Element(FiniteDimensionalAlgebraElement):
159 """
160 An element of a Euclidean Jordan algebra.
161 """
162
163 def __pow__(self, n):
164 """
165 Return ``self`` raised to the power ``n``.
166
167 Jordan algebras are always power-associative; see for
168 example Faraut and Koranyi, Proposition II.1.2 (ii).
169
170 .. WARNING:
171
172 We have to override this because our superclass uses row vectors
173 instead of column vectors! We, on the other hand, assume column
174 vectors everywhere.
175
176 EXAMPLES::
177
178 sage: set_random_seed()
179 sage: x = random_eja().random_element()
180 sage: x.operator_matrix()*x.vector() == (x^2).vector()
181 True
182
183 A few examples of power-associativity::
184
185 sage: set_random_seed()
186 sage: x = random_eja().random_element()
187 sage: x*(x*x)*(x*x) == x^5
188 True
189 sage: (x*x)*(x*x*x) == x^5
190 True
191
192 We also know that powers operator-commute (Koecher, Chapter
193 III, Corollary 1)::
194
195 sage: set_random_seed()
196 sage: x = random_eja().random_element()
197 sage: m = ZZ.random_element(0,10)
198 sage: n = ZZ.random_element(0,10)
199 sage: Lxm = (x^m).operator_matrix()
200 sage: Lxn = (x^n).operator_matrix()
201 sage: Lxm*Lxn == Lxn*Lxm
202 True
203
204 """
205 A = self.parent()
206 if n == 0:
207 return A.one()
208 elif n == 1:
209 return self
210 else:
211 return A( (self.operator_matrix()**(n-1))*self.vector() )
212
213
214 def characteristic_polynomial(self):
215 """
216 Return my characteristic polynomial (if I'm a regular
217 element).
218
219 Eventually this should be implemented in terms of the parent
220 algebra's characteristic polynomial that works for ALL
221 elements.
222 """
223 if self.is_regular():
224 return self.minimal_polynomial()
225 else:
226 raise NotImplementedError('irregular element')
227
228
229 def inner_product(self, other):
230 """
231 Return the parent algebra's inner product of myself and ``other``.
232
233 EXAMPLES:
234
235 The inner product in the Jordan spin algebra is the usual
236 inner product on `R^n` (this example only works because the
237 basis for the Jordan algebra is the standard basis in `R^n`)::
238
239 sage: J = JordanSpinSimpleEJA(3)
240 sage: x = vector(QQ,[1,2,3])
241 sage: y = vector(QQ,[4,5,6])
242 sage: x.inner_product(y)
243 32
244 sage: J(x).inner_product(J(y))
245 32
246
247 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
248 multiplication is the usual matrix multiplication in `S^n`,
249 so the inner product of the identity matrix with itself
250 should be the `n`::
251
252 sage: J = RealSymmetricSimpleEJA(3)
253 sage: J.one().inner_product(J.one())
254 3
255
256 Likewise, the inner product on `C^n` is `<X,Y> =
257 Re(trace(X*Y))`, where we must necessarily take the real
258 part because the product of Hermitian matrices may not be
259 Hermitian::
260
261 sage: J = ComplexHermitianSimpleEJA(3)
262 sage: J.one().inner_product(J.one())
263 3
264
265 TESTS:
266
267 Ensure that we can always compute an inner product, and that
268 it gives us back a real number::
269
270 sage: set_random_seed()
271 sage: J = random_eja()
272 sage: x = J.random_element()
273 sage: y = J.random_element()
274 sage: x.inner_product(y) in RR
275 True
276
277 """
278 P = self.parent()
279 if not other in P:
280 raise TypeError("'other' must live in the same algebra")
281
282 return P.inner_product(self, other)
283
284
285 def operator_commutes_with(self, other):
286 """
287 Return whether or not this element operator-commutes
288 with ``other``.
289
290 EXAMPLES:
291
292 The definition of a Jordan algebra says that any element
293 operator-commutes with its square::
294
295 sage: set_random_seed()
296 sage: x = random_eja().random_element()
297 sage: x.operator_commutes_with(x^2)
298 True
299
300 TESTS:
301
302 Test Lemma 1 from Chapter III of Koecher::
303
304 sage: set_random_seed()
305 sage: J = random_eja()
306 sage: u = J.random_element()
307 sage: v = J.random_element()
308 sage: lhs = u.operator_commutes_with(u*v)
309 sage: rhs = v.operator_commutes_with(u^2)
310 sage: lhs == rhs
311 True
312
313 """
314 if not other in self.parent():
315 raise TypeError("'other' must live in the same algebra")
316
317 A = self.operator_matrix()
318 B = other.operator_matrix()
319 return (A*B == B*A)
320
321
322 def det(self):
323 """
324 Return my determinant, the product of my eigenvalues.
325
326 EXAMPLES::
327
328 sage: J = JordanSpinSimpleEJA(2)
329 sage: e0,e1 = J.gens()
330 sage: x = e0 + e1
331 sage: x.det()
332 0
333 sage: J = JordanSpinSimpleEJA(3)
334 sage: e0,e1,e2 = J.gens()
335 sage: x = e0 + e1 + e2
336 sage: x.det()
337 -1
338
339 """
340 cs = self.characteristic_polynomial().coefficients(sparse=False)
341 r = len(cs) - 1
342 if r >= 0:
343 return cs[0] * (-1)**r
344 else:
345 raise ValueError('charpoly had no coefficients')
346
347
348 def inverse(self):
349 """
350 Return the Jordan-multiplicative inverse of this element.
351
352 We can't use the superclass method because it relies on the
353 algebra being associative.
354
355 EXAMPLES:
356
357 The inverse in the spin factor algebra is given in Alizadeh's
358 Example 11.11::
359
360 sage: set_random_seed()
361 sage: n = ZZ.random_element(1,10)
362 sage: J = JordanSpinSimpleEJA(n)
363 sage: x = J.random_element()
364 sage: while x.is_zero():
365 ....: x = J.random_element()
366 sage: x_vec = x.vector()
367 sage: x0 = x_vec[0]
368 sage: x_bar = x_vec[1:]
369 sage: coeff = 1/(x0^2 - x_bar.inner_product(x_bar))
370 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
371 sage: x_inverse = coeff*inv_vec
372 sage: x.inverse() == J(x_inverse)
373 True
374
375 TESTS:
376
377 The identity element is its own inverse::
378
379 sage: set_random_seed()
380 sage: J = random_eja()
381 sage: J.one().inverse() == J.one()
382 True
383
384 If an element has an inverse, it acts like one. TODO: this
385 can be a lot less ugly once ``is_invertible`` doesn't crash
386 on irregular elements::
387
388 sage: set_random_seed()
389 sage: J = random_eja()
390 sage: x = J.random_element()
391 sage: try:
392 ....: x.inverse()*x == J.one()
393 ....: except:
394 ....: True
395 True
396
397 """
398 if self.parent().is_associative():
399 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
400 return elt.inverse()
401
402 # TODO: we can do better once the call to is_invertible()
403 # doesn't crash on irregular elements.
404 #if not self.is_invertible():
405 # raise ValueError('element is not invertible')
406
407 # We do this a little different than the usual recursive
408 # call to a finite-dimensional algebra element, because we
409 # wind up with an inverse that lives in the subalgebra and
410 # we need information about the parent to convert it back.
411 V = self.span_of_powers()
412 assoc_subalg = self.subalgebra_generated_by()
413 # Mis-design warning: the basis used for span_of_powers()
414 # and subalgebra_generated_by() must be the same, and in
415 # the same order!
416 elt = assoc_subalg(V.coordinates(self.vector()))
417
418 # This will be in the subalgebra's coordinates...
419 fda_elt = FiniteDimensionalAlgebraElement(assoc_subalg, elt)
420 subalg_inverse = fda_elt.inverse()
421
422 # So we have to convert back...
423 basis = [ self.parent(v) for v in V.basis() ]
424 pairs = zip(subalg_inverse.vector(), basis)
425 return self.parent().linear_combination(pairs)
426
427
428 def is_invertible(self):
429 """
430 Return whether or not this element is invertible.
431
432 We can't use the superclass method because it relies on
433 the algebra being associative.
434 """
435 return not self.det().is_zero()
436
437
438 def is_nilpotent(self):
439 """
440 Return whether or not some power of this element is zero.
441
442 The superclass method won't work unless we're in an
443 associative algebra, and we aren't. However, we generate
444 an assocoative subalgebra and we're nilpotent there if and
445 only if we're nilpotent here (probably).
446
447 TESTS:
448
449 The identity element is never nilpotent::
450
451 sage: set_random_seed()
452 sage: random_eja().one().is_nilpotent()
453 False
454
455 The additive identity is always nilpotent::
456
457 sage: set_random_seed()
458 sage: random_eja().zero().is_nilpotent()
459 True
460
461 """
462 # The element we're going to call "is_nilpotent()" on.
463 # Either myself, interpreted as an element of a finite-
464 # dimensional algebra, or an element of an associative
465 # subalgebra.
466 elt = None
467
468 if self.parent().is_associative():
469 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
470 else:
471 V = self.span_of_powers()
472 assoc_subalg = self.subalgebra_generated_by()
473 # Mis-design warning: the basis used for span_of_powers()
474 # and subalgebra_generated_by() must be the same, and in
475 # the same order!
476 elt = assoc_subalg(V.coordinates(self.vector()))
477
478 # Recursive call, but should work since elt lives in an
479 # associative algebra.
480 return elt.is_nilpotent()
481
482
483 def is_regular(self):
484 """
485 Return whether or not this is a regular element.
486
487 EXAMPLES:
488
489 The identity element always has degree one, but any element
490 linearly-independent from it is regular::
491
492 sage: J = JordanSpinSimpleEJA(5)
493 sage: J.one().is_regular()
494 False
495 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
496 sage: for x in J.gens():
497 ....: (J.one() + x).is_regular()
498 False
499 True
500 True
501 True
502 True
503
504 """
505 return self.degree() == self.parent().rank()
506
507
508 def degree(self):
509 """
510 Compute the degree of this element the straightforward way
511 according to the definition; by appending powers to a list
512 and figuring out its dimension (that is, whether or not
513 they're linearly dependent).
514
515 EXAMPLES::
516
517 sage: J = JordanSpinSimpleEJA(4)
518 sage: J.one().degree()
519 1
520 sage: e0,e1,e2,e3 = J.gens()
521 sage: (e0 - e1).degree()
522 2
523
524 In the spin factor algebra (of rank two), all elements that
525 aren't multiples of the identity are regular::
526
527 sage: set_random_seed()
528 sage: n = ZZ.random_element(1,10)
529 sage: J = JordanSpinSimpleEJA(n)
530 sage: x = J.random_element()
531 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
532 True
533
534 """
535 return self.span_of_powers().dimension()
536
537
538 def minimal_polynomial(self):
539 """
540 EXAMPLES::
541
542 sage: set_random_seed()
543 sage: x = random_eja().random_element()
544 sage: x.degree() == x.minimal_polynomial().degree()
545 True
546
547 ::
548
549 sage: set_random_seed()
550 sage: x = random_eja().random_element()
551 sage: x.degree() == x.minimal_polynomial().degree()
552 True
553
554 The minimal polynomial and the characteristic polynomial coincide
555 and are known (see Alizadeh, Example 11.11) for all elements of
556 the spin factor algebra that aren't scalar multiples of the
557 identity::
558
559 sage: set_random_seed()
560 sage: n = ZZ.random_element(2,10)
561 sage: J = JordanSpinSimpleEJA(n)
562 sage: y = J.random_element()
563 sage: while y == y.coefficient(0)*J.one():
564 ....: y = J.random_element()
565 sage: y0 = y.vector()[0]
566 sage: y_bar = y.vector()[1:]
567 sage: actual = y.minimal_polynomial()
568 sage: x = SR.symbol('x', domain='real')
569 sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
570 sage: bool(actual == expected)
571 True
572
573 """
574 # The element we're going to call "minimal_polynomial()" on.
575 # Either myself, interpreted as an element of a finite-
576 # dimensional algebra, or an element of an associative
577 # subalgebra.
578 elt = None
579
580 if self.parent().is_associative():
581 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
582 else:
583 V = self.span_of_powers()
584 assoc_subalg = self.subalgebra_generated_by()
585 # Mis-design warning: the basis used for span_of_powers()
586 # and subalgebra_generated_by() must be the same, and in
587 # the same order!
588 elt = assoc_subalg(V.coordinates(self.vector()))
589
590 # Recursive call, but should work since elt lives in an
591 # associative algebra.
592 return elt.minimal_polynomial()
593
594
595 def natural_representation(self):
596 """
597 Return a more-natural representation of this element.
598
599 Every finite-dimensional Euclidean Jordan Algebra is a
600 direct sum of five simple algebras, four of which comprise
601 Hermitian matrices. This method returns the original
602 "natural" representation of this element as a Hermitian
603 matrix, if it has one. If not, you get the usual representation.
604
605 EXAMPLES::
606
607 sage: J = ComplexHermitianSimpleEJA(3)
608 sage: J.one()
609 e0 + e5 + e8
610 sage: J.one().natural_representation()
611 [1 0 0 0 0 0]
612 [0 1 0 0 0 0]
613 [0 0 1 0 0 0]
614 [0 0 0 1 0 0]
615 [0 0 0 0 1 0]
616 [0 0 0 0 0 1]
617
618 """
619 B = self.parent().natural_basis()
620 W = B[0].matrix_space()
621 return W.linear_combination(zip(self.vector(), B))
622
623
624 def operator_matrix(self):
625 """
626 Return the matrix that represents left- (or right-)
627 multiplication by this element in the parent algebra.
628
629 We have to override this because the superclass method
630 returns a matrix that acts on row vectors (that is, on
631 the right).
632
633 EXAMPLES:
634
635 Test the first polarization identity from my notes, Koecher Chapter
636 III, or from Baes (2.3)::
637
638 sage: set_random_seed()
639 sage: J = random_eja()
640 sage: x = J.random_element()
641 sage: y = J.random_element()
642 sage: Lx = x.operator_matrix()
643 sage: Ly = y.operator_matrix()
644 sage: Lxx = (x*x).operator_matrix()
645 sage: Lxy = (x*y).operator_matrix()
646 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
647 True
648
649 Test the second polarization identity from my notes or from
650 Baes (2.4)::
651
652 sage: set_random_seed()
653 sage: J = random_eja()
654 sage: x = J.random_element()
655 sage: y = J.random_element()
656 sage: z = J.random_element()
657 sage: Lx = x.operator_matrix()
658 sage: Ly = y.operator_matrix()
659 sage: Lz = z.operator_matrix()
660 sage: Lzy = (z*y).operator_matrix()
661 sage: Lxy = (x*y).operator_matrix()
662 sage: Lxz = (x*z).operator_matrix()
663 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
664 True
665
666 Test the third polarization identity from my notes or from
667 Baes (2.5)::
668
669 sage: set_random_seed()
670 sage: J = random_eja()
671 sage: u = J.random_element()
672 sage: y = J.random_element()
673 sage: z = J.random_element()
674 sage: Lu = u.operator_matrix()
675 sage: Ly = y.operator_matrix()
676 sage: Lz = z.operator_matrix()
677 sage: Lzy = (z*y).operator_matrix()
678 sage: Luy = (u*y).operator_matrix()
679 sage: Luz = (u*z).operator_matrix()
680 sage: Luyz = (u*(y*z)).operator_matrix()
681 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
682 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
683 sage: bool(lhs == rhs)
684 True
685
686 """
687 fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
688 return fda_elt.matrix().transpose()
689
690
691 def quadratic_representation(self, other=None):
692 """
693 Return the quadratic representation of this element.
694
695 EXAMPLES:
696
697 The explicit form in the spin factor algebra is given by
698 Alizadeh's Example 11.12::
699
700 sage: set_random_seed()
701 sage: n = ZZ.random_element(1,10)
702 sage: J = JordanSpinSimpleEJA(n)
703 sage: x = J.random_element()
704 sage: x_vec = x.vector()
705 sage: x0 = x_vec[0]
706 sage: x_bar = x_vec[1:]
707 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
708 sage: B = 2*x0*x_bar.row()
709 sage: C = 2*x0*x_bar.column()
710 sage: D = identity_matrix(QQ, n-1)
711 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
712 sage: D = D + 2*x_bar.tensor_product(x_bar)
713 sage: Q = block_matrix(2,2,[A,B,C,D])
714 sage: Q == x.quadratic_representation()
715 True
716
717 Test all of the properties from Theorem 11.2 in Alizadeh::
718
719 sage: set_random_seed()
720 sage: J = random_eja()
721 sage: x = J.random_element()
722 sage: y = J.random_element()
723
724 Property 1:
725
726 sage: actual = x.quadratic_representation(y)
727 sage: expected = ( (x+y).quadratic_representation()
728 ....: -x.quadratic_representation()
729 ....: -y.quadratic_representation() ) / 2
730 sage: actual == expected
731 True
732
733 Property 2:
734
735 sage: alpha = QQ.random_element()
736 sage: actual = (alpha*x).quadratic_representation()
737 sage: expected = (alpha^2)*x.quadratic_representation()
738 sage: actual == expected
739 True
740
741 Property 5:
742
743 sage: Qy = y.quadratic_representation()
744 sage: actual = J(Qy*x.vector()).quadratic_representation()
745 sage: expected = Qy*x.quadratic_representation()*Qy
746 sage: actual == expected
747 True
748
749 Property 6:
750
751 sage: k = ZZ.random_element(1,10)
752 sage: actual = (x^k).quadratic_representation()
753 sage: expected = (x.quadratic_representation())^k
754 sage: actual == expected
755 True
756
757 """
758 if other is None:
759 other=self
760 elif not other in self.parent():
761 raise TypeError("'other' must live in the same algebra")
762
763 L = self.operator_matrix()
764 M = other.operator_matrix()
765 return ( L*M + M*L - (self*other).operator_matrix() )
766
767
768 def span_of_powers(self):
769 """
770 Return the vector space spanned by successive powers of
771 this element.
772 """
773 # The dimension of the subalgebra can't be greater than
774 # the big algebra, so just put everything into a list
775 # and let span() get rid of the excess.
776 V = self.vector().parent()
777 return V.span( (self**d).vector() for d in xrange(V.dimension()) )
778
779
780 def subalgebra_generated_by(self):
781 """
782 Return the associative subalgebra of the parent EJA generated
783 by this element.
784
785 TESTS::
786
787 sage: set_random_seed()
788 sage: x = random_eja().random_element()
789 sage: x.subalgebra_generated_by().is_associative()
790 True
791
792 Squaring in the subalgebra should be the same thing as
793 squaring in the superalgebra::
794
795 sage: set_random_seed()
796 sage: x = random_eja().random_element()
797 sage: u = x.subalgebra_generated_by().random_element()
798 sage: u.operator_matrix()*u.vector() == (u**2).vector()
799 True
800
801 """
802 # First get the subspace spanned by the powers of myself...
803 V = self.span_of_powers()
804 F = self.base_ring()
805
806 # Now figure out the entries of the right-multiplication
807 # matrix for the successive basis elements b0, b1,... of
808 # that subspace.
809 mats = []
810 for b_right in V.basis():
811 eja_b_right = self.parent()(b_right)
812 b_right_rows = []
813 # The first row of the right-multiplication matrix by
814 # b1 is what we get if we apply that matrix to b1. The
815 # second row of the right multiplication matrix by b1
816 # is what we get when we apply that matrix to b2...
817 #
818 # IMPORTANT: this assumes that all vectors are COLUMN
819 # vectors, unlike our superclass (which uses row vectors).
820 for b_left in V.basis():
821 eja_b_left = self.parent()(b_left)
822 # Multiply in the original EJA, but then get the
823 # coordinates from the subalgebra in terms of its
824 # basis.
825 this_row = V.coordinates((eja_b_left*eja_b_right).vector())
826 b_right_rows.append(this_row)
827 b_right_matrix = matrix(F, b_right_rows)
828 mats.append(b_right_matrix)
829
830 # It's an algebra of polynomials in one element, and EJAs
831 # are power-associative.
832 #
833 # TODO: choose generator names intelligently.
834 return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
835
836
837 def subalgebra_idempotent(self):
838 """
839 Find an idempotent in the associative subalgebra I generate
840 using Proposition 2.3.5 in Baes.
841
842 TESTS::
843
844 sage: set_random_seed()
845 sage: J = eja_rn(5)
846 sage: c = J.random_element().subalgebra_idempotent()
847 sage: c^2 == c
848 True
849 sage: J = JordanSpinSimpleEJA(5)
850 sage: c = J.random_element().subalgebra_idempotent()
851 sage: c^2 == c
852 True
853
854 """
855 if self.is_nilpotent():
856 raise ValueError("this only works with non-nilpotent elements!")
857
858 V = self.span_of_powers()
859 J = self.subalgebra_generated_by()
860 # Mis-design warning: the basis used for span_of_powers()
861 # and subalgebra_generated_by() must be the same, and in
862 # the same order!
863 u = J(V.coordinates(self.vector()))
864
865 # The image of the matrix of left-u^m-multiplication
866 # will be minimal for some natural number s...
867 s = 0
868 minimal_dim = V.dimension()
869 for i in xrange(1, V.dimension()):
870 this_dim = (u**i).operator_matrix().image().dimension()
871 if this_dim < minimal_dim:
872 minimal_dim = this_dim
873 s = i
874
875 # Now minimal_matrix should correspond to the smallest
876 # non-zero subspace in Baes's (or really, Koecher's)
877 # proposition.
878 #
879 # However, we need to restrict the matrix to work on the
880 # subspace... or do we? Can't we just solve, knowing that
881 # A(c) = u^(s+1) should have a solution in the big space,
882 # too?
883 #
884 # Beware, solve_right() means that we're using COLUMN vectors.
885 # Our FiniteDimensionalAlgebraElement superclass uses rows.
886 u_next = u**(s+1)
887 A = u_next.operator_matrix()
888 c_coordinates = A.solve_right(u_next.vector())
889
890 # Now c_coordinates is the idempotent we want, but it's in
891 # the coordinate system of the subalgebra.
892 #
893 # We need the basis for J, but as elements of the parent algebra.
894 #
895 basis = [self.parent(v) for v in V.basis()]
896 return self.parent().linear_combination(zip(c_coordinates, basis))
897
898
899 def trace(self):
900 """
901 Return my trace, the sum of my eigenvalues.
902
903 EXAMPLES::
904
905 sage: J = JordanSpinSimpleEJA(3)
906 sage: e0,e1,e2 = J.gens()
907 sage: x = e0 + e1 + e2
908 sage: x.trace()
909 2
910
911 """
912 cs = self.characteristic_polynomial().coefficients(sparse=False)
913 if len(cs) >= 2:
914 return -1*cs[-2]
915 else:
916 raise ValueError('charpoly had fewer than 2 coefficients')
917
918
919 def trace_inner_product(self, other):
920 """
921 Return the trace inner product of myself and ``other``.
922 """
923 if not other in self.parent():
924 raise TypeError("'other' must live in the same algebra")
925
926 return (self*other).trace()
927
928
929 def eja_rn(dimension, field=QQ):
930 """
931 Return the Euclidean Jordan Algebra corresponding to the set
932 `R^n` under the Hadamard product.
933
934 EXAMPLES:
935
936 This multiplication table can be verified by hand::
937
938 sage: J = eja_rn(3)
939 sage: e0,e1,e2 = J.gens()
940 sage: e0*e0
941 e0
942 sage: e0*e1
943 0
944 sage: e0*e2
945 0
946 sage: e1*e1
947 e1
948 sage: e1*e2
949 0
950 sage: e2*e2
951 e2
952
953 """
954 # The FiniteDimensionalAlgebra constructor takes a list of
955 # matrices, the ith representing right multiplication by the ith
956 # basis element in the vector space. So if e_1 = (1,0,0), then
957 # right (Hadamard) multiplication of x by e_1 picks out the first
958 # component of x; and likewise for the ith basis element e_i.
959 Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
960 for i in xrange(dimension) ]
961
962 return FiniteDimensionalEuclideanJordanAlgebra(field,
963 Qs,
964 rank=dimension,
965 inner_product=_usual_ip)
966
967
968
969 def random_eja():
970 """
971 Return a "random" finite-dimensional Euclidean Jordan Algebra.
972
973 ALGORITHM:
974
975 For now, we choose a random natural number ``n`` (greater than zero)
976 and then give you back one of the following:
977
978 * The cartesian product of the rational numbers ``n`` times; this is
979 ``QQ^n`` with the Hadamard product.
980
981 * The Jordan spin algebra on ``QQ^n``.
982
983 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
984 product.
985
986 Later this might be extended to return Cartesian products of the
987 EJAs above.
988
989 TESTS::
990
991 sage: random_eja()
992 Euclidean Jordan algebra of degree...
993
994 """
995 n = ZZ.random_element(1,5)
996 constructor = choice([eja_rn,
997 JordanSpinSimpleEJA,
998 RealSymmetricSimpleEJA,
999 ComplexHermitianSimpleEJA])
1000 return constructor(n, field=QQ)
1001
1002
1003
1004 def _real_symmetric_basis(n, field=QQ):
1005 """
1006 Return a basis for the space of real symmetric n-by-n matrices.
1007 """
1008 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1009 # coordinates.
1010 S = []
1011 for i in xrange(n):
1012 for j in xrange(i+1):
1013 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1014 if i == j:
1015 Sij = Eij
1016 else:
1017 # Beware, orthogonal but not normalized!
1018 Sij = Eij + Eij.transpose()
1019 S.append(Sij)
1020 return tuple(S)
1021
1022
1023 def _complex_hermitian_basis(n, field=QQ):
1024 """
1025 Returns a basis for the space of complex Hermitian n-by-n matrices.
1026
1027 TESTS::
1028
1029 sage: set_random_seed()
1030 sage: n = ZZ.random_element(1,5)
1031 sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
1032 True
1033
1034 """
1035 F = QuadraticField(-1, 'I')
1036 I = F.gen()
1037
1038 # This is like the symmetric case, but we need to be careful:
1039 #
1040 # * We want conjugate-symmetry, not just symmetry.
1041 # * The diagonal will (as a result) be real.
1042 #
1043 S = []
1044 for i in xrange(n):
1045 for j in xrange(i+1):
1046 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1047 if i == j:
1048 Sij = _embed_complex_matrix(Eij)
1049 S.append(Sij)
1050 else:
1051 # Beware, orthogonal but not normalized! The second one
1052 # has a minus because it's conjugated.
1053 Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
1054 S.append(Sij_real)
1055 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
1056 S.append(Sij_imag)
1057 return tuple(S)
1058
1059
1060 def _mat2vec(m):
1061 return vector(m.base_ring(), m.list())
1062
1063 def _vec2mat(v):
1064 return matrix(v.base_ring(), sqrt(v.degree()), v.list())
1065
1066 def _multiplication_table_from_matrix_basis(basis):
1067 """
1068 At least three of the five simple Euclidean Jordan algebras have the
1069 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1070 multiplication on the right is matrix multiplication. Given a basis
1071 for the underlying matrix space, this function returns a
1072 multiplication table (obtained by looping through the basis
1073 elements) for an algebra of those matrices. A reordered copy
1074 of the basis is also returned to work around the fact that
1075 the ``span()`` in this function will change the order of the basis
1076 from what we think it is, to... something else.
1077 """
1078 # In S^2, for example, we nominally have four coordinates even
1079 # though the space is of dimension three only. The vector space V
1080 # is supposed to hold the entire long vector, and the subspace W
1081 # of V will be spanned by the vectors that arise from symmetric
1082 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1083 field = basis[0].base_ring()
1084 dimension = basis[0].nrows()
1085
1086 V = VectorSpace(field, dimension**2)
1087 W = V.span( _mat2vec(s) for s in basis )
1088
1089 # Taking the span above reorders our basis (thanks, jerk!) so we
1090 # need to put our "matrix basis" in the same order as the
1091 # (reordered) vector basis.
1092 S = tuple( _vec2mat(b) for b in W.basis() )
1093
1094 Qs = []
1095 for s in S:
1096 # Brute force the multiplication-by-s matrix by looping
1097 # through all elements of the basis and doing the computation
1098 # to find out what the corresponding row should be. BEWARE:
1099 # these multiplication tables won't be symmetric! It therefore
1100 # becomes REALLY IMPORTANT that the underlying algebra
1101 # constructor uses ROW vectors and not COLUMN vectors. That's
1102 # why we're computing rows here and not columns.
1103 Q_rows = []
1104 for t in S:
1105 this_row = _mat2vec((s*t + t*s)/2)
1106 Q_rows.append(W.coordinates(this_row))
1107 Q = matrix(field, W.dimension(), Q_rows)
1108 Qs.append(Q)
1109
1110 return (Qs, S)
1111
1112
1113 def _embed_complex_matrix(M):
1114 """
1115 Embed the n-by-n complex matrix ``M`` into the space of real
1116 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1117 bi` to the block matrix ``[[a,b],[-b,a]]``.
1118
1119 EXAMPLES::
1120
1121 sage: F = QuadraticField(-1,'i')
1122 sage: x1 = F(4 - 2*i)
1123 sage: x2 = F(1 + 2*i)
1124 sage: x3 = F(-i)
1125 sage: x4 = F(6)
1126 sage: M = matrix(F,2,[x1,x2,x3,x4])
1127 sage: _embed_complex_matrix(M)
1128 [ 4 2| 1 -2]
1129 [-2 4| 2 1]
1130 [-----+-----]
1131 [ 0 1| 6 0]
1132 [-1 0| 0 6]
1133
1134 """
1135 n = M.nrows()
1136 if M.ncols() != n:
1137 raise ValueError("the matrix 'M' must be square")
1138 field = M.base_ring()
1139 blocks = []
1140 for z in M.list():
1141 a = z.real()
1142 b = z.imag()
1143 blocks.append(matrix(field, 2, [[a,-b],[b,a]]))
1144
1145 # We can drop the imaginaries here.
1146 return block_matrix(field.base_ring(), n, blocks)
1147
1148
1149 def _unembed_complex_matrix(M):
1150 """
1151 The inverse of _embed_complex_matrix().
1152
1153 EXAMPLES::
1154
1155 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1156 ....: [-2, 1, -4, 3],
1157 ....: [ 9, 10, 11, 12],
1158 ....: [-10, 9, -12, 11] ])
1159 sage: _unembed_complex_matrix(A)
1160 [ -2*i + 1 -4*i + 3]
1161 [ -10*i + 9 -12*i + 11]
1162 """
1163 n = ZZ(M.nrows())
1164 if M.ncols() != n:
1165 raise ValueError("the matrix 'M' must be square")
1166 if not n.mod(2).is_zero():
1167 raise ValueError("the matrix 'M' must be a complex embedding")
1168
1169 F = QuadraticField(-1, 'i')
1170 i = F.gen()
1171
1172 # Go top-left to bottom-right (reading order), converting every
1173 # 2-by-2 block we see to a single complex element.
1174 elements = []
1175 for k in xrange(n/2):
1176 for j in xrange(n/2):
1177 submat = M[2*k:2*k+2,2*j:2*j+2]
1178 if submat[0,0] != submat[1,1]:
1179 raise ValueError('bad real submatrix')
1180 if submat[0,1] != -submat[1,0]:
1181 raise ValueError('bad imag submatrix')
1182 z = submat[0,0] + submat[1,0]*i
1183 elements.append(z)
1184
1185 return matrix(F, n/2, elements)
1186
1187 # The usual inner product on R^n.
1188 def _usual_ip(x,y):
1189 return x.vector().inner_product(y.vector())
1190
1191 # The inner product used for the real symmetric simple EJA.
1192 # We keep it as a separate function because e.g. the complex
1193 # algebra uses the same inner product, except divided by 2.
1194 def _matrix_ip(X,Y):
1195 X_mat = X.natural_representation()
1196 Y_mat = Y.natural_representation()
1197 return (X_mat*Y_mat).trace()
1198
1199
1200 def RealSymmetricSimpleEJA(n, field=QQ):
1201 """
1202 The rank-n simple EJA consisting of real symmetric n-by-n
1203 matrices, the usual symmetric Jordan product, and the trace inner
1204 product. It has dimension `(n^2 + n)/2` over the reals.
1205
1206 EXAMPLES::
1207
1208 sage: J = RealSymmetricSimpleEJA(2)
1209 sage: e0, e1, e2 = J.gens()
1210 sage: e0*e0
1211 e0
1212 sage: e1*e1
1213 e0 + e2
1214 sage: e2*e2
1215 e2
1216
1217 TESTS:
1218
1219 The degree of this algebra is `(n^2 + n) / 2`::
1220
1221 sage: set_random_seed()
1222 sage: n = ZZ.random_element(1,5)
1223 sage: J = RealSymmetricSimpleEJA(n)
1224 sage: J.degree() == (n^2 + n)/2
1225 True
1226
1227 """
1228 S = _real_symmetric_basis(n, field=field)
1229 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1230
1231 return FiniteDimensionalEuclideanJordanAlgebra(field,
1232 Qs,
1233 rank=n,
1234 natural_basis=T,
1235 inner_product=_matrix_ip)
1236
1237
1238 def ComplexHermitianSimpleEJA(n, field=QQ):
1239 """
1240 The rank-n simple EJA consisting of complex Hermitian n-by-n
1241 matrices over the real numbers, the usual symmetric Jordan product,
1242 and the real-part-of-trace inner product. It has dimension `n^2` over
1243 the reals.
1244
1245 TESTS:
1246
1247 The degree of this algebra is `n^2`::
1248
1249 sage: set_random_seed()
1250 sage: n = ZZ.random_element(1,5)
1251 sage: J = ComplexHermitianSimpleEJA(n)
1252 sage: J.degree() == n^2
1253 True
1254
1255 """
1256 S = _complex_hermitian_basis(n)
1257 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1258
1259 # Since a+bi on the diagonal is represented as
1260 #
1261 # a + bi = [ a b ]
1262 # [ -b a ],
1263 #
1264 # we'll double-count the "a" entries if we take the trace of
1265 # the embedding.
1266 ip = lambda X,Y: _matrix_ip(X,Y)/2
1267
1268 return FiniteDimensionalEuclideanJordanAlgebra(field,
1269 Qs,
1270 rank=n,
1271 natural_basis=T,
1272 inner_product=ip)
1273
1274
1275 def QuaternionHermitianSimpleEJA(n):
1276 """
1277 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1278 matrices, the usual symmetric Jordan product, and the
1279 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1280 the reals.
1281 """
1282 pass
1283
1284 def OctonionHermitianSimpleEJA(n):
1285 """
1286 This shit be crazy. It has dimension 27 over the reals.
1287 """
1288 n = 3
1289 pass
1290
1291 def JordanSpinSimpleEJA(n, field=QQ):
1292 """
1293 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1294 with the usual inner product and jordan product ``x*y =
1295 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1296 the reals.
1297
1298 EXAMPLES:
1299
1300 This multiplication table can be verified by hand::
1301
1302 sage: J = JordanSpinSimpleEJA(4)
1303 sage: e0,e1,e2,e3 = J.gens()
1304 sage: e0*e0
1305 e0
1306 sage: e0*e1
1307 e1
1308 sage: e0*e2
1309 e2
1310 sage: e0*e3
1311 e3
1312 sage: e1*e2
1313 0
1314 sage: e1*e3
1315 0
1316 sage: e2*e3
1317 0
1318
1319 In one dimension, this is the reals under multiplication::
1320
1321 sage: J1 = JordanSpinSimpleEJA(1)
1322 sage: J2 = eja_rn(1)
1323 sage: J1 == J2
1324 True
1325
1326 """
1327 Qs = []
1328 id_matrix = identity_matrix(field, n)
1329 for i in xrange(n):
1330 ei = id_matrix.column(i)
1331 Qi = zero_matrix(field, n)
1332 Qi.set_row(0, ei)
1333 Qi.set_column(0, ei)
1334 Qi += diagonal_matrix(n, [ei[0]]*n)
1335 # The addition of the diagonal matrix adds an extra ei[0] in the
1336 # upper-left corner of the matrix.
1337 Qi[0,0] = Qi[0,0] * ~field(2)
1338 Qs.append(Qi)
1339
1340 # The rank of the spin factor algebra is two, UNLESS we're in a
1341 # one-dimensional ambient space (the rank is bounded by the
1342 # ambient dimension).
1343 return FiniteDimensionalEuclideanJordanAlgebra(field,
1344 Qs,
1345 rank=min(n,2),
1346 inner_product=_usual_ip)