2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
8 from sage
.categories
.magmatic_algebras
import MagmaticAlgebras
9 from sage
.structure
.element
import is_Matrix
10 from sage
.structure
.category_object
import normalize_names
12 from sage
.algebras
.finite_dimensional_algebras
.finite_dimensional_algebra
import FiniteDimensionalAlgebra
13 from sage
.algebras
.finite_dimensional_algebras
.finite_dimensional_algebra_element
import FiniteDimensionalAlgebraElement
15 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra
):
17 def __classcall_private__(cls
,
21 assume_associative
=False,
25 mult_table
= [b
.base_extend(field
) for b
in mult_table
]
28 if not (is_Matrix(b
) and b
.dimensions() == (n
, n
)):
29 raise ValueError("input is not a multiplication table")
30 mult_table
= tuple(mult_table
)
32 cat
= MagmaticAlgebras(field
).FiniteDimensional().WithBasis()
33 cat
.or_subcategory(category
)
34 if assume_associative
:
35 cat
= cat
.Associative()
37 names
= normalize_names(n
, names
)
39 fda
= super(FiniteDimensionalEuclideanJordanAlgebra
, cls
)
40 return fda
.__classcall
__(cls
,
43 assume_associative
=assume_associative
,
49 def __init__(self
, field
,
52 assume_associative
=False,
56 fda
= super(FiniteDimensionalEuclideanJordanAlgebra
, self
)
65 Return a string representation of ``self``.
67 fmt
= "Euclidean Jordan algebra of degree {} over {}"
68 return fmt
.format(self
.degree(), self
.base_ring())
72 Return the rank of this EJA.
74 if self
._rank
is None:
75 raise ValueError("no rank specified at genesis")
80 class Element(FiniteDimensionalAlgebraElement
):
82 An element of a Euclidean Jordan algebra.
87 Return ``self`` raised to the power ``n``.
89 Jordan algebras are always power-associative; see for
90 example Faraut and Koranyi, Proposition II.1.2 (ii).
94 We have to override this because our superclass uses row vectors
95 instead of column vectors! We, on the other hand, assume column
100 sage: set_random_seed()
101 sage: x = random_eja().random_element()
102 sage: x.matrix()*x.vector() == (x**2).vector()
112 return A
.element_class(A
, (self
.matrix()**(n
-1))*self
.vector())
115 def characteristic_polynomial(self
):
117 Return my characteristic polynomial (if I'm a regular
120 Eventually this should be implemented in terms of the parent
121 algebra's characteristic polynomial that works for ALL
124 if self
.is_regular():
125 return self
.minimal_polynomial()
127 raise NotImplementedError('irregular element')
132 Return my determinant, the product of my eigenvalues.
137 sage: e0,e1 = J.gens()
142 sage: e0,e1,e2 = J.gens()
143 sage: x = e0 + e1 + e2
148 cs
= self
.characteristic_polynomial().coefficients(sparse
=False)
151 return cs
[0] * (-1)**r
153 raise ValueError('charpoly had no coefficients')
156 def is_nilpotent(self
):
158 Return whether or not some power of this element is zero.
160 The superclass method won't work unless we're in an
161 associative algebra, and we aren't. However, we generate
162 an assocoative subalgebra and we're nilpotent there if and
163 only if we're nilpotent here (probably).
167 The identity element is never nilpotent::
169 sage: set_random_seed()
170 sage: random_eja().one().is_nilpotent()
173 The additive identity is always nilpotent::
175 sage: set_random_seed()
176 sage: random_eja().zero().is_nilpotent()
180 # The element we're going to call "is_nilpotent()" on.
181 # Either myself, interpreted as an element of a finite-
182 # dimensional algebra, or an element of an associative
186 if self
.parent().is_associative():
187 elt
= FiniteDimensionalAlgebraElement(self
.parent(), self
)
189 V
= self
.span_of_powers()
190 assoc_subalg
= self
.subalgebra_generated_by()
191 # Mis-design warning: the basis used for span_of_powers()
192 # and subalgebra_generated_by() must be the same, and in
194 elt
= assoc_subalg(V
.coordinates(self
.vector()))
196 # Recursive call, but should work since elt lives in an
197 # associative algebra.
198 return elt
.is_nilpotent()
201 def is_regular(self
):
203 Return whether or not this is a regular element.
207 The identity element always has degree one, but any element
208 linearly-independent from it is regular::
211 sage: J.one().is_regular()
213 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
214 sage: for x in J.gens():
215 ....: (J.one() + x).is_regular()
223 return self
.degree() == self
.parent().rank()
228 Compute the degree of this element the straightforward way
229 according to the definition; by appending powers to a list
230 and figuring out its dimension (that is, whether or not
231 they're linearly dependent).
236 sage: J.one().degree()
238 sage: e0,e1,e2,e3 = J.gens()
239 sage: (e0 - e1).degree()
242 In the spin factor algebra (of rank two), all elements that
243 aren't multiples of the identity are regular::
245 sage: set_random_seed()
246 sage: n = ZZ.random_element(1,10).abs()
248 sage: x = J.random_element()
249 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
253 return self
.span_of_powers().dimension()
258 Return the matrix that represents left- (or right-)
259 multiplication by this element in the parent algebra.
261 We have to override this because the superclass method
262 returns a matrix that acts on row vectors (that is, on
265 fda_elt
= FiniteDimensionalAlgebraElement(self
.parent(), self
)
266 return fda_elt
.matrix().transpose()
269 def minimal_polynomial(self
):
273 sage: set_random_seed()
274 sage: x = random_eja().random_element()
275 sage: x.degree() == x.minimal_polynomial().degree()
280 sage: set_random_seed()
281 sage: x = random_eja().random_element()
282 sage: x.degree() == x.minimal_polynomial().degree()
285 The minimal polynomial and the characteristic polynomial coincide
286 and are known (see Alizadeh, Example 11.11) for all elements of
287 the spin factor algebra that aren't scalar multiples of the
290 sage: set_random_seed()
291 sage: n = ZZ.random_element(2,10).abs()
293 sage: y = J.random_element()
294 sage: while y == y.coefficient(0)*J.one():
295 ....: y = J.random_element()
296 sage: y0 = y.vector()[0]
297 sage: y_bar = y.vector()[1:]
298 sage: actual = y.minimal_polynomial()
299 sage: x = SR.symbol('x', domain='real')
300 sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
301 sage: bool(actual == expected)
305 # The element we're going to call "minimal_polynomial()" on.
306 # Either myself, interpreted as an element of a finite-
307 # dimensional algebra, or an element of an associative
311 if self
.parent().is_associative():
312 elt
= FiniteDimensionalAlgebraElement(self
.parent(), self
)
314 V
= self
.span_of_powers()
315 assoc_subalg
= self
.subalgebra_generated_by()
316 # Mis-design warning: the basis used for span_of_powers()
317 # and subalgebra_generated_by() must be the same, and in
319 elt
= assoc_subalg(V
.coordinates(self
.vector()))
321 # Recursive call, but should work since elt lives in an
322 # associative algebra.
323 return elt
.minimal_polynomial()
326 def quadratic_representation(self
):
328 Return the quadratic representation of this element.
332 The explicit form in the spin factor algebra is given by
333 Alizadeh's Example 11.12::
335 sage: n = ZZ.random_element(1,10).abs()
337 sage: x = J.random_element()
338 sage: x_vec = x.vector()
340 sage: x_bar = x_vec[1:]
341 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
342 sage: B = 2*x0*x_bar.row()
343 sage: C = 2*x0*x_bar.column()
344 sage: D = identity_matrix(QQ, n-1)
345 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
346 sage: D = D + 2*x_bar.tensor_product(x_bar)
347 sage: Q = block_matrix(2,2,[A,B,C,D])
348 sage: Q == x.quadratic_representation()
352 return 2*(self
.matrix()**2) - (self
**2).matrix()
355 def span_of_powers(self
):
357 Return the vector space spanned by successive powers of
360 # The dimension of the subalgebra can't be greater than
361 # the big algebra, so just put everything into a list
362 # and let span() get rid of the excess.
363 V
= self
.vector().parent()
364 return V
.span( (self
**d
).vector() for d
in xrange(V
.dimension()) )
367 def subalgebra_generated_by(self
):
369 Return the associative subalgebra of the parent EJA generated
374 sage: set_random_seed()
375 sage: x = random_eja().random_element()
376 sage: x.subalgebra_generated_by().is_associative()
379 Squaring in the subalgebra should be the same thing as
380 squaring in the superalgebra::
382 sage: set_random_seed()
383 sage: x = random_eja().random_element()
384 sage: u = x.subalgebra_generated_by().random_element()
385 sage: u.matrix()*u.vector() == (u**2).vector()
389 # First get the subspace spanned by the powers of myself...
390 V
= self
.span_of_powers()
393 # Now figure out the entries of the right-multiplication
394 # matrix for the successive basis elements b0, b1,... of
397 for b_right
in V
.basis():
398 eja_b_right
= self
.parent()(b_right
)
400 # The first row of the right-multiplication matrix by
401 # b1 is what we get if we apply that matrix to b1. The
402 # second row of the right multiplication matrix by b1
403 # is what we get when we apply that matrix to b2...
405 # IMPORTANT: this assumes that all vectors are COLUMN
406 # vectors, unlike our superclass (which uses row vectors).
407 for b_left
in V
.basis():
408 eja_b_left
= self
.parent()(b_left
)
409 # Multiply in the original EJA, but then get the
410 # coordinates from the subalgebra in terms of its
412 this_row
= V
.coordinates((eja_b_left
*eja_b_right
).vector())
413 b_right_rows
.append(this_row
)
414 b_right_matrix
= matrix(F
, b_right_rows
)
415 mats
.append(b_right_matrix
)
417 # It's an algebra of polynomials in one element, and EJAs
418 # are power-associative.
420 # TODO: choose generator names intelligently.
421 return FiniteDimensionalEuclideanJordanAlgebra(F
, mats
, assume_associative
=True, names
='f')
424 def subalgebra_idempotent(self
):
426 Find an idempotent in the associative subalgebra I generate
427 using Proposition 2.3.5 in Baes.
431 sage: set_random_seed()
433 sage: c = J.random_element().subalgebra_idempotent()
437 sage: c = J.random_element().subalgebra_idempotent()
442 if self
.is_nilpotent():
443 raise ValueError("this only works with non-nilpotent elements!")
445 V
= self
.span_of_powers()
446 J
= self
.subalgebra_generated_by()
447 # Mis-design warning: the basis used for span_of_powers()
448 # and subalgebra_generated_by() must be the same, and in
450 u
= J(V
.coordinates(self
.vector()))
452 # The image of the matrix of left-u^m-multiplication
453 # will be minimal for some natural number s...
455 minimal_dim
= V
.dimension()
456 for i
in xrange(1, V
.dimension()):
457 this_dim
= (u
**i
).matrix().image().dimension()
458 if this_dim
< minimal_dim
:
459 minimal_dim
= this_dim
462 # Now minimal_matrix should correspond to the smallest
463 # non-zero subspace in Baes's (or really, Koecher's)
466 # However, we need to restrict the matrix to work on the
467 # subspace... or do we? Can't we just solve, knowing that
468 # A(c) = u^(s+1) should have a solution in the big space,
471 # Beware, solve_right() means that we're using COLUMN vectors.
472 # Our FiniteDimensionalAlgebraElement superclass uses rows.
475 c_coordinates
= A
.solve_right(u_next
.vector())
477 # Now c_coordinates is the idempotent we want, but it's in
478 # the coordinate system of the subalgebra.
480 # We need the basis for J, but as elements of the parent algebra.
482 basis
= [self
.parent(v
) for v
in V
.basis()]
483 return self
.parent().linear_combination(zip(c_coordinates
, basis
))
488 Return my trace, the sum of my eigenvalues.
493 sage: e0,e1,e2 = J.gens()
494 sage: x = e0 + e1 + e2
499 cs
= self
.characteristic_polynomial().coefficients(sparse
=False)
503 raise ValueError('charpoly had fewer than 2 coefficients')
506 def trace_inner_product(self
, other
):
508 Return the trace inner product of myself and ``other``.
510 if not other
in self
.parent():
511 raise ArgumentError("'other' must live in the same algebra")
513 return (self
*other
).trace()
516 def eja_rn(dimension
, field
=QQ
):
518 Return the Euclidean Jordan Algebra corresponding to the set
519 `R^n` under the Hadamard product.
523 This multiplication table can be verified by hand::
526 sage: e0,e1,e2 = J.gens()
541 # The FiniteDimensionalAlgebra constructor takes a list of
542 # matrices, the ith representing right multiplication by the ith
543 # basis element in the vector space. So if e_1 = (1,0,0), then
544 # right (Hadamard) multiplication of x by e_1 picks out the first
545 # component of x; and likewise for the ith basis element e_i.
546 Qs
= [ matrix(field
, dimension
, dimension
, lambda k
,j
: 1*(k
== j
== i
))
547 for i
in xrange(dimension
) ]
549 return FiniteDimensionalEuclideanJordanAlgebra(field
,Qs
,rank
=dimension
)
552 def eja_ln(dimension
, field
=QQ
):
554 Return the Jordan algebra corresponding to the Lorentz "ice cream"
555 cone of the given ``dimension``.
559 This multiplication table can be verified by hand::
562 sage: e0,e1,e2,e3 = J.gens()
578 In one dimension, this is the reals under multiplication::
587 id_matrix
= identity_matrix(field
,dimension
)
588 for i
in xrange(dimension
):
589 ei
= id_matrix
.column(i
)
590 Qi
= zero_matrix(field
,dimension
)
593 Qi
+= diagonal_matrix(dimension
, [ei
[0]]*dimension
)
594 # The addition of the diagonal matrix adds an extra ei[0] in the
595 # upper-left corner of the matrix.
596 Qi
[0,0] = Qi
[0,0] * ~
field(2)
599 # The rank of the spin factor algebra is two, UNLESS we're in a
600 # one-dimensional ambient space (the rank is bounded by the
601 # ambient dimension).
602 rank
= min(dimension
,2)
603 return FiniteDimensionalEuclideanJordanAlgebra(field
,Qs
,rank
=rank
)
606 def eja_sn(dimension
, field
=QQ
):
608 Return the simple Jordan algebra of ``dimension``-by-``dimension``
609 symmetric matrices over ``field``.
614 sage: e0, e1, e2 = J.gens()
623 S
= _real_symmetric_basis(dimension
, field
=field
)
624 Qs
= _multiplication_table_from_matrix_basis(S
)
626 return FiniteDimensionalEuclideanJordanAlgebra(field
,Qs
,rank
=dimension
)
631 Return a "random" finite-dimensional Euclidean Jordan Algebra.
635 For now, we choose a random natural number ``n`` (greater than zero)
636 and then give you back one of the following:
638 * The cartesian product of the rational numbers ``n`` times; this is
639 ``QQ^n`` with the Hadamard product.
641 * The Jordan spin algebra on ``QQ^n``.
643 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
646 Later this might be extended to return Cartesian products of the
652 Euclidean Jordan algebra of degree...
655 n
= ZZ
.random_element(1,10).abs()
656 constructor
= choice([eja_rn
, eja_ln
, eja_sn
])
657 return constructor(dimension
=n
, field
=QQ
)
661 def _real_symmetric_basis(n
, field
=QQ
):
663 Return a basis for the space of real symmetric n-by-n matrices.
665 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
669 for j
in xrange(i
+1):
670 Eij
= matrix(field
, n
, lambda k
,l
: k
==i
and l
==j
)
674 # Beware, orthogonal but not normalized!
675 Sij
= Eij
+ Eij
.transpose()
680 def _multiplication_table_from_matrix_basis(basis
):
682 At least three of the five simple Euclidean Jordan algebras have the
683 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
684 multiplication on the right is matrix multiplication. Given a basis
685 for the underlying matrix space, this function returns a
686 multiplication table (obtained by looping through the basis
687 elements) for an algebra of those matrices.
689 # In S^2, for example, we nominally have four coordinates even
690 # though the space is of dimension three only. The vector space V
691 # is supposed to hold the entire long vector, and the subspace W
692 # of V will be spanned by the vectors that arise from symmetric
693 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
694 field
= basis
[0].base_ring()
695 dimension
= basis
[0].nrows()
698 return vector(field
, m
.list())
701 return matrix(field
, dimension
, v
.list())
703 V
= VectorSpace(field
, dimension
**2)
704 W
= V
.span( mat2vec(s
) for s
in basis
)
706 # Taking the span above reorders our basis (thanks, jerk!) so we
707 # need to put our "matrix basis" in the same order as the
708 # (reordered) vector basis.
709 S
= [ vec2mat(b
) for b
in W
.basis() ]
713 # Brute force the multiplication-by-s matrix by looping
714 # through all elements of the basis and doing the computation
715 # to find out what the corresponding row should be. BEWARE:
716 # these multiplication tables won't be symmetric! It therefore
717 # becomes REALLY IMPORTANT that the underlying algebra
718 # constructor uses ROW vectors and not COLUMN vectors. That's
719 # why we're computing rows here and not columns.
722 this_row
= mat2vec((s
*t
+ t
*s
)/2)
723 Q_rows
.append(W
.coordinates(this_row
))
724 Q
= matrix(field
, W
.dimension(), Q_rows
)
730 def _embed_complex_matrix(M
):
732 Embed the n-by-n complex matrix ``M`` into the space of real
733 matrices of size 2n-by-2n via the map the sends each entry `z = a +
734 bi` to the block matrix ``[[a,b],[-b,a]]``.
738 sage: F = QuadraticField(-1,'i')
739 sage: x1 = F(4 - 2*i)
740 sage: x2 = F(1 + 2*i)
743 sage: M = matrix(F,2,[x1,x2,x3,x4])
744 sage: _embed_complex_matrix(M)
754 raise ArgumentError("the matrix 'M' must be square")
755 field
= M
.base_ring()
760 blocks
.append(matrix(field
, 2, [[a
,-b
],[b
,a
]]))
762 # We can drop the imaginaries here.
763 return block_matrix(field
.base_ring(), n
, blocks
)
766 def _unembed_complex_matrix(M
):
768 The inverse of _embed_complex_matrix().
772 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
773 ....: [-2, 1, -4, 3],
774 ....: [ 9, 10, 11, 12],
775 ....: [-10, 9, -12, 11] ])
776 sage: _unembed_complex_matrix(A)
778 [ -10*i + 9 -12*i + 11]
782 raise ArgumentError("the matrix 'M' must be square")
783 if not n
.mod(2).is_zero():
784 raise ArgumentError("the matrix 'M' must be a complex embedding")
786 F
= QuadraticField(-1, 'i')
789 # Go top-left to bottom-right (reading order), converting every
790 # 2-by-2 block we see to a single complex element.
792 for k
in xrange(n
/2):
793 for j
in xrange(n
/2):
794 submat
= M
[2*k
:2*k
+2,2*j
:2*j
+2]
795 if submat
[0,0] != submat
[1,1]:
796 raise ArgumentError('bad real submatrix')
797 if submat
[0,1] != -submat
[1,0]:
798 raise ArgumentError('bad imag submatrix')
799 z
= submat
[0,0] + submat
[1,0]*i
802 return matrix(F
, n
/2, elements
)
805 def RealSymmetricSimpleEJA(n
):
807 The rank-n simple EJA consisting of real symmetric n-by-n
808 matrices, the usual symmetric Jordan product, and the trace inner
809 product. It has dimension `(n^2 + n)/2` over the reals.
813 def ComplexHermitianSimpleEJA(n
, field
=QQ
):
815 The rank-n simple EJA consisting of complex Hermitian n-by-n
816 matrices over the real numbers, the usual symmetric Jordan product,
817 and the real-part-of-trace inner product. It has dimension `n^2 over
820 F
= QuadraticField(-1, 'i')
822 S
= _real_symmetric_basis(n
, field
=F
)
827 embed_T
= [ _embed_complex_matrix(t
) for t
in T
]
828 Qs
= _multiplication_table_from_matrix_basis(embed_T
)
829 return FiniteDimensionalEuclideanJordanAlgebra(field
, Qs
, rank
=n
)
831 def QuaternionHermitianSimpleEJA(n
):
833 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
834 matrices, the usual symmetric Jordan product, and the
835 real-part-of-trace inner product. It has dimension `2n^2 - n` over
840 def OctonionHermitianSimpleEJA(n
):
842 This shit be crazy. It has dimension 27 over the reals.
847 def JordanSpinSimpleEJA(n
):
849 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
850 with the usual inner product and jordan product ``x*y =
851 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over