1 from sage
.matrix
.constructor
import matrix
3 from mjo
.eja
.eja_algebra
import FiniteDimensionalEuclideanJordanAlgebra
4 from mjo
.eja
.eja_element
import FiniteDimensionalEuclideanJordanAlgebraElement
6 class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement
):
10 sage: from mjo.eja.eja_algebra import random_eja
14 The matrix representation of an element in the subalgebra is
15 the same as its matrix representation in the superalgebra::
17 sage: set_random_seed()
18 sage: A = random_eja().random_element().subalgebra_generated_by()
19 sage: y = A.random_element()
20 sage: actual = y.to_matrix()
21 sage: expected = y.superalgebra_element().to_matrix()
22 sage: actual == expected
25 The left-multiplication-by operator for elements in the subalgebra
26 works like it does in the superalgebra, even if we orthonormalize
29 sage: set_random_seed()
30 sage: x = random_eja(AA).random_element()
31 sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
32 sage: y = A.random_element()
33 sage: y.operator()(A.one()) == y
38 def superalgebra_element(self
):
40 Return the object in our algebra's superalgebra that corresponds
45 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
50 sage: J = RealSymmetricEJA(3)
51 sage: x = sum(J.gens())
53 e0 + e1 + e2 + e3 + e4 + e5
54 sage: A = x.subalgebra_generated_by()
57 sage: A(x).superalgebra_element()
58 e0 + e1 + e2 + e3 + e4 + e5
59 sage: y = sum(A.gens())
62 sage: B = y.subalgebra_generated_by()
65 sage: B(y).superalgebra_element()
70 We can convert back and forth faithfully::
72 sage: set_random_seed()
73 sage: J = random_eja()
74 sage: x = J.random_element()
75 sage: A = x.subalgebra_generated_by()
76 sage: A(x).superalgebra_element() == x
78 sage: y = A.random_element()
79 sage: A(y.superalgebra_element()) == y
81 sage: B = y.subalgebra_generated_by()
82 sage: B(y).superalgebra_element() == y
86 # As with the _element_constructor_() method on the
87 # algebra... even in a subspace of a subspace, the basis
88 # elements belong to the ambient space. As a result, only one
89 # level of coordinate_vector() is needed, regardless of how
90 # deeply we're nested.
91 W
= self
.parent().vector_space()
92 V
= self
.parent().superalgebra().vector_space()
94 # Multiply on the left because basis_matrix() is row-wise.
95 ambient_coords
= self
.to_vector()*W
.basis_matrix()
96 V_coords
= V
.coordinate_vector(ambient_coords
)
97 return self
.parent().superalgebra().from_vector(V_coords
)
102 class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJordanAlgebra
):
104 A subalgebra of an EJA with a given basis.
108 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
110 ....: RealSymmetricEJA)
111 sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
115 The following Peirce subalgebras of the 2-by-2 real symmetric
116 matrices do not contain the superalgebra's identity element::
118 sage: J = RealSymmetricEJA(2)
119 sage: E11 = matrix(AA, [ [1,0],
121 sage: E22 = matrix(AA, [ [0,0],
123 sage: K1 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E11),))
124 sage: K1.one().to_matrix()
127 sage: K2 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E22),))
128 sage: K2.one().to_matrix()
134 Ensure that our generator names don't conflict with the superalgebra::
136 sage: J = JordanSpinEJA(3)
137 sage: J.one().subalgebra_generated_by().gens()
139 sage: J = JordanSpinEJA(3, prefix='f')
140 sage: J.one().subalgebra_generated_by().gens()
142 sage: J = JordanSpinEJA(3, prefix='b')
143 sage: J.one().subalgebra_generated_by().gens()
146 Ensure that we can find subalgebras of subalgebras::
148 sage: A = ComplexHermitianEJA(3).one().subalgebra_generated_by()
149 sage: B = A.one().subalgebra_generated_by()
154 def __init__(self
, superalgebra
, basis
, category
=None, check_axioms
=True):
155 self
._superalgebra
= superalgebra
156 V
= self
._superalgebra
.vector_space()
157 field
= self
._superalgebra
.base_ring()
159 category
= self
._superalgebra
.category()
161 # A half-assed attempt to ensure that we don't collide with
162 # the superalgebra's prefix (ignoring the fact that there
163 # could be super-superelgrbas in scope). If possible, we
164 # try to "increment" the parent algebra's prefix, although
165 # this idea goes out the window fast because some prefixen
167 prefixen
= [ 'f', 'g', 'h', 'a', 'b', 'c', 'd' ]
169 prefix
= prefixen
[prefixen
.index(self
._superalgebra
.prefix()) + 1]
173 # If our superalgebra is a subalgebra of something else, then
174 # these vectors won't have the right coordinates for
175 # V.span_of_basis() unless we use V.from_vector() on them.
176 W
= V
.span_of_basis( V
.from_vector(b
.to_vector()) for b
in basis
)
179 mult_table
= [[W
.zero() for i
in range(n
)] for j
in range(n
)]
180 ip_table
= [ [ self
._superalgebra
.inner_product(basis
[i
],basis
[j
])
186 product
= basis
[i
]*basis
[j
]
187 # product.to_vector() might live in a vector subspace
188 # if our parent algebra is already a subalgebra. We
189 # use V.from_vector() to make it "the right size" in
191 product_vector
= V
.from_vector(product
.to_vector())
192 mult_table
[i
][j
] = W
.coordinate_vector(product_vector
)
194 self
._inner
_product
_matrix
= matrix(field
, ip_table
)
195 matrix_basis
= tuple( b
.to_matrix() for b
in basis
)
198 self
._vector
_space
= W
200 fdeja
= super(FiniteDimensionalEuclideanJordanSubalgebra
, self
)
201 fdeja
.__init
__(field
,
205 matrix_basis
=matrix_basis
,
207 check_axioms
=check_axioms
)
211 def _element_constructor_(self
, elt
):
213 Construct an element of this subalgebra from the given one.
214 The only valid arguments are elements of the parent algebra
215 that happen to live in this subalgebra.
219 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
220 sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
224 sage: J = RealSymmetricEJA(3)
225 sage: X = matrix(AA, [ [0,0,1],
229 sage: basis = ( x, x^2 ) # x^2 is the identity matrix
230 sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J, basis)
239 if elt
not in self
.superalgebra():
240 raise ValueError("not an element of this subalgebra")
242 # The extra hackery is because foo.to_vector() might not live
243 # in foo.parent().vector_space()! Subspaces of subspaces still
244 # have user bases in the ambient space, though, so only one
245 # level of coordinate_vector() is needed. In other words, if V
246 # is itself a subspace, the basis elements for W will be of
247 # the same length as the basis elements for V -- namely
248 # whatever the dimension of the ambient (parent of V?) space is.
249 V
= self
.superalgebra().vector_space()
250 W
= self
.vector_space()
252 # Multiply on the left because basis_matrix() is row-wise.
253 ambient_coords
= elt
.to_vector()*V
.basis_matrix()
254 W_coords
= W
.coordinate_vector(ambient_coords
)
255 return self
.from_vector(W_coords
)
259 def matrix_space(self
):
261 Return the matrix space of this algebra, which is identical to
262 that of its superalgebra.
264 This is correct "by definition," and avoids a mismatch when
265 the subalgebra is trivial (with no matrix basis elements to
266 infer anything from) and the parent is not.
268 return self
.superalgebra().matrix_space()
271 def superalgebra(self
):
273 Return the superalgebra that this algebra was generated from.
275 return self
._superalgebra
278 def vector_space(self
):
282 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
283 sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
287 sage: J = RealSymmetricEJA(3)
288 sage: E11 = matrix(ZZ, [ [1,0,0],
291 sage: E22 = matrix(ZZ, [ [0,0,0],
296 sage: basis = (b1, b2)
297 sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
298 sage: K.vector_space()
299 Vector space of degree 6 and dimension 2 over...
309 return self
._vector
_space
312 Element
= FiniteDimensionalEuclideanJordanSubalgebraElement