]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/euclidean_jordan_algebra.py
eja: recurse more directly in minimal_polynomial().
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.categories.magmatic_algebras import MagmaticAlgebras
9 from sage.structure.element import is_Matrix
10 from sage.structure.category_object import normalize_names
11
12 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
13 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
14
15 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
16 @staticmethod
17 def __classcall_private__(cls,
18 field,
19 mult_table,
20 names='e',
21 assume_associative=False,
22 category=None,
23 rank=None):
24 n = len(mult_table)
25 mult_table = [b.base_extend(field) for b in mult_table]
26 for b in mult_table:
27 b.set_immutable()
28 if not (is_Matrix(b) and b.dimensions() == (n, n)):
29 raise ValueError("input is not a multiplication table")
30 mult_table = tuple(mult_table)
31
32 cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
33 cat.or_subcategory(category)
34 if assume_associative:
35 cat = cat.Associative()
36
37 names = normalize_names(n, names)
38
39 fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
40 return fda.__classcall__(cls,
41 field,
42 mult_table,
43 assume_associative=assume_associative,
44 names=names,
45 category=cat,
46 rank=rank)
47
48
49 def __init__(self, field,
50 mult_table,
51 names='e',
52 assume_associative=False,
53 category=None,
54 rank=None):
55 self._rank = rank
56 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
57 fda.__init__(field,
58 mult_table,
59 names=names,
60 category=category)
61
62
63 def _repr_(self):
64 """
65 Return a string representation of ``self``.
66 """
67 fmt = "Euclidean Jordan algebra of degree {} over {}"
68 return fmt.format(self.degree(), self.base_ring())
69
70 def rank(self):
71 """
72 Return the rank of this EJA.
73 """
74 if self._rank is None:
75 raise ValueError("no rank specified at genesis")
76 else:
77 return self._rank
78
79
80 class Element(FiniteDimensionalAlgebraElement):
81 """
82 An element of a Euclidean Jordan algebra.
83
84 Since EJAs are commutative, the "right multiplication" matrix is
85 also the left multiplication matrix and must be symmetric::
86
87 sage: set_random_seed()
88 sage: n = ZZ.random_element(1,10).abs()
89 sage: J = eja_rn(5)
90 sage: J.random_element().matrix().is_symmetric()
91 True
92 sage: J = eja_ln(5)
93 sage: J.random_element().matrix().is_symmetric()
94 True
95
96 """
97
98 def __pow__(self, n):
99 """
100 Return ``self`` raised to the power ``n``.
101
102 Jordan algebras are always power-associative; see for
103 example Faraut and Koranyi, Proposition II.1.2 (ii).
104 """
105 A = self.parent()
106 if n == 0:
107 return A.one()
108 elif n == 1:
109 return self
110 else:
111 return A.element_class(A, self.vector()*(self.matrix()**(n-1)))
112
113
114 def span_of_powers(self):
115 """
116 Return the vector space spanned by successive powers of
117 this element.
118 """
119 # The dimension of the subalgebra can't be greater than
120 # the big algebra, so just put everything into a list
121 # and let span() get rid of the excess.
122 V = self.vector().parent()
123 return V.span( (self**d).vector() for d in xrange(V.dimension()) )
124
125
126 def degree(self):
127 """
128 Compute the degree of this element the straightforward way
129 according to the definition; by appending powers to a list
130 and figuring out its dimension (that is, whether or not
131 they're linearly dependent).
132
133 EXAMPLES::
134
135 sage: J = eja_ln(4)
136 sage: J.one().degree()
137 1
138 sage: e0,e1,e2,e3 = J.gens()
139 sage: (e0 - e1).degree()
140 2
141
142 In the spin factor algebra (of rank two), all elements that
143 aren't multiples of the identity are regular::
144
145 sage: set_random_seed()
146 sage: n = ZZ.random_element(1,10).abs()
147 sage: J = eja_ln(n)
148 sage: x = J.random_element()
149 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
150 True
151
152 """
153 return self.span_of_powers().dimension()
154
155
156 def subalgebra_generated_by(self):
157 """
158 Return the associative subalgebra of the parent EJA generated
159 by this element.
160
161 TESTS::
162
163 sage: set_random_seed()
164 sage: n = ZZ.random_element(1,10).abs()
165 sage: J = eja_rn(n)
166 sage: x = J.random_element()
167 sage: x.subalgebra_generated_by().is_associative()
168 True
169 sage: J = eja_ln(n)
170 sage: x = J.random_element()
171 sage: x.subalgebra_generated_by().is_associative()
172 True
173
174 """
175 # First get the subspace spanned by the powers of myself...
176 V = self.span_of_powers()
177 F = self.base_ring()
178
179 # Now figure out the entries of the right-multiplication
180 # matrix for the successive basis elements b0, b1,... of
181 # that subspace.
182 mats = []
183 for b_right in V.basis():
184 eja_b_right = self.parent()(b_right)
185 b_right_rows = []
186 # The first row of the right-multiplication matrix by
187 # b1 is what we get if we apply that matrix to b1. The
188 # second row of the right multiplication matrix by b1
189 # is what we get when we apply that matrix to b2...
190 for b_left in V.basis():
191 eja_b_left = self.parent()(b_left)
192 # Multiply in the original EJA, but then get the
193 # coordinates from the subalgebra in terms of its
194 # basis.
195 this_row = V.coordinates((eja_b_left*eja_b_right).vector())
196 b_right_rows.append(this_row)
197 b_right_matrix = matrix(F, b_right_rows)
198 mats.append(b_right_matrix)
199
200 # It's an algebra of polynomials in one element, and EJAs
201 # are power-associative.
202 return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True)
203
204
205 def minimal_polynomial(self):
206 """
207 EXAMPLES::
208
209 sage: set_random_seed()
210 sage: n = ZZ.random_element(1,10).abs()
211 sage: J = eja_rn(n)
212 sage: x = J.random_element()
213 sage: x.degree() == x.minimal_polynomial().degree()
214 True
215
216 ::
217
218 sage: set_random_seed()
219 sage: n = ZZ.random_element(1,10).abs()
220 sage: J = eja_ln(n)
221 sage: x = J.random_element()
222 sage: x.degree() == x.minimal_polynomial().degree()
223 True
224
225 The minimal polynomial and the characteristic polynomial coincide
226 and are known (see Alizadeh, Example 11.11) for all elements of
227 the spin factor algebra that aren't scalar multiples of the
228 identity::
229
230 sage: set_random_seed()
231 sage: n = ZZ.random_element(2,10).abs()
232 sage: J = eja_ln(n)
233 sage: y = J.random_element()
234 sage: while y == y.coefficient(0)*J.one():
235 ....: y = J.random_element()
236 sage: y0 = y.vector()[0]
237 sage: y_bar = y.vector()[1:]
238 sage: actual = y.minimal_polynomial()
239 sage: x = SR.symbol('x', domain='real')
240 sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
241 sage: bool(actual == expected)
242 True
243
244 """
245 # The element we're going to call "minimal_polynomial()" on.
246 # Either myself, interpreted as an element of a finite-
247 # dimensional algebra, or an element of an associative
248 # subalgebra.
249 elt = None
250
251 if self.parent().is_associative():
252 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
253 else:
254 V = self.span_of_powers()
255 assoc_subalg = self.subalgebra_generated_by()
256 # Mis-design warning: the basis used for span_of_powers()
257 # and subalgebra_generated_by() must be the same, and in
258 # the same order!
259 elt = assoc_subalg(V.coordinates(self.vector()))
260
261 # Recursive call, but should work since elt lives in an
262 # associative algebra.
263 return elt.minimal_polynomial()
264
265
266 def characteristic_polynomial(self):
267 return self.matrix().characteristic_polynomial()
268
269
270 def eja_rn(dimension, field=QQ):
271 """
272 Return the Euclidean Jordan Algebra corresponding to the set
273 `R^n` under the Hadamard product.
274
275 EXAMPLES:
276
277 This multiplication table can be verified by hand::
278
279 sage: J = eja_rn(3)
280 sage: e0,e1,e2 = J.gens()
281 sage: e0*e0
282 e0
283 sage: e0*e1
284 0
285 sage: e0*e2
286 0
287 sage: e1*e1
288 e1
289 sage: e1*e2
290 0
291 sage: e2*e2
292 e2
293
294 """
295 # The FiniteDimensionalAlgebra constructor takes a list of
296 # matrices, the ith representing right multiplication by the ith
297 # basis element in the vector space. So if e_1 = (1,0,0), then
298 # right (Hadamard) multiplication of x by e_1 picks out the first
299 # component of x; and likewise for the ith basis element e_i.
300 Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
301 for i in xrange(dimension) ]
302
303 return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
304
305
306 def eja_ln(dimension, field=QQ):
307 """
308 Return the Jordan algebra corresponding to the Lorentz "ice cream"
309 cone of the given ``dimension``.
310
311 EXAMPLES:
312
313 This multiplication table can be verified by hand::
314
315 sage: J = eja_ln(4)
316 sage: e0,e1,e2,e3 = J.gens()
317 sage: e0*e0
318 e0
319 sage: e0*e1
320 e1
321 sage: e0*e2
322 e2
323 sage: e0*e3
324 e3
325 sage: e1*e2
326 0
327 sage: e1*e3
328 0
329 sage: e2*e3
330 0
331
332 In one dimension, this is the reals under multiplication::
333
334 sage: J1 = eja_ln(1)
335 sage: J2 = eja_rn(1)
336 sage: J1 == J2
337 True
338
339 """
340 Qs = []
341 id_matrix = identity_matrix(field,dimension)
342 for i in xrange(dimension):
343 ei = id_matrix.column(i)
344 Qi = zero_matrix(field,dimension)
345 Qi.set_row(0, ei)
346 Qi.set_column(0, ei)
347 Qi += diagonal_matrix(dimension, [ei[0]]*dimension)
348 # The addition of the diagonal matrix adds an extra ei[0] in the
349 # upper-left corner of the matrix.
350 Qi[0,0] = Qi[0,0] * ~field(2)
351 Qs.append(Qi)
352
353 # The rank of the spin factor algebra is two, UNLESS we're in a
354 # one-dimensional ambient space (the rank is bounded by the
355 # ambient dimension).
356 rank = min(dimension,2)
357 return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=rank)