]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/euclidean_jordan_algebra.py
87a0ca0592b8103ec3410fef57a1134f26a0bf9b
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.categories.magmatic_algebras import MagmaticAlgebras
9 from sage.structure.element import is_Matrix
10 from sage.structure.category_object import normalize_names
11
12 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
13 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
14
15 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
16 @staticmethod
17 def __classcall_private__(cls,
18 field,
19 mult_table,
20 names='e',
21 assume_associative=False,
22 category=None,
23 rank=None):
24 n = len(mult_table)
25 mult_table = [b.base_extend(field) for b in mult_table]
26 for b in mult_table:
27 b.set_immutable()
28 if not (is_Matrix(b) and b.dimensions() == (n, n)):
29 raise ValueError("input is not a multiplication table")
30 mult_table = tuple(mult_table)
31
32 cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
33 cat.or_subcategory(category)
34 if assume_associative:
35 cat = cat.Associative()
36
37 names = normalize_names(n, names)
38
39 fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
40 return fda.__classcall__(cls,
41 field,
42 mult_table,
43 assume_associative=assume_associative,
44 names=names,
45 category=cat,
46 rank=rank)
47
48
49 def __init__(self, field,
50 mult_table,
51 names='e',
52 assume_associative=False,
53 category=None,
54 rank=None):
55 self._rank = rank
56 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
57 fda.__init__(field,
58 mult_table,
59 names=names,
60 category=category)
61
62
63 def _repr_(self):
64 """
65 Return a string representation of ``self``.
66 """
67 fmt = "Euclidean Jordan algebra of degree {} over {}"
68 return fmt.format(self.degree(), self.base_ring())
69
70 def rank(self):
71 """
72 Return the rank of this EJA.
73 """
74 if self._rank is None:
75 raise ValueError("no rank specified at genesis")
76 else:
77 return self._rank
78
79
80 class Element(FiniteDimensionalAlgebraElement):
81 """
82 An element of a Euclidean Jordan algebra.
83 """
84
85 def __pow__(self, n):
86 """
87 Return ``self`` raised to the power ``n``.
88
89 Jordan algebras are always power-associative; see for
90 example Faraut and Koranyi, Proposition II.1.2 (ii).
91
92 .. WARNING:
93
94 We have to override this because our superclass uses row vectors
95 instead of column vectors! We, on the other hand, assume column
96 vectors everywhere.
97
98 EXAMPLES:
99
100 sage: set_random_seed()
101 sage: x = random_eja().random_element()
102 sage: x.matrix()*x.vector() == (x**2).vector()
103 True
104
105 """
106 A = self.parent()
107 if n == 0:
108 return A.one()
109 elif n == 1:
110 return self
111 else:
112 return A.element_class(A, (self.matrix()**(n-1))*self.vector())
113
114
115 def characteristic_polynomial(self):
116 """
117 Return my characteristic polynomial (if I'm a regular
118 element).
119
120 Eventually this should be implemented in terms of the parent
121 algebra's characteristic polynomial that works for ALL
122 elements.
123 """
124 if self.is_regular():
125 return self.minimal_polynomial()
126 else:
127 raise NotImplementedError('irregular element')
128
129
130 def det(self):
131 """
132 Return my determinant, the product of my eigenvalues.
133
134 EXAMPLES::
135
136 sage: J = JordanSpinSimpleEJA(2)
137 sage: e0,e1 = J.gens()
138 sage: x = e0 + e1
139 sage: x.det()
140 0
141 sage: J = JordanSpinSimpleEJA(3)
142 sage: e0,e1,e2 = J.gens()
143 sage: x = e0 + e1 + e2
144 sage: x.det()
145 -1
146
147 """
148 cs = self.characteristic_polynomial().coefficients(sparse=False)
149 r = len(cs) - 1
150 if r >= 0:
151 return cs[0] * (-1)**r
152 else:
153 raise ValueError('charpoly had no coefficients')
154
155
156 def is_nilpotent(self):
157 """
158 Return whether or not some power of this element is zero.
159
160 The superclass method won't work unless we're in an
161 associative algebra, and we aren't. However, we generate
162 an assocoative subalgebra and we're nilpotent there if and
163 only if we're nilpotent here (probably).
164
165 TESTS:
166
167 The identity element is never nilpotent::
168
169 sage: set_random_seed()
170 sage: random_eja().one().is_nilpotent()
171 False
172
173 The additive identity is always nilpotent::
174
175 sage: set_random_seed()
176 sage: random_eja().zero().is_nilpotent()
177 True
178
179 """
180 # The element we're going to call "is_nilpotent()" on.
181 # Either myself, interpreted as an element of a finite-
182 # dimensional algebra, or an element of an associative
183 # subalgebra.
184 elt = None
185
186 if self.parent().is_associative():
187 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
188 else:
189 V = self.span_of_powers()
190 assoc_subalg = self.subalgebra_generated_by()
191 # Mis-design warning: the basis used for span_of_powers()
192 # and subalgebra_generated_by() must be the same, and in
193 # the same order!
194 elt = assoc_subalg(V.coordinates(self.vector()))
195
196 # Recursive call, but should work since elt lives in an
197 # associative algebra.
198 return elt.is_nilpotent()
199
200
201 def is_regular(self):
202 """
203 Return whether or not this is a regular element.
204
205 EXAMPLES:
206
207 The identity element always has degree one, but any element
208 linearly-independent from it is regular::
209
210 sage: J = JordanSpinSimpleEJA(5)
211 sage: J.one().is_regular()
212 False
213 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
214 sage: for x in J.gens():
215 ....: (J.one() + x).is_regular()
216 False
217 True
218 True
219 True
220 True
221
222 """
223 return self.degree() == self.parent().rank()
224
225
226 def degree(self):
227 """
228 Compute the degree of this element the straightforward way
229 according to the definition; by appending powers to a list
230 and figuring out its dimension (that is, whether or not
231 they're linearly dependent).
232
233 EXAMPLES::
234
235 sage: J = JordanSpinSimpleEJA(4)
236 sage: J.one().degree()
237 1
238 sage: e0,e1,e2,e3 = J.gens()
239 sage: (e0 - e1).degree()
240 2
241
242 In the spin factor algebra (of rank two), all elements that
243 aren't multiples of the identity are regular::
244
245 sage: set_random_seed()
246 sage: n = ZZ.random_element(1,10).abs()
247 sage: J = JordanSpinSimpleEJA(n)
248 sage: x = J.random_element()
249 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
250 True
251
252 """
253 return self.span_of_powers().dimension()
254
255
256 def matrix(self):
257 """
258 Return the matrix that represents left- (or right-)
259 multiplication by this element in the parent algebra.
260
261 We have to override this because the superclass method
262 returns a matrix that acts on row vectors (that is, on
263 the right).
264 """
265 fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
266 return fda_elt.matrix().transpose()
267
268
269 def minimal_polynomial(self):
270 """
271 EXAMPLES::
272
273 sage: set_random_seed()
274 sage: x = random_eja().random_element()
275 sage: x.degree() == x.minimal_polynomial().degree()
276 True
277
278 ::
279
280 sage: set_random_seed()
281 sage: x = random_eja().random_element()
282 sage: x.degree() == x.minimal_polynomial().degree()
283 True
284
285 The minimal polynomial and the characteristic polynomial coincide
286 and are known (see Alizadeh, Example 11.11) for all elements of
287 the spin factor algebra that aren't scalar multiples of the
288 identity::
289
290 sage: set_random_seed()
291 sage: n = ZZ.random_element(2,10).abs()
292 sage: J = JordanSpinSimpleEJA(n)
293 sage: y = J.random_element()
294 sage: while y == y.coefficient(0)*J.one():
295 ....: y = J.random_element()
296 sage: y0 = y.vector()[0]
297 sage: y_bar = y.vector()[1:]
298 sage: actual = y.minimal_polynomial()
299 sage: x = SR.symbol('x', domain='real')
300 sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
301 sage: bool(actual == expected)
302 True
303
304 """
305 # The element we're going to call "minimal_polynomial()" on.
306 # Either myself, interpreted as an element of a finite-
307 # dimensional algebra, or an element of an associative
308 # subalgebra.
309 elt = None
310
311 if self.parent().is_associative():
312 elt = FiniteDimensionalAlgebraElement(self.parent(), self)
313 else:
314 V = self.span_of_powers()
315 assoc_subalg = self.subalgebra_generated_by()
316 # Mis-design warning: the basis used for span_of_powers()
317 # and subalgebra_generated_by() must be the same, and in
318 # the same order!
319 elt = assoc_subalg(V.coordinates(self.vector()))
320
321 # Recursive call, but should work since elt lives in an
322 # associative algebra.
323 return elt.minimal_polynomial()
324
325
326 def quadratic_representation(self, other=None):
327 """
328 Return the quadratic representation of this element.
329
330 EXAMPLES:
331
332 The explicit form in the spin factor algebra is given by
333 Alizadeh's Example 11.12::
334
335 sage: set_random_seed()
336 sage: n = ZZ.random_element(1,10).abs()
337 sage: J = JordanSpinSimpleEJA(n)
338 sage: x = J.random_element()
339 sage: x_vec = x.vector()
340 sage: x0 = x_vec[0]
341 sage: x_bar = x_vec[1:]
342 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
343 sage: B = 2*x0*x_bar.row()
344 sage: C = 2*x0*x_bar.column()
345 sage: D = identity_matrix(QQ, n-1)
346 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
347 sage: D = D + 2*x_bar.tensor_product(x_bar)
348 sage: Q = block_matrix(2,2,[A,B,C,D])
349 sage: Q == x.quadratic_representation()
350 True
351
352 Test all of the properties from Theorem 11.2 in Alizadeh::
353
354 sage: set_random_seed()
355 sage: J = random_eja()
356 sage: x = J.random_element()
357 sage: y = J.random_element()
358
359 Property 1:
360
361 sage: actual = x.quadratic_representation(y)
362 sage: expected = ( (x+y).quadratic_representation()
363 ....: -x.quadratic_representation()
364 ....: -y.quadratic_representation() ) / 2
365 sage: actual == expected
366 True
367
368 Property 2:
369
370 sage: alpha = QQ.random_element()
371 sage: actual = (alpha*x).quadratic_representation()
372 sage: expected = (alpha^2)*x.quadratic_representation()
373 sage: actual == expected
374 True
375
376 Property 5:
377
378 sage: Qy = y.quadratic_representation()
379 sage: actual = J(Qy*x.vector()).quadratic_representation()
380 sage: expected = Qy*x.quadratic_representation()*Qy
381 sage: actual == expected
382 True
383
384 Property 6:
385
386 sage: k = ZZ.random_element(1,10).abs()
387 sage: actual = (x^k).quadratic_representation()
388 sage: expected = (x.quadratic_representation())^k
389 sage: actual == expected
390 True
391
392 """
393 if other is None:
394 other=self
395 elif not other in self.parent():
396 raise ArgumentError("'other' must live in the same algebra")
397
398 return ( self.matrix()*other.matrix()
399 + other.matrix()*self.matrix()
400 - (self*other).matrix() )
401
402
403 def span_of_powers(self):
404 """
405 Return the vector space spanned by successive powers of
406 this element.
407 """
408 # The dimension of the subalgebra can't be greater than
409 # the big algebra, so just put everything into a list
410 # and let span() get rid of the excess.
411 V = self.vector().parent()
412 return V.span( (self**d).vector() for d in xrange(V.dimension()) )
413
414
415 def subalgebra_generated_by(self):
416 """
417 Return the associative subalgebra of the parent EJA generated
418 by this element.
419
420 TESTS::
421
422 sage: set_random_seed()
423 sage: x = random_eja().random_element()
424 sage: x.subalgebra_generated_by().is_associative()
425 True
426
427 Squaring in the subalgebra should be the same thing as
428 squaring in the superalgebra::
429
430 sage: set_random_seed()
431 sage: x = random_eja().random_element()
432 sage: u = x.subalgebra_generated_by().random_element()
433 sage: u.matrix()*u.vector() == (u**2).vector()
434 True
435
436 """
437 # First get the subspace spanned by the powers of myself...
438 V = self.span_of_powers()
439 F = self.base_ring()
440
441 # Now figure out the entries of the right-multiplication
442 # matrix for the successive basis elements b0, b1,... of
443 # that subspace.
444 mats = []
445 for b_right in V.basis():
446 eja_b_right = self.parent()(b_right)
447 b_right_rows = []
448 # The first row of the right-multiplication matrix by
449 # b1 is what we get if we apply that matrix to b1. The
450 # second row of the right multiplication matrix by b1
451 # is what we get when we apply that matrix to b2...
452 #
453 # IMPORTANT: this assumes that all vectors are COLUMN
454 # vectors, unlike our superclass (which uses row vectors).
455 for b_left in V.basis():
456 eja_b_left = self.parent()(b_left)
457 # Multiply in the original EJA, but then get the
458 # coordinates from the subalgebra in terms of its
459 # basis.
460 this_row = V.coordinates((eja_b_left*eja_b_right).vector())
461 b_right_rows.append(this_row)
462 b_right_matrix = matrix(F, b_right_rows)
463 mats.append(b_right_matrix)
464
465 # It's an algebra of polynomials in one element, and EJAs
466 # are power-associative.
467 #
468 # TODO: choose generator names intelligently.
469 return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
470
471
472 def subalgebra_idempotent(self):
473 """
474 Find an idempotent in the associative subalgebra I generate
475 using Proposition 2.3.5 in Baes.
476
477 TESTS::
478
479 sage: set_random_seed()
480 sage: J = eja_rn(5)
481 sage: c = J.random_element().subalgebra_idempotent()
482 sage: c^2 == c
483 True
484 sage: J = JordanSpinSimpleEJA(5)
485 sage: c = J.random_element().subalgebra_idempotent()
486 sage: c^2 == c
487 True
488
489 """
490 if self.is_nilpotent():
491 raise ValueError("this only works with non-nilpotent elements!")
492
493 V = self.span_of_powers()
494 J = self.subalgebra_generated_by()
495 # Mis-design warning: the basis used for span_of_powers()
496 # and subalgebra_generated_by() must be the same, and in
497 # the same order!
498 u = J(V.coordinates(self.vector()))
499
500 # The image of the matrix of left-u^m-multiplication
501 # will be minimal for some natural number s...
502 s = 0
503 minimal_dim = V.dimension()
504 for i in xrange(1, V.dimension()):
505 this_dim = (u**i).matrix().image().dimension()
506 if this_dim < minimal_dim:
507 minimal_dim = this_dim
508 s = i
509
510 # Now minimal_matrix should correspond to the smallest
511 # non-zero subspace in Baes's (or really, Koecher's)
512 # proposition.
513 #
514 # However, we need to restrict the matrix to work on the
515 # subspace... or do we? Can't we just solve, knowing that
516 # A(c) = u^(s+1) should have a solution in the big space,
517 # too?
518 #
519 # Beware, solve_right() means that we're using COLUMN vectors.
520 # Our FiniteDimensionalAlgebraElement superclass uses rows.
521 u_next = u**(s+1)
522 A = u_next.matrix()
523 c_coordinates = A.solve_right(u_next.vector())
524
525 # Now c_coordinates is the idempotent we want, but it's in
526 # the coordinate system of the subalgebra.
527 #
528 # We need the basis for J, but as elements of the parent algebra.
529 #
530 basis = [self.parent(v) for v in V.basis()]
531 return self.parent().linear_combination(zip(c_coordinates, basis))
532
533
534 def trace(self):
535 """
536 Return my trace, the sum of my eigenvalues.
537
538 EXAMPLES::
539
540 sage: J = JordanSpinSimpleEJA(3)
541 sage: e0,e1,e2 = J.gens()
542 sage: x = e0 + e1 + e2
543 sage: x.trace()
544 2
545
546 """
547 cs = self.characteristic_polynomial().coefficients(sparse=False)
548 if len(cs) >= 2:
549 return -1*cs[-2]
550 else:
551 raise ValueError('charpoly had fewer than 2 coefficients')
552
553
554 def trace_inner_product(self, other):
555 """
556 Return the trace inner product of myself and ``other``.
557 """
558 if not other in self.parent():
559 raise ArgumentError("'other' must live in the same algebra")
560
561 return (self*other).trace()
562
563
564 def eja_rn(dimension, field=QQ):
565 """
566 Return the Euclidean Jordan Algebra corresponding to the set
567 `R^n` under the Hadamard product.
568
569 EXAMPLES:
570
571 This multiplication table can be verified by hand::
572
573 sage: J = eja_rn(3)
574 sage: e0,e1,e2 = J.gens()
575 sage: e0*e0
576 e0
577 sage: e0*e1
578 0
579 sage: e0*e2
580 0
581 sage: e1*e1
582 e1
583 sage: e1*e2
584 0
585 sage: e2*e2
586 e2
587
588 """
589 # The FiniteDimensionalAlgebra constructor takes a list of
590 # matrices, the ith representing right multiplication by the ith
591 # basis element in the vector space. So if e_1 = (1,0,0), then
592 # right (Hadamard) multiplication of x by e_1 picks out the first
593 # component of x; and likewise for the ith basis element e_i.
594 Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
595 for i in xrange(dimension) ]
596
597 return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
598
599
600
601 def random_eja():
602 """
603 Return a "random" finite-dimensional Euclidean Jordan Algebra.
604
605 ALGORITHM:
606
607 For now, we choose a random natural number ``n`` (greater than zero)
608 and then give you back one of the following:
609
610 * The cartesian product of the rational numbers ``n`` times; this is
611 ``QQ^n`` with the Hadamard product.
612
613 * The Jordan spin algebra on ``QQ^n``.
614
615 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
616 product.
617
618 Later this might be extended to return Cartesian products of the
619 EJAs above.
620
621 TESTS::
622
623 sage: random_eja()
624 Euclidean Jordan algebra of degree...
625
626 """
627 n = ZZ.random_element(1,5).abs()
628 constructor = choice([eja_rn,
629 JordanSpinSimpleEJA,
630 RealSymmetricSimpleEJA,
631 ComplexHermitianSimpleEJA])
632 return constructor(n, field=QQ)
633
634
635
636 def _real_symmetric_basis(n, field=QQ):
637 """
638 Return a basis for the space of real symmetric n-by-n matrices.
639 """
640 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
641 # coordinates.
642 S = []
643 for i in xrange(n):
644 for j in xrange(i+1):
645 Eij = matrix(field, n, lambda k,l: k==i and l==j)
646 if i == j:
647 Sij = Eij
648 else:
649 # Beware, orthogonal but not normalized!
650 Sij = Eij + Eij.transpose()
651 S.append(Sij)
652 return S
653
654
655 def _complex_hermitian_basis(n, field=QQ):
656 """
657 Returns a basis for the space of complex Hermitian n-by-n matrices.
658
659 TESTS::
660
661 sage: set_random_seed()
662 sage: n = ZZ.random_element(1,5).abs()
663 sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
664 True
665
666 """
667 F = QuadraticField(-1, 'I')
668 I = F.gen()
669
670 # This is like the symmetric case, but we need to be careful:
671 #
672 # * We want conjugate-symmetry, not just symmetry.
673 # * The diagonal will (as a result) be real.
674 #
675 S = []
676 for i in xrange(n):
677 for j in xrange(i+1):
678 Eij = matrix(field, n, lambda k,l: k==i and l==j)
679 if i == j:
680 Sij = _embed_complex_matrix(Eij)
681 S.append(Sij)
682 else:
683 # Beware, orthogonal but not normalized! The second one
684 # has a minus because it's conjugated.
685 Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
686 S.append(Sij_real)
687 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
688 S.append(Sij_imag)
689 return S
690
691
692 def _multiplication_table_from_matrix_basis(basis):
693 """
694 At least three of the five simple Euclidean Jordan algebras have the
695 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
696 multiplication on the right is matrix multiplication. Given a basis
697 for the underlying matrix space, this function returns a
698 multiplication table (obtained by looping through the basis
699 elements) for an algebra of those matrices.
700 """
701 # In S^2, for example, we nominally have four coordinates even
702 # though the space is of dimension three only. The vector space V
703 # is supposed to hold the entire long vector, and the subspace W
704 # of V will be spanned by the vectors that arise from symmetric
705 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
706 field = basis[0].base_ring()
707 dimension = basis[0].nrows()
708
709 def mat2vec(m):
710 return vector(field, m.list())
711
712 def vec2mat(v):
713 return matrix(field, dimension, v.list())
714
715 V = VectorSpace(field, dimension**2)
716 W = V.span( mat2vec(s) for s in basis )
717
718 # Taking the span above reorders our basis (thanks, jerk!) so we
719 # need to put our "matrix basis" in the same order as the
720 # (reordered) vector basis.
721 S = [ vec2mat(b) for b in W.basis() ]
722
723 Qs = []
724 for s in S:
725 # Brute force the multiplication-by-s matrix by looping
726 # through all elements of the basis and doing the computation
727 # to find out what the corresponding row should be. BEWARE:
728 # these multiplication tables won't be symmetric! It therefore
729 # becomes REALLY IMPORTANT that the underlying algebra
730 # constructor uses ROW vectors and not COLUMN vectors. That's
731 # why we're computing rows here and not columns.
732 Q_rows = []
733 for t in S:
734 this_row = mat2vec((s*t + t*s)/2)
735 Q_rows.append(W.coordinates(this_row))
736 Q = matrix(field, W.dimension(), Q_rows)
737 Qs.append(Q)
738
739 return Qs
740
741
742 def _embed_complex_matrix(M):
743 """
744 Embed the n-by-n complex matrix ``M`` into the space of real
745 matrices of size 2n-by-2n via the map the sends each entry `z = a +
746 bi` to the block matrix ``[[a,b],[-b,a]]``.
747
748 EXAMPLES::
749
750 sage: F = QuadraticField(-1,'i')
751 sage: x1 = F(4 - 2*i)
752 sage: x2 = F(1 + 2*i)
753 sage: x3 = F(-i)
754 sage: x4 = F(6)
755 sage: M = matrix(F,2,[x1,x2,x3,x4])
756 sage: _embed_complex_matrix(M)
757 [ 4 2| 1 -2]
758 [-2 4| 2 1]
759 [-----+-----]
760 [ 0 1| 6 0]
761 [-1 0| 0 6]
762
763 """
764 n = M.nrows()
765 if M.ncols() != n:
766 raise ArgumentError("the matrix 'M' must be square")
767 field = M.base_ring()
768 blocks = []
769 for z in M.list():
770 a = z.real()
771 b = z.imag()
772 blocks.append(matrix(field, 2, [[a,-b],[b,a]]))
773
774 # We can drop the imaginaries here.
775 return block_matrix(field.base_ring(), n, blocks)
776
777
778 def _unembed_complex_matrix(M):
779 """
780 The inverse of _embed_complex_matrix().
781
782 EXAMPLES::
783
784 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
785 ....: [-2, 1, -4, 3],
786 ....: [ 9, 10, 11, 12],
787 ....: [-10, 9, -12, 11] ])
788 sage: _unembed_complex_matrix(A)
789 [ -2*i + 1 -4*i + 3]
790 [ -10*i + 9 -12*i + 11]
791 """
792 n = ZZ(M.nrows())
793 if M.ncols() != n:
794 raise ArgumentError("the matrix 'M' must be square")
795 if not n.mod(2).is_zero():
796 raise ArgumentError("the matrix 'M' must be a complex embedding")
797
798 F = QuadraticField(-1, 'i')
799 i = F.gen()
800
801 # Go top-left to bottom-right (reading order), converting every
802 # 2-by-2 block we see to a single complex element.
803 elements = []
804 for k in xrange(n/2):
805 for j in xrange(n/2):
806 submat = M[2*k:2*k+2,2*j:2*j+2]
807 if submat[0,0] != submat[1,1]:
808 raise ArgumentError('bad real submatrix')
809 if submat[0,1] != -submat[1,0]:
810 raise ArgumentError('bad imag submatrix')
811 z = submat[0,0] + submat[1,0]*i
812 elements.append(z)
813
814 return matrix(F, n/2, elements)
815
816
817 def RealSymmetricSimpleEJA(n, field=QQ):
818 """
819 The rank-n simple EJA consisting of real symmetric n-by-n
820 matrices, the usual symmetric Jordan product, and the trace inner
821 product. It has dimension `(n^2 + n)/2` over the reals.
822
823 EXAMPLES::
824
825 sage: J = RealSymmetricSimpleEJA(2)
826 sage: e0, e1, e2 = J.gens()
827 sage: e0*e0
828 e0
829 sage: e1*e1
830 e0 + e2
831 sage: e2*e2
832 e2
833
834 TESTS:
835
836 The degree of this algebra is `(n^2 + n) / 2`::
837
838 sage: set_random_seed()
839 sage: n = ZZ.random_element(1,5).abs()
840 sage: J = RealSymmetricSimpleEJA(n)
841 sage: J.degree() == (n^2 + n)/2
842 True
843
844 """
845 S = _real_symmetric_basis(n, field=field)
846 Qs = _multiplication_table_from_matrix_basis(S)
847
848 return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=n)
849
850
851 def ComplexHermitianSimpleEJA(n, field=QQ):
852 """
853 The rank-n simple EJA consisting of complex Hermitian n-by-n
854 matrices over the real numbers, the usual symmetric Jordan product,
855 and the real-part-of-trace inner product. It has dimension `n^2` over
856 the reals.
857
858 TESTS:
859
860 The degree of this algebra is `n^2`::
861
862 sage: set_random_seed()
863 sage: n = ZZ.random_element(1,5).abs()
864 sage: J = ComplexHermitianSimpleEJA(n)
865 sage: J.degree() == n^2
866 True
867
868 """
869 S = _complex_hermitian_basis(n)
870 Qs = _multiplication_table_from_matrix_basis(S)
871 return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n)
872
873
874 def QuaternionHermitianSimpleEJA(n):
875 """
876 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
877 matrices, the usual symmetric Jordan product, and the
878 real-part-of-trace inner product. It has dimension `2n^2 - n` over
879 the reals.
880 """
881 pass
882
883 def OctonionHermitianSimpleEJA(n):
884 """
885 This shit be crazy. It has dimension 27 over the reals.
886 """
887 n = 3
888 pass
889
890 def JordanSpinSimpleEJA(n, field=QQ):
891 """
892 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
893 with the usual inner product and jordan product ``x*y =
894 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
895 the reals.
896
897 EXAMPLES:
898
899 This multiplication table can be verified by hand::
900
901 sage: J = JordanSpinSimpleEJA(4)
902 sage: e0,e1,e2,e3 = J.gens()
903 sage: e0*e0
904 e0
905 sage: e0*e1
906 e1
907 sage: e0*e2
908 e2
909 sage: e0*e3
910 e3
911 sage: e1*e2
912 0
913 sage: e1*e3
914 0
915 sage: e2*e3
916 0
917
918 In one dimension, this is the reals under multiplication::
919
920 sage: J1 = JordanSpinSimpleEJA(1)
921 sage: J2 = eja_rn(1)
922 sage: J1 == J2
923 True
924
925 """
926 Qs = []
927 id_matrix = identity_matrix(field, n)
928 for i in xrange(n):
929 ei = id_matrix.column(i)
930 Qi = zero_matrix(field, n)
931 Qi.set_row(0, ei)
932 Qi.set_column(0, ei)
933 Qi += diagonal_matrix(n, [ei[0]]*n)
934 # The addition of the diagonal matrix adds an extra ei[0] in the
935 # upper-left corner of the matrix.
936 Qi[0,0] = Qi[0,0] * ~field(2)
937 Qs.append(Qi)
938
939 # The rank of the spin factor algebra is two, UNLESS we're in a
940 # one-dimensional ambient space (the rank is bounded by the
941 # ambient dimension).
942 return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=min(n,2))