]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/euclidean_jordan_algebra.py
920ecc988d21c8ce698fdd4dcf0aefceffdb8236
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.categories.magmatic_algebras import MagmaticAlgebras
9 from sage.structure.element import is_Matrix
10 from sage.structure.category_object import normalize_names
11
12 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
13 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
14
15 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
16 @staticmethod
17 def __classcall_private__(cls,
18 field,
19 mult_table,
20 names='e',
21 assume_associative=False,
22 category=None,
23 rank=None,
24 natural_basis=None):
25 n = len(mult_table)
26 mult_table = [b.base_extend(field) for b in mult_table]
27 for b in mult_table:
28 b.set_immutable()
29 if not (is_Matrix(b) and b.dimensions() == (n, n)):
30 raise ValueError("input is not a multiplication table")
31 mult_table = tuple(mult_table)
32
33 cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
34 cat.or_subcategory(category)
35 if assume_associative:
36 cat = cat.Associative()
37
38 names = normalize_names(n, names)
39
40 fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
41 return fda.__classcall__(cls,
42 field,
43 mult_table,
44 assume_associative=assume_associative,
45 names=names,
46 category=cat,
47 rank=rank,
48 natural_basis=natural_basis)
49
50
51 def __init__(self,
52 field,
53 mult_table,
54 names='e',
55 assume_associative=False,
56 category=None,
57 rank=None,
58 natural_basis=None):
59 """
60 EXAMPLES:
61
62 By definition, Jordan multiplication commutes::
63
64 sage: set_random_seed()
65 sage: J = random_eja()
66 sage: x = J.random_element()
67 sage: y = J.random_element()
68 sage: x*y == y*x
69 True
70
71 """
72 self._rank = rank
73 self._natural_basis = natural_basis
74 self._multiplication_table = mult_table
75 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
76 fda.__init__(field,
77 mult_table,
78 names=names,
79 category=category)
80
81
82 def _repr_(self):
83 """
84 Return a string representation of ``self``.
85 """
86 fmt = "Euclidean Jordan algebra of degree {} over {}"
87 return fmt.format(self.degree(), self.base_ring())
88
89
90 def _a_regular_element(self):
91 """
92 Guess a regular element. Needed to compute the basis for our
93 characteristic polynomial coefficients.
94 """
95 gs = self.gens()
96 z = self.sum( (i+1)*gs[i] for i in range(len(gs)) )
97 if not z.is_regular():
98 raise ValueError("don't know a regular element")
99 return z
100
101
102 @cached_method
103 def _charpoly_basis_space(self):
104 """
105 Return the vector space spanned by the basis used in our
106 characteristic polynomial coefficients. This is used not only to
107 compute those coefficients, but also any time we need to
108 evaluate the coefficients (like when we compute the trace or
109 determinant).
110 """
111 z = self._a_regular_element()
112 V = z.vector().parent().ambient_vector_space()
113 V1 = V.span_of_basis( (z**k).vector() for k in range(self.rank()) )
114 b = (V1.basis() + V1.complement().basis())
115 return V.span_of_basis(b)
116
117
118 @cached_method
119 def _charpoly_coeff(self, i):
120 """
121 Return the coefficient polynomial "a_{i}" of this algebra's
122 general characteristic polynomial.
123
124 Having this be a separate cached method lets us compute and
125 store the trace/determinant (a_{r-1} and a_{0} respectively)
126 separate from the entire characteristic polynomial.
127 """
128 (A_of_x, x, xr, detA) = self._charpoly_matrix_system()
129 R = A_of_x.base_ring()
130 if i >= self.rank():
131 # Guaranteed by theory
132 return R.zero()
133
134 # Danger: the in-place modification is done for performance
135 # reasons (reconstructing a matrix with huge polynomial
136 # entries is slow), but I don't know how cached_method works,
137 # so it's highly possible that we're modifying some global
138 # list variable by reference, here. In other words, you
139 # probably shouldn't call this method twice on the same
140 # algebra, at the same time, in two threads
141 Ai_orig = A_of_x.column(i)
142 A_of_x.set_column(i,xr)
143 numerator = A_of_x.det()
144 A_of_x.set_column(i,Ai_orig)
145
146 # We're relying on the theory here to ensure that each a_i is
147 # indeed back in R, and the added negative signs are to make
148 # the whole charpoly expression sum to zero.
149 return R(-numerator/detA)
150
151
152 @cached_method
153 def _charpoly_matrix_system(self):
154 """
155 Compute the matrix whose entries A_ij are polynomials in
156 X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector
157 corresponding to `x^r` and the determinent of the matrix A =
158 [A_ij]. In other words, all of the fixed (cachable) data needed
159 to compute the coefficients of the characteristic polynomial.
160 """
161 r = self.rank()
162 n = self.dimension()
163
164 # Construct a new algebra over a multivariate polynomial ring...
165 names = ['X' + str(i) for i in range(1,n+1)]
166 R = PolynomialRing(self.base_ring(), names)
167 J = FiniteDimensionalEuclideanJordanAlgebra(R,
168 self._multiplication_table,
169 rank=r)
170
171 idmat = identity_matrix(J.base_ring(), n)
172
173 W = self._charpoly_basis_space()
174 W = W.change_ring(R.fraction_field())
175
176 # Starting with the standard coordinates x = (X1,X2,...,Xn)
177 # and then converting the entries to W-coordinates allows us
178 # to pass in the standard coordinates to the charpoly and get
179 # back the right answer. Specifically, with x = (X1,X2,...,Xn),
180 # we have
181 #
182 # W.coordinates(x^2) eval'd at (standard z-coords)
183 # =
184 # W-coords of (z^2)
185 # =
186 # W-coords of (standard coords of x^2 eval'd at std-coords of z)
187 #
188 # We want the middle equivalent thing in our matrix, but use
189 # the first equivalent thing instead so that we can pass in
190 # standard coordinates.
191 x = J(vector(R, R.gens()))
192 l1 = [column_matrix(W.coordinates((x**k).vector())) for k in range(r)]
193 l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)]
194 A_of_x = block_matrix(R, 1, n, (l1 + l2))
195 xr = W.coordinates((x**r).vector())
196 return (A_of_x, x, xr, A_of_x.det())
197
198
199 @cached_method
200 def characteristic_polynomial(self):
201 """
202
203 .. WARNING::
204
205 This implementation doesn't guarantee that the polynomial
206 denominator in the coefficients is not identically zero, so
207 theoretically it could crash. The way that this is handled
208 in e.g. Faraut and Koranyi is to use a basis that guarantees
209 the denominator is non-zero. But, doing so requires knowledge
210 of at least one regular element, and we don't even know how
211 to do that. The trade-off is that, if we use the standard basis,
212 the resulting polynomial will accept the "usual" coordinates. In
213 other words, we don't have to do a change of basis before e.g.
214 computing the trace or determinant.
215
216 EXAMPLES:
217
218 The characteristic polynomial in the spin algebra is given in
219 Alizadeh, Example 11.11::
220
221 sage: J = JordanSpinEJA(3)
222 sage: p = J.characteristic_polynomial(); p
223 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
224 sage: xvec = J.one().vector()
225 sage: p(*xvec)
226 t^2 - 2*t + 1
227
228 """
229 r = self.rank()
230 n = self.dimension()
231
232 # The list of coefficient polynomials a_1, a_2, ..., a_n.
233 a = [ self._charpoly_coeff(i) for i in range(n) ]
234
235 # We go to a bit of trouble here to reorder the
236 # indeterminates, so that it's easier to evaluate the
237 # characteristic polynomial at x's coordinates and get back
238 # something in terms of t, which is what we want.
239 R = a[0].parent()
240 S = PolynomialRing(self.base_ring(),'t')
241 t = S.gen(0)
242 S = PolynomialRing(S, R.variable_names())
243 t = S(t)
244
245 # Note: all entries past the rth should be zero. The
246 # coefficient of the highest power (x^r) is 1, but it doesn't
247 # appear in the solution vector which contains coefficients
248 # for the other powers (to make them sum to x^r).
249 if (r < n):
250 a[r] = 1 # corresponds to x^r
251 else:
252 # When the rank is equal to the dimension, trying to
253 # assign a[r] goes out-of-bounds.
254 a.append(1) # corresponds to x^r
255
256 return sum( a[k]*(t**k) for k in range(len(a)) )
257
258
259 def inner_product(self, x, y):
260 """
261 The inner product associated with this Euclidean Jordan algebra.
262
263 Defaults to the trace inner product, but can be overridden by
264 subclasses if they are sure that the necessary properties are
265 satisfied.
266
267 EXAMPLES:
268
269 The inner product must satisfy its axiom for this algebra to truly
270 be a Euclidean Jordan Algebra::
271
272 sage: set_random_seed()
273 sage: J = random_eja()
274 sage: x = J.random_element()
275 sage: y = J.random_element()
276 sage: z = J.random_element()
277 sage: (x*y).inner_product(z) == y.inner_product(x*z)
278 True
279
280 """
281 if (not x in self) or (not y in self):
282 raise TypeError("arguments must live in this algebra")
283 return x.trace_inner_product(y)
284
285
286 def natural_basis(self):
287 """
288 Return a more-natural representation of this algebra's basis.
289
290 Every finite-dimensional Euclidean Jordan Algebra is a direct
291 sum of five simple algebras, four of which comprise Hermitian
292 matrices. This method returns the original "natural" basis
293 for our underlying vector space. (Typically, the natural basis
294 is used to construct the multiplication table in the first place.)
295
296 Note that this will always return a matrix. The standard basis
297 in `R^n` will be returned as `n`-by-`1` column matrices.
298
299 EXAMPLES::
300
301 sage: J = RealSymmetricEJA(2)
302 sage: J.basis()
303 Family (e0, e1, e2)
304 sage: J.natural_basis()
305 (
306 [1 0] [0 1] [0 0]
307 [0 0], [1 0], [0 1]
308 )
309
310 ::
311
312 sage: J = JordanSpinEJA(2)
313 sage: J.basis()
314 Family (e0, e1)
315 sage: J.natural_basis()
316 (
317 [1] [0]
318 [0], [1]
319 )
320
321 """
322 if self._natural_basis is None:
323 return tuple( b.vector().column() for b in self.basis() )
324 else:
325 return self._natural_basis
326
327
328 def rank(self):
329 """
330 Return the rank of this EJA.
331 """
332 if self._rank is None:
333 raise ValueError("no rank specified at genesis")
334 else:
335 return self._rank
336
337
338 class Element(FiniteDimensionalAlgebraElement):
339 """
340 An element of a Euclidean Jordan algebra.
341 """
342
343 def __init__(self, A, elt=None):
344 """
345 EXAMPLES:
346
347 The identity in `S^n` is converted to the identity in the EJA::
348
349 sage: J = RealSymmetricEJA(3)
350 sage: I = identity_matrix(QQ,3)
351 sage: J(I) == J.one()
352 True
353
354 This skew-symmetric matrix can't be represented in the EJA::
355
356 sage: J = RealSymmetricEJA(3)
357 sage: A = matrix(QQ,3, lambda i,j: i-j)
358 sage: J(A)
359 Traceback (most recent call last):
360 ...
361 ArithmeticError: vector is not in free module
362
363 """
364 # Goal: if we're given a matrix, and if it lives in our
365 # parent algebra's "natural ambient space," convert it
366 # into an algebra element.
367 #
368 # The catch is, we make a recursive call after converting
369 # the given matrix into a vector that lives in the algebra.
370 # This we need to try the parent class initializer first,
371 # to avoid recursing forever if we're given something that
372 # already fits into the algebra, but also happens to live
373 # in the parent's "natural ambient space" (this happens with
374 # vectors in R^n).
375 try:
376 FiniteDimensionalAlgebraElement.__init__(self, A, elt)
377 except ValueError:
378 natural_basis = A.natural_basis()
379 if elt in natural_basis[0].matrix_space():
380 # Thanks for nothing! Matrix spaces aren't vector
381 # spaces in Sage, so we have to figure out its
382 # natural-basis coordinates ourselves.
383 V = VectorSpace(elt.base_ring(), elt.nrows()**2)
384 W = V.span( _mat2vec(s) for s in natural_basis )
385 coords = W.coordinates(_mat2vec(elt))
386 FiniteDimensionalAlgebraElement.__init__(self, A, coords)
387
388 def __pow__(self, n):
389 """
390 Return ``self`` raised to the power ``n``.
391
392 Jordan algebras are always power-associative; see for
393 example Faraut and Koranyi, Proposition II.1.2 (ii).
394
395 .. WARNING:
396
397 We have to override this because our superclass uses row vectors
398 instead of column vectors! We, on the other hand, assume column
399 vectors everywhere.
400
401 EXAMPLES::
402
403 sage: set_random_seed()
404 sage: x = random_eja().random_element()
405 sage: x.operator_matrix()*x.vector() == (x^2).vector()
406 True
407
408 A few examples of power-associativity::
409
410 sage: set_random_seed()
411 sage: x = random_eja().random_element()
412 sage: x*(x*x)*(x*x) == x^5
413 True
414 sage: (x*x)*(x*x*x) == x^5
415 True
416
417 We also know that powers operator-commute (Koecher, Chapter
418 III, Corollary 1)::
419
420 sage: set_random_seed()
421 sage: x = random_eja().random_element()
422 sage: m = ZZ.random_element(0,10)
423 sage: n = ZZ.random_element(0,10)
424 sage: Lxm = (x^m).operator_matrix()
425 sage: Lxn = (x^n).operator_matrix()
426 sage: Lxm*Lxn == Lxn*Lxm
427 True
428
429 """
430 A = self.parent()
431 if n == 0:
432 return A.one()
433 elif n == 1:
434 return self
435 else:
436 return A( (self.operator_matrix()**(n-1))*self.vector() )
437
438
439 def apply_univariate_polynomial(self, p):
440 """
441 Apply the univariate polynomial ``p`` to this element.
442
443 A priori, SageMath won't allow us to apply a univariate
444 polynomial to an element of an EJA, because we don't know
445 that EJAs are rings (they are usually not associative). Of
446 course, we know that EJAs are power-associative, so the
447 operation is ultimately kosher. This function sidesteps
448 the CAS to get the answer we want and expect.
449
450 EXAMPLES::
451
452 sage: R = PolynomialRing(QQ, 't')
453 sage: t = R.gen(0)
454 sage: p = t^4 - t^3 + 5*t - 2
455 sage: J = RealCartesianProductEJA(5)
456 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
457 True
458
459 TESTS:
460
461 We should always get back an element of the algebra::
462
463 sage: set_random_seed()
464 sage: p = PolynomialRing(QQ, 't').random_element()
465 sage: J = random_eja()
466 sage: x = J.random_element()
467 sage: x.apply_univariate_polynomial(p) in J
468 True
469
470 """
471 if len(p.variables()) > 1:
472 raise ValueError("not a univariate polynomial")
473 P = self.parent()
474 R = P.base_ring()
475 # Convert the coeficcients to the parent's base ring,
476 # because a priori they might live in an (unnecessarily)
477 # larger ring for which P.sum() would fail below.
478 cs = [ R(c) for c in p.coefficients(sparse=False) ]
479 return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
480
481
482 def characteristic_polynomial(self):
483 """
484 Return the characteristic polynomial of this element.
485
486 EXAMPLES:
487
488 The rank of `R^3` is three, and the minimal polynomial of
489 the identity element is `(t-1)` from which it follows that
490 the characteristic polynomial should be `(t-1)^3`::
491
492 sage: J = RealCartesianProductEJA(3)
493 sage: J.one().characteristic_polynomial()
494 t^3 - 3*t^2 + 3*t - 1
495
496 Likewise, the characteristic of the zero element in the
497 rank-three algebra `R^{n}` should be `t^{3}`::
498
499 sage: J = RealCartesianProductEJA(3)
500 sage: J.zero().characteristic_polynomial()
501 t^3
502
503 The characteristic polynomial of an element should evaluate
504 to zero on that element::
505
506 sage: set_random_seed()
507 sage: x = RealCartesianProductEJA(3).random_element()
508 sage: p = x.characteristic_polynomial()
509 sage: x.apply_univariate_polynomial(p)
510 0
511
512 """
513 p = self.parent().characteristic_polynomial()
514 return p(*self.vector())
515
516
517 def inner_product(self, other):
518 """
519 Return the parent algebra's inner product of myself and ``other``.
520
521 EXAMPLES:
522
523 The inner product in the Jordan spin algebra is the usual
524 inner product on `R^n` (this example only works because the
525 basis for the Jordan algebra is the standard basis in `R^n`)::
526
527 sage: J = JordanSpinEJA(3)
528 sage: x = vector(QQ,[1,2,3])
529 sage: y = vector(QQ,[4,5,6])
530 sage: x.inner_product(y)
531 32
532 sage: J(x).inner_product(J(y))
533 32
534
535 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
536 multiplication is the usual matrix multiplication in `S^n`,
537 so the inner product of the identity matrix with itself
538 should be the `n`::
539
540 sage: J = RealSymmetricEJA(3)
541 sage: J.one().inner_product(J.one())
542 3
543
544 Likewise, the inner product on `C^n` is `<X,Y> =
545 Re(trace(X*Y))`, where we must necessarily take the real
546 part because the product of Hermitian matrices may not be
547 Hermitian::
548
549 sage: J = ComplexHermitianEJA(3)
550 sage: J.one().inner_product(J.one())
551 3
552
553 Ditto for the quaternions::
554
555 sage: J = QuaternionHermitianEJA(3)
556 sage: J.one().inner_product(J.one())
557 3
558
559 TESTS:
560
561 Ensure that we can always compute an inner product, and that
562 it gives us back a real number::
563
564 sage: set_random_seed()
565 sage: J = random_eja()
566 sage: x = J.random_element()
567 sage: y = J.random_element()
568 sage: x.inner_product(y) in RR
569 True
570
571 """
572 P = self.parent()
573 if not other in P:
574 raise TypeError("'other' must live in the same algebra")
575
576 return P.inner_product(self, other)
577
578
579 def operator_commutes_with(self, other):
580 """
581 Return whether or not this element operator-commutes
582 with ``other``.
583
584 EXAMPLES:
585
586 The definition of a Jordan algebra says that any element
587 operator-commutes with its square::
588
589 sage: set_random_seed()
590 sage: x = random_eja().random_element()
591 sage: x.operator_commutes_with(x^2)
592 True
593
594 TESTS:
595
596 Test Lemma 1 from Chapter III of Koecher::
597
598 sage: set_random_seed()
599 sage: J = random_eja()
600 sage: u = J.random_element()
601 sage: v = J.random_element()
602 sage: lhs = u.operator_commutes_with(u*v)
603 sage: rhs = v.operator_commutes_with(u^2)
604 sage: lhs == rhs
605 True
606
607 """
608 if not other in self.parent():
609 raise TypeError("'other' must live in the same algebra")
610
611 A = self.operator_matrix()
612 B = other.operator_matrix()
613 return (A*B == B*A)
614
615
616 def det(self):
617 """
618 Return my determinant, the product of my eigenvalues.
619
620 EXAMPLES::
621
622 sage: J = JordanSpinEJA(2)
623 sage: e0,e1 = J.gens()
624 sage: x = sum( J.gens() )
625 sage: x.det()
626 0
627
628 ::
629
630 sage: J = JordanSpinEJA(3)
631 sage: e0,e1,e2 = J.gens()
632 sage: x = sum( J.gens() )
633 sage: x.det()
634 -1
635
636 TESTS:
637
638 An element is invertible if and only if its determinant is
639 non-zero::
640
641 sage: set_random_seed()
642 sage: x = random_eja().random_element()
643 sage: x.is_invertible() == (x.det() != 0)
644 True
645
646 """
647 P = self.parent()
648 r = P.rank()
649 p = P._charpoly_coeff(0)
650 # The _charpoly_coeff function already adds the factor of
651 # -1 to ensure that _charpoly_coeff(0) is really what
652 # appears in front of t^{0} in the charpoly. However,
653 # we want (-1)^r times THAT for the determinant.
654 return ((-1)**r)*p(*self.vector())
655
656
657 def inverse(self):
658 """
659 Return the Jordan-multiplicative inverse of this element.
660
661 We can't use the superclass method because it relies on the
662 algebra being associative.
663
664 EXAMPLES:
665
666 The inverse in the spin factor algebra is given in Alizadeh's
667 Example 11.11::
668
669 sage: set_random_seed()
670 sage: n = ZZ.random_element(1,10)
671 sage: J = JordanSpinEJA(n)
672 sage: x = J.random_element()
673 sage: while x.is_zero():
674 ....: x = J.random_element()
675 sage: x_vec = x.vector()
676 sage: x0 = x_vec[0]
677 sage: x_bar = x_vec[1:]
678 sage: coeff = 1/(x0^2 - x_bar.inner_product(x_bar))
679 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
680 sage: x_inverse = coeff*inv_vec
681 sage: x.inverse() == J(x_inverse)
682 True
683
684 TESTS:
685
686 The identity element is its own inverse::
687
688 sage: set_random_seed()
689 sage: J = random_eja()
690 sage: J.one().inverse() == J.one()
691 True
692
693 If an element has an inverse, it acts like one::
694
695 sage: set_random_seed()
696 sage: J = random_eja()
697 sage: x = J.random_element()
698 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
699 True
700
701 """
702 if not self.is_invertible():
703 raise ValueError("element not invertible")
704
705 if self.parent().is_associative():
706 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
707 # elt is in the right coordinates, but has the wrong class.
708 return self.parent()(elt.inverse().vector())
709
710 # We do this a little different than the usual recursive
711 # call to a finite-dimensional algebra element, because we
712 # wind up with an inverse that lives in the subalgebra and
713 # we need information about the parent to convert it back.
714 V = self.span_of_powers()
715 assoc_subalg = self.subalgebra_generated_by()
716 # Mis-design warning: the basis used for span_of_powers()
717 # and subalgebra_generated_by() must be the same, and in
718 # the same order!
719 elt = assoc_subalg(V.coordinates(self.vector()))
720
721 # This will be in the subalgebra's coordinates...
722 fda_elt = FiniteDimensionalAlgebraElement(assoc_subalg, elt)
723 subalg_inverse = fda_elt.inverse()
724
725 # So we have to convert back...
726 basis = [ self.parent(v) for v in V.basis() ]
727 pairs = zip(subalg_inverse.vector(), basis)
728 return self.parent().linear_combination(pairs)
729
730
731 def is_invertible(self):
732 """
733 Return whether or not this element is invertible.
734
735 We can't use the superclass method because it relies on
736 the algebra being associative.
737
738 ALGORITHM:
739
740 The usual way to do this is to check if the determinant is
741 zero, but we need the characteristic polynomial for the
742 determinant. The minimal polynomial is a lot easier to get,
743 so we use Corollary 2 in Chapter V of Koecher to check
744 whether or not the paren't algebra's zero element is a root
745 of this element's minimal polynomial.
746
747 TESTS:
748
749 The identity element is always invertible::
750
751 sage: set_random_seed()
752 sage: J = random_eja()
753 sage: J.one().is_invertible()
754 True
755
756 The zero element is never invertible::
757
758 sage: set_random_seed()
759 sage: J = random_eja()
760 sage: J.zero().is_invertible()
761 False
762
763 """
764 zero = self.parent().zero()
765 p = self.minimal_polynomial()
766 return not (p(zero) == zero)
767
768
769 def is_nilpotent(self):
770 """
771 Return whether or not some power of this element is zero.
772
773 The superclass method won't work unless we're in an
774 associative algebra, and we aren't. However, we generate
775 an assocoative subalgebra and we're nilpotent there if and
776 only if we're nilpotent here (probably).
777
778 TESTS:
779
780 The identity element is never nilpotent::
781
782 sage: set_random_seed()
783 sage: random_eja().one().is_nilpotent()
784 False
785
786 The additive identity is always nilpotent::
787
788 sage: set_random_seed()
789 sage: random_eja().zero().is_nilpotent()
790 True
791
792 """
793 # The element we're going to call "is_nilpotent()" on.
794 # Either myself, interpreted as an element of a finite-
795 # dimensional algebra, or an element of an associative
796 # subalgebra.
797 elt = None
798
799 if self.parent().is_associative():
800 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
801 else:
802 V = self.span_of_powers()
803 assoc_subalg = self.subalgebra_generated_by()
804 # Mis-design warning: the basis used for span_of_powers()
805 # and subalgebra_generated_by() must be the same, and in
806 # the same order!
807 elt = assoc_subalg(V.coordinates(self.vector()))
808
809 # Recursive call, but should work since elt lives in an
810 # associative algebra.
811 return elt.is_nilpotent()
812
813
814 def is_regular(self):
815 """
816 Return whether or not this is a regular element.
817
818 EXAMPLES:
819
820 The identity element always has degree one, but any element
821 linearly-independent from it is regular::
822
823 sage: J = JordanSpinEJA(5)
824 sage: J.one().is_regular()
825 False
826 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
827 sage: for x in J.gens():
828 ....: (J.one() + x).is_regular()
829 False
830 True
831 True
832 True
833 True
834
835 """
836 return self.degree() == self.parent().rank()
837
838
839 def degree(self):
840 """
841 Compute the degree of this element the straightforward way
842 according to the definition; by appending powers to a list
843 and figuring out its dimension (that is, whether or not
844 they're linearly dependent).
845
846 EXAMPLES::
847
848 sage: J = JordanSpinEJA(4)
849 sage: J.one().degree()
850 1
851 sage: e0,e1,e2,e3 = J.gens()
852 sage: (e0 - e1).degree()
853 2
854
855 In the spin factor algebra (of rank two), all elements that
856 aren't multiples of the identity are regular::
857
858 sage: set_random_seed()
859 sage: n = ZZ.random_element(1,10)
860 sage: J = JordanSpinEJA(n)
861 sage: x = J.random_element()
862 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
863 True
864
865 """
866 return self.span_of_powers().dimension()
867
868
869 def minimal_polynomial(self):
870 """
871 Return the minimal polynomial of this element,
872 as a function of the variable `t`.
873
874 ALGORITHM:
875
876 We restrict ourselves to the associative subalgebra
877 generated by this element, and then return the minimal
878 polynomial of this element's operator matrix (in that
879 subalgebra). This works by Baes Proposition 2.3.16.
880
881 TESTS:
882
883 The minimal polynomial of the identity and zero elements are
884 always the same::
885
886 sage: set_random_seed()
887 sage: J = random_eja()
888 sage: J.one().minimal_polynomial()
889 t - 1
890 sage: J.zero().minimal_polynomial()
891 t
892
893 The degree of an element is (by one definition) the degree
894 of its minimal polynomial::
895
896 sage: set_random_seed()
897 sage: x = random_eja().random_element()
898 sage: x.degree() == x.minimal_polynomial().degree()
899 True
900
901 The minimal polynomial and the characteristic polynomial coincide
902 and are known (see Alizadeh, Example 11.11) for all elements of
903 the spin factor algebra that aren't scalar multiples of the
904 identity::
905
906 sage: set_random_seed()
907 sage: n = ZZ.random_element(2,10)
908 sage: J = JordanSpinEJA(n)
909 sage: y = J.random_element()
910 sage: while y == y.coefficient(0)*J.one():
911 ....: y = J.random_element()
912 sage: y0 = y.vector()[0]
913 sage: y_bar = y.vector()[1:]
914 sage: actual = y.minimal_polynomial()
915 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
916 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
917 sage: bool(actual == expected)
918 True
919
920 The minimal polynomial should always kill its element::
921
922 sage: set_random_seed()
923 sage: x = random_eja().random_element()
924 sage: p = x.minimal_polynomial()
925 sage: x.apply_univariate_polynomial(p)
926 0
927
928 """
929 V = self.span_of_powers()
930 assoc_subalg = self.subalgebra_generated_by()
931 # Mis-design warning: the basis used for span_of_powers()
932 # and subalgebra_generated_by() must be the same, and in
933 # the same order!
934 elt = assoc_subalg(V.coordinates(self.vector()))
935
936 # We get back a symbolic polynomial in 'x' but want a real
937 # polynomial in 't'.
938 p_of_x = elt.operator_matrix().minimal_polynomial()
939 return p_of_x.change_variable_name('t')
940
941
942 def natural_representation(self):
943 """
944 Return a more-natural representation of this element.
945
946 Every finite-dimensional Euclidean Jordan Algebra is a
947 direct sum of five simple algebras, four of which comprise
948 Hermitian matrices. This method returns the original
949 "natural" representation of this element as a Hermitian
950 matrix, if it has one. If not, you get the usual representation.
951
952 EXAMPLES::
953
954 sage: J = ComplexHermitianEJA(3)
955 sage: J.one()
956 e0 + e5 + e8
957 sage: J.one().natural_representation()
958 [1 0 0 0 0 0]
959 [0 1 0 0 0 0]
960 [0 0 1 0 0 0]
961 [0 0 0 1 0 0]
962 [0 0 0 0 1 0]
963 [0 0 0 0 0 1]
964
965 ::
966
967 sage: J = QuaternionHermitianEJA(3)
968 sage: J.one()
969 e0 + e9 + e14
970 sage: J.one().natural_representation()
971 [1 0 0 0 0 0 0 0 0 0 0 0]
972 [0 1 0 0 0 0 0 0 0 0 0 0]
973 [0 0 1 0 0 0 0 0 0 0 0 0]
974 [0 0 0 1 0 0 0 0 0 0 0 0]
975 [0 0 0 0 1 0 0 0 0 0 0 0]
976 [0 0 0 0 0 1 0 0 0 0 0 0]
977 [0 0 0 0 0 0 1 0 0 0 0 0]
978 [0 0 0 0 0 0 0 1 0 0 0 0]
979 [0 0 0 0 0 0 0 0 1 0 0 0]
980 [0 0 0 0 0 0 0 0 0 1 0 0]
981 [0 0 0 0 0 0 0 0 0 0 1 0]
982 [0 0 0 0 0 0 0 0 0 0 0 1]
983
984 """
985 B = self.parent().natural_basis()
986 W = B[0].matrix_space()
987 return W.linear_combination(zip(self.vector(), B))
988
989
990 def operator_matrix(self):
991 """
992 Return the matrix that represents left- (or right-)
993 multiplication by this element in the parent algebra.
994
995 We have to override this because the superclass method
996 returns a matrix that acts on row vectors (that is, on
997 the right).
998
999 EXAMPLES:
1000
1001 Test the first polarization identity from my notes, Koecher Chapter
1002 III, or from Baes (2.3)::
1003
1004 sage: set_random_seed()
1005 sage: J = random_eja()
1006 sage: x = J.random_element()
1007 sage: y = J.random_element()
1008 sage: Lx = x.operator_matrix()
1009 sage: Ly = y.operator_matrix()
1010 sage: Lxx = (x*x).operator_matrix()
1011 sage: Lxy = (x*y).operator_matrix()
1012 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
1013 True
1014
1015 Test the second polarization identity from my notes or from
1016 Baes (2.4)::
1017
1018 sage: set_random_seed()
1019 sage: J = random_eja()
1020 sage: x = J.random_element()
1021 sage: y = J.random_element()
1022 sage: z = J.random_element()
1023 sage: Lx = x.operator_matrix()
1024 sage: Ly = y.operator_matrix()
1025 sage: Lz = z.operator_matrix()
1026 sage: Lzy = (z*y).operator_matrix()
1027 sage: Lxy = (x*y).operator_matrix()
1028 sage: Lxz = (x*z).operator_matrix()
1029 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
1030 True
1031
1032 Test the third polarization identity from my notes or from
1033 Baes (2.5)::
1034
1035 sage: set_random_seed()
1036 sage: J = random_eja()
1037 sage: u = J.random_element()
1038 sage: y = J.random_element()
1039 sage: z = J.random_element()
1040 sage: Lu = u.operator_matrix()
1041 sage: Ly = y.operator_matrix()
1042 sage: Lz = z.operator_matrix()
1043 sage: Lzy = (z*y).operator_matrix()
1044 sage: Luy = (u*y).operator_matrix()
1045 sage: Luz = (u*z).operator_matrix()
1046 sage: Luyz = (u*(y*z)).operator_matrix()
1047 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
1048 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
1049 sage: bool(lhs == rhs)
1050 True
1051
1052 """
1053 fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
1054 return fda_elt.matrix().transpose()
1055
1056
1057 def quadratic_representation(self, other=None):
1058 """
1059 Return the quadratic representation of this element.
1060
1061 EXAMPLES:
1062
1063 The explicit form in the spin factor algebra is given by
1064 Alizadeh's Example 11.12::
1065
1066 sage: set_random_seed()
1067 sage: n = ZZ.random_element(1,10)
1068 sage: J = JordanSpinEJA(n)
1069 sage: x = J.random_element()
1070 sage: x_vec = x.vector()
1071 sage: x0 = x_vec[0]
1072 sage: x_bar = x_vec[1:]
1073 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
1074 sage: B = 2*x0*x_bar.row()
1075 sage: C = 2*x0*x_bar.column()
1076 sage: D = identity_matrix(QQ, n-1)
1077 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
1078 sage: D = D + 2*x_bar.tensor_product(x_bar)
1079 sage: Q = block_matrix(2,2,[A,B,C,D])
1080 sage: Q == x.quadratic_representation()
1081 True
1082
1083 Test all of the properties from Theorem 11.2 in Alizadeh::
1084
1085 sage: set_random_seed()
1086 sage: J = random_eja()
1087 sage: x = J.random_element()
1088 sage: y = J.random_element()
1089
1090 Property 1:
1091
1092 sage: actual = x.quadratic_representation(y)
1093 sage: expected = ( (x+y).quadratic_representation()
1094 ....: -x.quadratic_representation()
1095 ....: -y.quadratic_representation() ) / 2
1096 sage: actual == expected
1097 True
1098
1099 Property 2:
1100
1101 sage: alpha = QQ.random_element()
1102 sage: actual = (alpha*x).quadratic_representation()
1103 sage: expected = (alpha^2)*x.quadratic_representation()
1104 sage: actual == expected
1105 True
1106
1107 Property 5:
1108
1109 sage: Qy = y.quadratic_representation()
1110 sage: actual = J(Qy*x.vector()).quadratic_representation()
1111 sage: expected = Qy*x.quadratic_representation()*Qy
1112 sage: actual == expected
1113 True
1114
1115 Property 6:
1116
1117 sage: k = ZZ.random_element(1,10)
1118 sage: actual = (x^k).quadratic_representation()
1119 sage: expected = (x.quadratic_representation())^k
1120 sage: actual == expected
1121 True
1122
1123 """
1124 if other is None:
1125 other=self
1126 elif not other in self.parent():
1127 raise TypeError("'other' must live in the same algebra")
1128
1129 L = self.operator_matrix()
1130 M = other.operator_matrix()
1131 return ( L*M + M*L - (self*other).operator_matrix() )
1132
1133
1134 def span_of_powers(self):
1135 """
1136 Return the vector space spanned by successive powers of
1137 this element.
1138 """
1139 # The dimension of the subalgebra can't be greater than
1140 # the big algebra, so just put everything into a list
1141 # and let span() get rid of the excess.
1142 #
1143 # We do the extra ambient_vector_space() in case we're messing
1144 # with polynomials and the direct parent is a module.
1145 V = self.vector().parent().ambient_vector_space()
1146 return V.span( (self**d).vector() for d in xrange(V.dimension()) )
1147
1148
1149 def subalgebra_generated_by(self):
1150 """
1151 Return the associative subalgebra of the parent EJA generated
1152 by this element.
1153
1154 TESTS::
1155
1156 sage: set_random_seed()
1157 sage: x = random_eja().random_element()
1158 sage: x.subalgebra_generated_by().is_associative()
1159 True
1160
1161 Squaring in the subalgebra should be the same thing as
1162 squaring in the superalgebra::
1163
1164 sage: set_random_seed()
1165 sage: x = random_eja().random_element()
1166 sage: u = x.subalgebra_generated_by().random_element()
1167 sage: u.operator_matrix()*u.vector() == (u**2).vector()
1168 True
1169
1170 """
1171 # First get the subspace spanned by the powers of myself...
1172 V = self.span_of_powers()
1173 F = self.base_ring()
1174
1175 # Now figure out the entries of the right-multiplication
1176 # matrix for the successive basis elements b0, b1,... of
1177 # that subspace.
1178 mats = []
1179 for b_right in V.basis():
1180 eja_b_right = self.parent()(b_right)
1181 b_right_rows = []
1182 # The first row of the right-multiplication matrix by
1183 # b1 is what we get if we apply that matrix to b1. The
1184 # second row of the right multiplication matrix by b1
1185 # is what we get when we apply that matrix to b2...
1186 #
1187 # IMPORTANT: this assumes that all vectors are COLUMN
1188 # vectors, unlike our superclass (which uses row vectors).
1189 for b_left in V.basis():
1190 eja_b_left = self.parent()(b_left)
1191 # Multiply in the original EJA, but then get the
1192 # coordinates from the subalgebra in terms of its
1193 # basis.
1194 this_row = V.coordinates((eja_b_left*eja_b_right).vector())
1195 b_right_rows.append(this_row)
1196 b_right_matrix = matrix(F, b_right_rows)
1197 mats.append(b_right_matrix)
1198
1199 # It's an algebra of polynomials in one element, and EJAs
1200 # are power-associative.
1201 #
1202 # TODO: choose generator names intelligently.
1203 return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
1204
1205
1206 def subalgebra_idempotent(self):
1207 """
1208 Find an idempotent in the associative subalgebra I generate
1209 using Proposition 2.3.5 in Baes.
1210
1211 TESTS::
1212
1213 sage: set_random_seed()
1214 sage: J = random_eja()
1215 sage: x = J.random_element()
1216 sage: while x.is_nilpotent():
1217 ....: x = J.random_element()
1218 sage: c = x.subalgebra_idempotent()
1219 sage: c^2 == c
1220 True
1221
1222 """
1223 if self.is_nilpotent():
1224 raise ValueError("this only works with non-nilpotent elements!")
1225
1226 V = self.span_of_powers()
1227 J = self.subalgebra_generated_by()
1228 # Mis-design warning: the basis used for span_of_powers()
1229 # and subalgebra_generated_by() must be the same, and in
1230 # the same order!
1231 u = J(V.coordinates(self.vector()))
1232
1233 # The image of the matrix of left-u^m-multiplication
1234 # will be minimal for some natural number s...
1235 s = 0
1236 minimal_dim = V.dimension()
1237 for i in xrange(1, V.dimension()):
1238 this_dim = (u**i).operator_matrix().image().dimension()
1239 if this_dim < minimal_dim:
1240 minimal_dim = this_dim
1241 s = i
1242
1243 # Now minimal_matrix should correspond to the smallest
1244 # non-zero subspace in Baes's (or really, Koecher's)
1245 # proposition.
1246 #
1247 # However, we need to restrict the matrix to work on the
1248 # subspace... or do we? Can't we just solve, knowing that
1249 # A(c) = u^(s+1) should have a solution in the big space,
1250 # too?
1251 #
1252 # Beware, solve_right() means that we're using COLUMN vectors.
1253 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1254 u_next = u**(s+1)
1255 A = u_next.operator_matrix()
1256 c_coordinates = A.solve_right(u_next.vector())
1257
1258 # Now c_coordinates is the idempotent we want, but it's in
1259 # the coordinate system of the subalgebra.
1260 #
1261 # We need the basis for J, but as elements of the parent algebra.
1262 #
1263 basis = [self.parent(v) for v in V.basis()]
1264 return self.parent().linear_combination(zip(c_coordinates, basis))
1265
1266
1267 def trace(self):
1268 """
1269 Return my trace, the sum of my eigenvalues.
1270
1271 EXAMPLES::
1272
1273 sage: J = JordanSpinEJA(3)
1274 sage: x = sum(J.gens())
1275 sage: x.trace()
1276 2
1277
1278 ::
1279
1280 sage: J = RealCartesianProductEJA(5)
1281 sage: J.one().trace()
1282 5
1283
1284 TESTS:
1285
1286 The trace of an element is a real number::
1287
1288 sage: set_random_seed()
1289 sage: J = random_eja()
1290 sage: J.random_element().trace() in J.base_ring()
1291 True
1292
1293 """
1294 P = self.parent()
1295 r = P.rank()
1296 p = P._charpoly_coeff(r-1)
1297 # The _charpoly_coeff function already adds the factor of
1298 # -1 to ensure that _charpoly_coeff(r-1) is really what
1299 # appears in front of t^{r-1} in the charpoly. However,
1300 # we want the negative of THAT for the trace.
1301 return -p(*self.vector())
1302
1303
1304 def trace_inner_product(self, other):
1305 """
1306 Return the trace inner product of myself and ``other``.
1307
1308 TESTS:
1309
1310 The trace inner product is commutative::
1311
1312 sage: set_random_seed()
1313 sage: J = random_eja()
1314 sage: x = J.random_element(); y = J.random_element()
1315 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1316 True
1317
1318 The trace inner product is bilinear::
1319
1320 sage: set_random_seed()
1321 sage: J = random_eja()
1322 sage: x = J.random_element()
1323 sage: y = J.random_element()
1324 sage: z = J.random_element()
1325 sage: a = QQ.random_element();
1326 sage: actual = (a*(x+z)).trace_inner_product(y)
1327 sage: expected = ( a*x.trace_inner_product(y) +
1328 ....: a*z.trace_inner_product(y) )
1329 sage: actual == expected
1330 True
1331 sage: actual = x.trace_inner_product(a*(y+z))
1332 sage: expected = ( a*x.trace_inner_product(y) +
1333 ....: a*x.trace_inner_product(z) )
1334 sage: actual == expected
1335 True
1336
1337 The trace inner product satisfies the compatibility
1338 condition in the definition of a Euclidean Jordan algebra::
1339
1340 sage: set_random_seed()
1341 sage: J = random_eja()
1342 sage: x = J.random_element()
1343 sage: y = J.random_element()
1344 sage: z = J.random_element()
1345 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1346 True
1347
1348 """
1349 if not other in self.parent():
1350 raise TypeError("'other' must live in the same algebra")
1351
1352 return (self*other).trace()
1353
1354
1355 class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
1356 """
1357 Return the Euclidean Jordan Algebra corresponding to the set
1358 `R^n` under the Hadamard product.
1359
1360 Note: this is nothing more than the Cartesian product of ``n``
1361 copies of the spin algebra. Once Cartesian product algebras
1362 are implemented, this can go.
1363
1364 EXAMPLES:
1365
1366 This multiplication table can be verified by hand::
1367
1368 sage: J = RealCartesianProductEJA(3)
1369 sage: e0,e1,e2 = J.gens()
1370 sage: e0*e0
1371 e0
1372 sage: e0*e1
1373 0
1374 sage: e0*e2
1375 0
1376 sage: e1*e1
1377 e1
1378 sage: e1*e2
1379 0
1380 sage: e2*e2
1381 e2
1382
1383 """
1384 @staticmethod
1385 def __classcall_private__(cls, n, field=QQ):
1386 # The FiniteDimensionalAlgebra constructor takes a list of
1387 # matrices, the ith representing right multiplication by the ith
1388 # basis element in the vector space. So if e_1 = (1,0,0), then
1389 # right (Hadamard) multiplication of x by e_1 picks out the first
1390 # component of x; and likewise for the ith basis element e_i.
1391 Qs = [ matrix(field, n, n, lambda k,j: 1*(k == j == i))
1392 for i in xrange(n) ]
1393
1394 fdeja = super(RealCartesianProductEJA, cls)
1395 return fdeja.__classcall_private__(cls, field, Qs, rank=n)
1396
1397 def inner_product(self, x, y):
1398 return _usual_ip(x,y)
1399
1400
1401 def random_eja():
1402 """
1403 Return a "random" finite-dimensional Euclidean Jordan Algebra.
1404
1405 ALGORITHM:
1406
1407 For now, we choose a random natural number ``n`` (greater than zero)
1408 and then give you back one of the following:
1409
1410 * The cartesian product of the rational numbers ``n`` times; this is
1411 ``QQ^n`` with the Hadamard product.
1412
1413 * The Jordan spin algebra on ``QQ^n``.
1414
1415 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
1416 product.
1417
1418 * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
1419 in the space of ``2n``-by-``2n`` real symmetric matrices.
1420
1421 * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
1422 in the space of ``4n``-by-``4n`` real symmetric matrices.
1423
1424 Later this might be extended to return Cartesian products of the
1425 EJAs above.
1426
1427 TESTS::
1428
1429 sage: random_eja()
1430 Euclidean Jordan algebra of degree...
1431
1432 """
1433
1434 # The max_n component lets us choose different upper bounds on the
1435 # value "n" that gets passed to the constructor. This is needed
1436 # because e.g. R^{10} is reasonable to test, while the Hermitian
1437 # 10-by-10 quaternion matrices are not.
1438 (constructor, max_n) = choice([(RealCartesianProductEJA, 6),
1439 (JordanSpinEJA, 6),
1440 (RealSymmetricEJA, 5),
1441 (ComplexHermitianEJA, 4),
1442 (QuaternionHermitianEJA, 3)])
1443 n = ZZ.random_element(1, max_n)
1444 return constructor(n, field=QQ)
1445
1446
1447
1448 def _real_symmetric_basis(n, field=QQ):
1449 """
1450 Return a basis for the space of real symmetric n-by-n matrices.
1451 """
1452 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1453 # coordinates.
1454 S = []
1455 for i in xrange(n):
1456 for j in xrange(i+1):
1457 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1458 if i == j:
1459 Sij = Eij
1460 else:
1461 # Beware, orthogonal but not normalized!
1462 Sij = Eij + Eij.transpose()
1463 S.append(Sij)
1464 return tuple(S)
1465
1466
1467 def _complex_hermitian_basis(n, field=QQ):
1468 """
1469 Returns a basis for the space of complex Hermitian n-by-n matrices.
1470
1471 TESTS::
1472
1473 sage: set_random_seed()
1474 sage: n = ZZ.random_element(1,5)
1475 sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
1476 True
1477
1478 """
1479 F = QuadraticField(-1, 'I')
1480 I = F.gen()
1481
1482 # This is like the symmetric case, but we need to be careful:
1483 #
1484 # * We want conjugate-symmetry, not just symmetry.
1485 # * The diagonal will (as a result) be real.
1486 #
1487 S = []
1488 for i in xrange(n):
1489 for j in xrange(i+1):
1490 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1491 if i == j:
1492 Sij = _embed_complex_matrix(Eij)
1493 S.append(Sij)
1494 else:
1495 # Beware, orthogonal but not normalized! The second one
1496 # has a minus because it's conjugated.
1497 Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
1498 S.append(Sij_real)
1499 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
1500 S.append(Sij_imag)
1501 return tuple(S)
1502
1503
1504 def _quaternion_hermitian_basis(n, field=QQ):
1505 """
1506 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1507
1508 TESTS::
1509
1510 sage: set_random_seed()
1511 sage: n = ZZ.random_element(1,5)
1512 sage: all( M.is_symmetric() for M in _quaternion_hermitian_basis(n) )
1513 True
1514
1515 """
1516 Q = QuaternionAlgebra(QQ,-1,-1)
1517 I,J,K = Q.gens()
1518
1519 # This is like the symmetric case, but we need to be careful:
1520 #
1521 # * We want conjugate-symmetry, not just symmetry.
1522 # * The diagonal will (as a result) be real.
1523 #
1524 S = []
1525 for i in xrange(n):
1526 for j in xrange(i+1):
1527 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1528 if i == j:
1529 Sij = _embed_quaternion_matrix(Eij)
1530 S.append(Sij)
1531 else:
1532 # Beware, orthogonal but not normalized! The second,
1533 # third, and fourth ones have a minus because they're
1534 # conjugated.
1535 Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
1536 S.append(Sij_real)
1537 Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
1538 S.append(Sij_I)
1539 Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
1540 S.append(Sij_J)
1541 Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
1542 S.append(Sij_K)
1543 return tuple(S)
1544
1545
1546 def _mat2vec(m):
1547 return vector(m.base_ring(), m.list())
1548
1549 def _vec2mat(v):
1550 return matrix(v.base_ring(), sqrt(v.degree()), v.list())
1551
1552 def _multiplication_table_from_matrix_basis(basis):
1553 """
1554 At least three of the five simple Euclidean Jordan algebras have the
1555 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1556 multiplication on the right is matrix multiplication. Given a basis
1557 for the underlying matrix space, this function returns a
1558 multiplication table (obtained by looping through the basis
1559 elements) for an algebra of those matrices. A reordered copy
1560 of the basis is also returned to work around the fact that
1561 the ``span()`` in this function will change the order of the basis
1562 from what we think it is, to... something else.
1563 """
1564 # In S^2, for example, we nominally have four coordinates even
1565 # though the space is of dimension three only. The vector space V
1566 # is supposed to hold the entire long vector, and the subspace W
1567 # of V will be spanned by the vectors that arise from symmetric
1568 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1569 field = basis[0].base_ring()
1570 dimension = basis[0].nrows()
1571
1572 V = VectorSpace(field, dimension**2)
1573 W = V.span( _mat2vec(s) for s in basis )
1574
1575 # Taking the span above reorders our basis (thanks, jerk!) so we
1576 # need to put our "matrix basis" in the same order as the
1577 # (reordered) vector basis.
1578 S = tuple( _vec2mat(b) for b in W.basis() )
1579
1580 Qs = []
1581 for s in S:
1582 # Brute force the multiplication-by-s matrix by looping
1583 # through all elements of the basis and doing the computation
1584 # to find out what the corresponding row should be. BEWARE:
1585 # these multiplication tables won't be symmetric! It therefore
1586 # becomes REALLY IMPORTANT that the underlying algebra
1587 # constructor uses ROW vectors and not COLUMN vectors. That's
1588 # why we're computing rows here and not columns.
1589 Q_rows = []
1590 for t in S:
1591 this_row = _mat2vec((s*t + t*s)/2)
1592 Q_rows.append(W.coordinates(this_row))
1593 Q = matrix(field, W.dimension(), Q_rows)
1594 Qs.append(Q)
1595
1596 return (Qs, S)
1597
1598
1599 def _embed_complex_matrix(M):
1600 """
1601 Embed the n-by-n complex matrix ``M`` into the space of real
1602 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1603 bi` to the block matrix ``[[a,b],[-b,a]]``.
1604
1605 EXAMPLES::
1606
1607 sage: F = QuadraticField(-1,'i')
1608 sage: x1 = F(4 - 2*i)
1609 sage: x2 = F(1 + 2*i)
1610 sage: x3 = F(-i)
1611 sage: x4 = F(6)
1612 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1613 sage: _embed_complex_matrix(M)
1614 [ 4 -2| 1 2]
1615 [ 2 4|-2 1]
1616 [-----+-----]
1617 [ 0 -1| 6 0]
1618 [ 1 0| 0 6]
1619
1620 TESTS:
1621
1622 Embedding is a homomorphism (isomorphism, in fact)::
1623
1624 sage: set_random_seed()
1625 sage: n = ZZ.random_element(5)
1626 sage: F = QuadraticField(-1, 'i')
1627 sage: X = random_matrix(F, n)
1628 sage: Y = random_matrix(F, n)
1629 sage: actual = _embed_complex_matrix(X) * _embed_complex_matrix(Y)
1630 sage: expected = _embed_complex_matrix(X*Y)
1631 sage: actual == expected
1632 True
1633
1634 """
1635 n = M.nrows()
1636 if M.ncols() != n:
1637 raise ValueError("the matrix 'M' must be square")
1638 field = M.base_ring()
1639 blocks = []
1640 for z in M.list():
1641 a = z.real()
1642 b = z.imag()
1643 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1644
1645 # We can drop the imaginaries here.
1646 return block_matrix(field.base_ring(), n, blocks)
1647
1648
1649 def _unembed_complex_matrix(M):
1650 """
1651 The inverse of _embed_complex_matrix().
1652
1653 EXAMPLES::
1654
1655 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1656 ....: [-2, 1, -4, 3],
1657 ....: [ 9, 10, 11, 12],
1658 ....: [-10, 9, -12, 11] ])
1659 sage: _unembed_complex_matrix(A)
1660 [ 2*i + 1 4*i + 3]
1661 [ 10*i + 9 12*i + 11]
1662
1663 TESTS:
1664
1665 Unembedding is the inverse of embedding::
1666
1667 sage: set_random_seed()
1668 sage: F = QuadraticField(-1, 'i')
1669 sage: M = random_matrix(F, 3)
1670 sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
1671 True
1672
1673 """
1674 n = ZZ(M.nrows())
1675 if M.ncols() != n:
1676 raise ValueError("the matrix 'M' must be square")
1677 if not n.mod(2).is_zero():
1678 raise ValueError("the matrix 'M' must be a complex embedding")
1679
1680 F = QuadraticField(-1, 'i')
1681 i = F.gen()
1682
1683 # Go top-left to bottom-right (reading order), converting every
1684 # 2-by-2 block we see to a single complex element.
1685 elements = []
1686 for k in xrange(n/2):
1687 for j in xrange(n/2):
1688 submat = M[2*k:2*k+2,2*j:2*j+2]
1689 if submat[0,0] != submat[1,1]:
1690 raise ValueError('bad on-diagonal submatrix')
1691 if submat[0,1] != -submat[1,0]:
1692 raise ValueError('bad off-diagonal submatrix')
1693 z = submat[0,0] + submat[0,1]*i
1694 elements.append(z)
1695
1696 return matrix(F, n/2, elements)
1697
1698
1699 def _embed_quaternion_matrix(M):
1700 """
1701 Embed the n-by-n quaternion matrix ``M`` into the space of real
1702 matrices of size 4n-by-4n by first sending each quaternion entry
1703 `z = a + bi + cj + dk` to the block-complex matrix
1704 ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
1705 a real matrix.
1706
1707 EXAMPLES::
1708
1709 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1710 sage: i,j,k = Q.gens()
1711 sage: x = 1 + 2*i + 3*j + 4*k
1712 sage: M = matrix(Q, 1, [[x]])
1713 sage: _embed_quaternion_matrix(M)
1714 [ 1 2 3 4]
1715 [-2 1 -4 3]
1716 [-3 4 1 -2]
1717 [-4 -3 2 1]
1718
1719 Embedding is a homomorphism (isomorphism, in fact)::
1720
1721 sage: set_random_seed()
1722 sage: n = ZZ.random_element(5)
1723 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1724 sage: X = random_matrix(Q, n)
1725 sage: Y = random_matrix(Q, n)
1726 sage: actual = _embed_quaternion_matrix(X)*_embed_quaternion_matrix(Y)
1727 sage: expected = _embed_quaternion_matrix(X*Y)
1728 sage: actual == expected
1729 True
1730
1731 """
1732 quaternions = M.base_ring()
1733 n = M.nrows()
1734 if M.ncols() != n:
1735 raise ValueError("the matrix 'M' must be square")
1736
1737 F = QuadraticField(-1, 'i')
1738 i = F.gen()
1739
1740 blocks = []
1741 for z in M.list():
1742 t = z.coefficient_tuple()
1743 a = t[0]
1744 b = t[1]
1745 c = t[2]
1746 d = t[3]
1747 cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
1748 [-c + d*i, a - b*i]])
1749 blocks.append(_embed_complex_matrix(cplx_matrix))
1750
1751 # We should have real entries by now, so use the realest field
1752 # we've got for the return value.
1753 return block_matrix(quaternions.base_ring(), n, blocks)
1754
1755
1756 def _unembed_quaternion_matrix(M):
1757 """
1758 The inverse of _embed_quaternion_matrix().
1759
1760 EXAMPLES::
1761
1762 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1763 ....: [-2, 1, -4, 3],
1764 ....: [-3, 4, 1, -2],
1765 ....: [-4, -3, 2, 1]])
1766 sage: _unembed_quaternion_matrix(M)
1767 [1 + 2*i + 3*j + 4*k]
1768
1769 TESTS:
1770
1771 Unembedding is the inverse of embedding::
1772
1773 sage: set_random_seed()
1774 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1775 sage: M = random_matrix(Q, 3)
1776 sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
1777 True
1778
1779 """
1780 n = ZZ(M.nrows())
1781 if M.ncols() != n:
1782 raise ValueError("the matrix 'M' must be square")
1783 if not n.mod(4).is_zero():
1784 raise ValueError("the matrix 'M' must be a complex embedding")
1785
1786 Q = QuaternionAlgebra(QQ,-1,-1)
1787 i,j,k = Q.gens()
1788
1789 # Go top-left to bottom-right (reading order), converting every
1790 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1791 # quaternion block.
1792 elements = []
1793 for l in xrange(n/4):
1794 for m in xrange(n/4):
1795 submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
1796 if submat[0,0] != submat[1,1].conjugate():
1797 raise ValueError('bad on-diagonal submatrix')
1798 if submat[0,1] != -submat[1,0].conjugate():
1799 raise ValueError('bad off-diagonal submatrix')
1800 z = submat[0,0].real() + submat[0,0].imag()*i
1801 z += submat[0,1].real()*j + submat[0,1].imag()*k
1802 elements.append(z)
1803
1804 return matrix(Q, n/4, elements)
1805
1806
1807 # The usual inner product on R^n.
1808 def _usual_ip(x,y):
1809 return x.vector().inner_product(y.vector())
1810
1811 # The inner product used for the real symmetric simple EJA.
1812 # We keep it as a separate function because e.g. the complex
1813 # algebra uses the same inner product, except divided by 2.
1814 def _matrix_ip(X,Y):
1815 X_mat = X.natural_representation()
1816 Y_mat = Y.natural_representation()
1817 return (X_mat*Y_mat).trace()
1818
1819
1820 class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
1821 """
1822 The rank-n simple EJA consisting of real symmetric n-by-n
1823 matrices, the usual symmetric Jordan product, and the trace inner
1824 product. It has dimension `(n^2 + n)/2` over the reals.
1825
1826 EXAMPLES::
1827
1828 sage: J = RealSymmetricEJA(2)
1829 sage: e0, e1, e2 = J.gens()
1830 sage: e0*e0
1831 e0
1832 sage: e1*e1
1833 e0 + e2
1834 sage: e2*e2
1835 e2
1836
1837 TESTS:
1838
1839 The degree of this algebra is `(n^2 + n) / 2`::
1840
1841 sage: set_random_seed()
1842 sage: n = ZZ.random_element(1,5)
1843 sage: J = RealSymmetricEJA(n)
1844 sage: J.degree() == (n^2 + n)/2
1845 True
1846
1847 The Jordan multiplication is what we think it is::
1848
1849 sage: set_random_seed()
1850 sage: n = ZZ.random_element(1,5)
1851 sage: J = RealSymmetricEJA(n)
1852 sage: x = J.random_element()
1853 sage: y = J.random_element()
1854 sage: actual = (x*y).natural_representation()
1855 sage: X = x.natural_representation()
1856 sage: Y = y.natural_representation()
1857 sage: expected = (X*Y + Y*X)/2
1858 sage: actual == expected
1859 True
1860 sage: J(expected) == x*y
1861 True
1862
1863 """
1864 @staticmethod
1865 def __classcall_private__(cls, n, field=QQ):
1866 S = _real_symmetric_basis(n, field=field)
1867 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1868
1869 fdeja = super(RealSymmetricEJA, cls)
1870 return fdeja.__classcall_private__(cls,
1871 field,
1872 Qs,
1873 rank=n,
1874 natural_basis=T)
1875
1876 def inner_product(self, x, y):
1877 return _matrix_ip(x,y)
1878
1879
1880 class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
1881 """
1882 The rank-n simple EJA consisting of complex Hermitian n-by-n
1883 matrices over the real numbers, the usual symmetric Jordan product,
1884 and the real-part-of-trace inner product. It has dimension `n^2` over
1885 the reals.
1886
1887 TESTS:
1888
1889 The degree of this algebra is `n^2`::
1890
1891 sage: set_random_seed()
1892 sage: n = ZZ.random_element(1,5)
1893 sage: J = ComplexHermitianEJA(n)
1894 sage: J.degree() == n^2
1895 True
1896
1897 The Jordan multiplication is what we think it is::
1898
1899 sage: set_random_seed()
1900 sage: n = ZZ.random_element(1,5)
1901 sage: J = ComplexHermitianEJA(n)
1902 sage: x = J.random_element()
1903 sage: y = J.random_element()
1904 sage: actual = (x*y).natural_representation()
1905 sage: X = x.natural_representation()
1906 sage: Y = y.natural_representation()
1907 sage: expected = (X*Y + Y*X)/2
1908 sage: actual == expected
1909 True
1910 sage: J(expected) == x*y
1911 True
1912
1913 """
1914 @staticmethod
1915 def __classcall_private__(cls, n, field=QQ):
1916 S = _complex_hermitian_basis(n)
1917 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1918
1919 fdeja = super(ComplexHermitianEJA, cls)
1920 return fdeja.__classcall_private__(cls,
1921 field,
1922 Qs,
1923 rank=n,
1924 natural_basis=T)
1925
1926 def inner_product(self, x, y):
1927 # Since a+bi on the diagonal is represented as
1928 #
1929 # a + bi = [ a b ]
1930 # [ -b a ],
1931 #
1932 # we'll double-count the "a" entries if we take the trace of
1933 # the embedding.
1934 return _matrix_ip(x,y)/2
1935
1936
1937 class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
1938 """
1939 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1940 matrices, the usual symmetric Jordan product, and the
1941 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1942 the reals.
1943
1944 TESTS:
1945
1946 The degree of this algebra is `n^2`::
1947
1948 sage: set_random_seed()
1949 sage: n = ZZ.random_element(1,5)
1950 sage: J = QuaternionHermitianEJA(n)
1951 sage: J.degree() == 2*(n^2) - n
1952 True
1953
1954 The Jordan multiplication is what we think it is::
1955
1956 sage: set_random_seed()
1957 sage: n = ZZ.random_element(1,5)
1958 sage: J = QuaternionHermitianEJA(n)
1959 sage: x = J.random_element()
1960 sage: y = J.random_element()
1961 sage: actual = (x*y).natural_representation()
1962 sage: X = x.natural_representation()
1963 sage: Y = y.natural_representation()
1964 sage: expected = (X*Y + Y*X)/2
1965 sage: actual == expected
1966 True
1967 sage: J(expected) == x*y
1968 True
1969
1970 """
1971 @staticmethod
1972 def __classcall_private__(cls, n, field=QQ):
1973 S = _quaternion_hermitian_basis(n)
1974 (Qs, T) = _multiplication_table_from_matrix_basis(S)
1975
1976 fdeja = super(QuaternionHermitianEJA, cls)
1977 return fdeja.__classcall_private__(cls,
1978 field,
1979 Qs,
1980 rank=n,
1981 natural_basis=T)
1982
1983 def inner_product(self, x, y):
1984 # Since a+bi+cj+dk on the diagonal is represented as
1985 #
1986 # a + bi +cj + dk = [ a b c d]
1987 # [ -b a -d c]
1988 # [ -c d a -b]
1989 # [ -d -c b a],
1990 #
1991 # we'll quadruple-count the "a" entries if we take the trace of
1992 # the embedding.
1993 return _matrix_ip(x,y)/4
1994
1995
1996 class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
1997 """
1998 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1999 with the usual inner product and jordan product ``x*y =
2000 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2001 the reals.
2002
2003 EXAMPLES:
2004
2005 This multiplication table can be verified by hand::
2006
2007 sage: J = JordanSpinEJA(4)
2008 sage: e0,e1,e2,e3 = J.gens()
2009 sage: e0*e0
2010 e0
2011 sage: e0*e1
2012 e1
2013 sage: e0*e2
2014 e2
2015 sage: e0*e3
2016 e3
2017 sage: e1*e2
2018 0
2019 sage: e1*e3
2020 0
2021 sage: e2*e3
2022 0
2023
2024 """
2025 @staticmethod
2026 def __classcall_private__(cls, n, field=QQ):
2027 Qs = []
2028 id_matrix = identity_matrix(field, n)
2029 for i in xrange(n):
2030 ei = id_matrix.column(i)
2031 Qi = zero_matrix(field, n)
2032 Qi.set_row(0, ei)
2033 Qi.set_column(0, ei)
2034 Qi += diagonal_matrix(n, [ei[0]]*n)
2035 # The addition of the diagonal matrix adds an extra ei[0] in the
2036 # upper-left corner of the matrix.
2037 Qi[0,0] = Qi[0,0] * ~field(2)
2038 Qs.append(Qi)
2039
2040 # The rank of the spin algebra is two, unless we're in a
2041 # one-dimensional ambient space (because the rank is bounded by
2042 # the ambient dimension).
2043 fdeja = super(JordanSpinEJA, cls)
2044 return fdeja.__classcall_private__(cls, field, Qs, rank=min(n,2))
2045
2046 def inner_product(self, x, y):
2047 return _usual_ip(x,y)