1 # -*- coding: utf-8 -*-
3 from sage
.matrix
.constructor
import matrix
4 from sage
.modules
.free_module
import VectorSpace
5 from sage
.modules
.with_basis
.indexed_element
import IndexedFreeModuleElement
7 # TODO: make this unnecessary somehow.
8 from sage
.misc
.lazy_import
import lazy_import
9 lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
10 lazy_import('mjo.eja.eja_element_subalgebra',
11 'FiniteDimensionalEuclideanJordanElementSubalgebra')
12 from mjo
.eja
.eja_operator
import FiniteDimensionalEuclideanJordanAlgebraOperator
13 from mjo
.eja
.eja_utils
import _mat2vec
15 class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement
):
17 An element of a Euclidean Jordan algebra.
22 Oh man, I should not be doing this. This hides the "disabled"
23 methods ``left_matrix`` and ``matrix`` from introspection;
24 in particular it removes them from tab-completion.
26 return filter(lambda s
: s
not in ['left_matrix', 'matrix'],
34 Return ``self`` raised to the power ``n``.
36 Jordan algebras are always power-associative; see for
37 example Faraut and Korányi, Proposition II.1.2 (ii).
39 We have to override this because our superclass uses row
40 vectors instead of column vectors! We, on the other hand,
41 assume column vectors everywhere.
45 sage: from mjo.eja.eja_algebra import random_eja
49 The definition of `x^2` is the unambiguous `x*x`::
51 sage: set_random_seed()
52 sage: x = random_eja().random_element()
56 A few examples of power-associativity::
58 sage: set_random_seed()
59 sage: x = random_eja().random_element()
60 sage: x*(x*x)*(x*x) == x^5
62 sage: (x*x)*(x*x*x) == x^5
65 We also know that powers operator-commute (Koecher, Chapter
68 sage: set_random_seed()
69 sage: x = random_eja().random_element()
70 sage: m = ZZ.random_element(0,10)
71 sage: n = ZZ.random_element(0,10)
72 sage: Lxm = (x^m).operator()
73 sage: Lxn = (x^n).operator()
74 sage: Lxm*Lxn == Lxn*Lxm
79 return self
.parent().one()
83 return (self
**(n
-1))*self
86 def apply_univariate_polynomial(self
, p
):
88 Apply the univariate polynomial ``p`` to this element.
90 A priori, SageMath won't allow us to apply a univariate
91 polynomial to an element of an EJA, because we don't know
92 that EJAs are rings (they are usually not associative). Of
93 course, we know that EJAs are power-associative, so the
94 operation is ultimately kosher. This function sidesteps
95 the CAS to get the answer we want and expect.
99 sage: from mjo.eja.eja_algebra import (HadamardEJA,
104 sage: R = PolynomialRing(QQ, 't')
106 sage: p = t^4 - t^3 + 5*t - 2
107 sage: J = HadamardEJA(5)
108 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
113 We should always get back an element of the algebra::
115 sage: set_random_seed()
116 sage: p = PolynomialRing(QQ, 't').random_element()
117 sage: J = random_eja()
118 sage: x = J.random_element()
119 sage: x.apply_univariate_polynomial(p) in J
123 if len(p
.variables()) > 1:
124 raise ValueError("not a univariate polynomial")
127 # Convert the coeficcients to the parent's base ring,
128 # because a priori they might live in an (unnecessarily)
129 # larger ring for which P.sum() would fail below.
130 cs
= [ R(c
) for c
in p
.coefficients(sparse
=False) ]
131 return P
.sum( cs
[k
]*(self
**k
) for k
in range(len(cs
)) )
134 def characteristic_polynomial(self
):
136 Return the characteristic polynomial of this element.
140 sage: from mjo.eja.eja_algebra import HadamardEJA
144 The rank of `R^3` is three, and the minimal polynomial of
145 the identity element is `(t-1)` from which it follows that
146 the characteristic polynomial should be `(t-1)^3`::
148 sage: J = HadamardEJA(3)
149 sage: J.one().characteristic_polynomial()
150 t^3 - 3*t^2 + 3*t - 1
152 Likewise, the characteristic of the zero element in the
153 rank-three algebra `R^{n}` should be `t^{3}`::
155 sage: J = HadamardEJA(3)
156 sage: J.zero().characteristic_polynomial()
161 The characteristic polynomial of an element should evaluate
162 to zero on that element::
164 sage: set_random_seed()
165 sage: x = HadamardEJA(3).random_element()
166 sage: p = x.characteristic_polynomial()
167 sage: x.apply_univariate_polynomial(p)
170 The characteristic polynomials of the zero and unit elements
171 should be what we think they are in a subalgebra, too::
173 sage: J = HadamardEJA(3)
174 sage: p1 = J.one().characteristic_polynomial()
175 sage: q1 = J.zero().characteristic_polynomial()
176 sage: e0,e1,e2 = J.gens()
177 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
178 sage: p2 = A.one().characteristic_polynomial()
179 sage: q2 = A.zero().characteristic_polynomial()
186 p
= self
.parent().characteristic_polynomial()
187 return p(*self
.to_vector())
190 def inner_product(self
, other
):
192 Return the parent algebra's inner product of myself and ``other``.
196 sage: from mjo.eja.eja_algebra import (
197 ....: ComplexHermitianEJA,
199 ....: QuaternionHermitianEJA,
200 ....: RealSymmetricEJA,
205 The inner product in the Jordan spin algebra is the usual
206 inner product on `R^n` (this example only works because the
207 basis for the Jordan algebra is the standard basis in `R^n`)::
209 sage: J = JordanSpinEJA(3)
210 sage: x = vector(QQ,[1,2,3])
211 sage: y = vector(QQ,[4,5,6])
212 sage: x.inner_product(y)
214 sage: J.from_vector(x).inner_product(J.from_vector(y))
217 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
218 multiplication is the usual matrix multiplication in `S^n`,
219 so the inner product of the identity matrix with itself
222 sage: J = RealSymmetricEJA(3)
223 sage: J.one().inner_product(J.one())
226 Likewise, the inner product on `C^n` is `<X,Y> =
227 Re(trace(X*Y))`, where we must necessarily take the real
228 part because the product of Hermitian matrices may not be
231 sage: J = ComplexHermitianEJA(3)
232 sage: J.one().inner_product(J.one())
235 Ditto for the quaternions::
237 sage: J = QuaternionHermitianEJA(3)
238 sage: J.one().inner_product(J.one())
243 Ensure that we can always compute an inner product, and that
244 it gives us back a real number::
246 sage: set_random_seed()
247 sage: J = random_eja()
248 sage: x,y = J.random_elements(2)
249 sage: x.inner_product(y) in RLF
255 raise TypeError("'other' must live in the same algebra")
257 return P
.inner_product(self
, other
)
260 def operator_commutes_with(self
, other
):
262 Return whether or not this element operator-commutes
267 sage: from mjo.eja.eja_algebra import random_eja
271 The definition of a Jordan algebra says that any element
272 operator-commutes with its square::
274 sage: set_random_seed()
275 sage: x = random_eja().random_element()
276 sage: x.operator_commutes_with(x^2)
281 Test Lemma 1 from Chapter III of Koecher::
283 sage: set_random_seed()
284 sage: u,v = random_eja().random_elements(2)
285 sage: lhs = u.operator_commutes_with(u*v)
286 sage: rhs = v.operator_commutes_with(u^2)
290 Test the first polarization identity from my notes, Koecher
291 Chapter III, or from Baes (2.3)::
293 sage: set_random_seed()
294 sage: x,y = random_eja().random_elements(2)
295 sage: Lx = x.operator()
296 sage: Ly = y.operator()
297 sage: Lxx = (x*x).operator()
298 sage: Lxy = (x*y).operator()
299 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
302 Test the second polarization identity from my notes or from
305 sage: set_random_seed()
306 sage: x,y,z = random_eja().random_elements(3)
307 sage: Lx = x.operator()
308 sage: Ly = y.operator()
309 sage: Lz = z.operator()
310 sage: Lzy = (z*y).operator()
311 sage: Lxy = (x*y).operator()
312 sage: Lxz = (x*z).operator()
313 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
316 Test the third polarization identity from my notes or from
319 sage: set_random_seed()
320 sage: u,y,z = random_eja().random_elements(3)
321 sage: Lu = u.operator()
322 sage: Ly = y.operator()
323 sage: Lz = z.operator()
324 sage: Lzy = (z*y).operator()
325 sage: Luy = (u*y).operator()
326 sage: Luz = (u*z).operator()
327 sage: Luyz = (u*(y*z)).operator()
328 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
329 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
330 sage: bool(lhs == rhs)
334 if not other
in self
.parent():
335 raise TypeError("'other' must live in the same algebra")
344 Return my determinant, the product of my eigenvalues.
348 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
353 sage: J = JordanSpinEJA(2)
354 sage: e0,e1 = J.gens()
355 sage: x = sum( J.gens() )
361 sage: J = JordanSpinEJA(3)
362 sage: e0,e1,e2 = J.gens()
363 sage: x = sum( J.gens() )
369 An element is invertible if and only if its determinant is
372 sage: set_random_seed()
373 sage: x = random_eja().random_element()
374 sage: x.is_invertible() == (x.det() != 0)
377 Ensure that the determinant is multiplicative on an associative
378 subalgebra as in Faraut and Korányi's Proposition II.2.2::
380 sage: set_random_seed()
381 sage: J = random_eja().random_element().subalgebra_generated_by()
382 sage: x,y = J.random_elements(2)
383 sage: (x*y).det() == x.det()*y.det()
389 p
= P
._charpoly
_coeff
(0)
390 # The _charpoly_coeff function already adds the factor of
391 # -1 to ensure that _charpoly_coeff(0) is really what
392 # appears in front of t^{0} in the charpoly. However,
393 # we want (-1)^r times THAT for the determinant.
394 return ((-1)**r
)*p(*self
.to_vector())
399 Return the Jordan-multiplicative inverse of this element.
403 We appeal to the quadratic representation as in Koecher's
404 Theorem 12 in Chapter III, Section 5.
408 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
414 The inverse in the spin factor algebra is given in Alizadeh's
417 sage: set_random_seed()
418 sage: J = JordanSpinEJA.random_instance()
419 sage: x = J.random_element()
420 sage: while not x.is_invertible():
421 ....: x = J.random_element()
422 sage: x_vec = x.to_vector()
424 sage: x_bar = x_vec[1:]
425 sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
426 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
427 sage: x_inverse = coeff*inv_vec
428 sage: x.inverse() == J.from_vector(x_inverse)
431 Trying to invert a non-invertible element throws an error:
433 sage: JordanSpinEJA(3).zero().inverse()
434 Traceback (most recent call last):
436 ValueError: element is not invertible
440 The identity element is its own inverse::
442 sage: set_random_seed()
443 sage: J = random_eja()
444 sage: J.one().inverse() == J.one()
447 If an element has an inverse, it acts like one::
449 sage: set_random_seed()
450 sage: J = random_eja()
451 sage: x = J.random_element()
452 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
455 The inverse of the inverse is what we started with::
457 sage: set_random_seed()
458 sage: J = random_eja()
459 sage: x = J.random_element()
460 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
463 Proposition II.2.3 in Faraut and Korányi says that the inverse
464 of an element is the inverse of its left-multiplication operator
465 applied to the algebra's identity, when that inverse exists::
467 sage: set_random_seed()
468 sage: J = random_eja()
469 sage: x = J.random_element()
470 sage: (not x.operator().is_invertible()) or (
471 ....: x.operator().inverse()(J.one()) == x.inverse() )
474 Proposition II.2.4 in Faraut and Korányi gives a formula for
475 the inverse based on the characteristic polynomial and the
476 Cayley-Hamilton theorem for Euclidean Jordan algebras::
478 sage: set_random_seed()
479 sage: J = ComplexHermitianEJA(3)
480 sage: x = J.random_element()
481 sage: while not x.is_invertible():
482 ....: x = J.random_element()
484 sage: a = x.characteristic_polynomial().coefficients(sparse=False)
485 sage: expected = (-1)^(r+1)/x.det()
486 sage: expected *= sum( a[i+1]*x^i for i in range(r) )
487 sage: x.inverse() == expected
491 if not self
.is_invertible():
492 raise ValueError("element is not invertible")
494 return (~self
.quadratic_representation())(self
)
497 def is_invertible(self
):
499 Return whether or not this element is invertible.
503 The usual way to do this is to check if the determinant is
504 zero, but we need the characteristic polynomial for the
505 determinant. The minimal polynomial is a lot easier to get,
506 so we use Corollary 2 in Chapter V of Koecher to check
507 whether or not the paren't algebra's zero element is a root
508 of this element's minimal polynomial.
510 Beware that we can't use the superclass method, because it
511 relies on the algebra being associative.
515 sage: from mjo.eja.eja_algebra import random_eja
519 The identity element is always invertible::
521 sage: set_random_seed()
522 sage: J = random_eja()
523 sage: J.one().is_invertible()
526 The zero element is never invertible in a non-trivial algebra::
528 sage: set_random_seed()
529 sage: J = random_eja()
530 sage: (not J.is_trivial()) and J.zero().is_invertible()
535 if self
.parent().is_trivial():
540 # In fact, we only need to know if the constant term is non-zero,
541 # so we can pass in the field's zero element instead.
542 zero
= self
.base_ring().zero()
543 p
= self
.minimal_polynomial()
544 return not (p(zero
) == zero
)
547 def is_primitive_idempotent(self
):
549 Return whether or not this element is a primitive (or minimal)
552 A primitive idempotent is a non-zero idempotent that is not
553 the sum of two other non-zero idempotents. Remark 2.7.15 in
554 Baes shows that this is what he refers to as a "minimal
557 An element of a Euclidean Jordan algebra is a minimal idempotent
558 if it :meth:`is_idempotent` and if its Peirce subalgebra
559 corresponding to the eigenvalue ``1`` has dimension ``1`` (Baes,
564 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
565 ....: RealSymmetricEJA,
571 This method is sloooooow.
575 The spectral decomposition of a non-regular element should always
576 contain at least one non-minimal idempotent::
578 sage: J = RealSymmetricEJA(3, AA)
579 sage: x = sum(J.gens())
582 sage: [ c.is_primitive_idempotent()
583 ....: for (l,c) in x.spectral_decomposition() ]
586 On the other hand, the spectral decomposition of a regular
587 element should always be in terms of minimal idempotents::
589 sage: J = JordanSpinEJA(4, AA)
590 sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) )
593 sage: [ c.is_primitive_idempotent()
594 ....: for (l,c) in x.spectral_decomposition() ]
599 The identity element is minimal only in an EJA of rank one::
601 sage: set_random_seed()
602 sage: J = random_eja()
603 sage: J.rank() == 1 or not J.one().is_primitive_idempotent()
606 A non-idempotent cannot be a minimal idempotent::
608 sage: set_random_seed()
609 sage: J = JordanSpinEJA(4)
610 sage: x = J.random_element()
611 sage: (not x.is_idempotent()) and x.is_primitive_idempotent()
614 Proposition 2.7.19 in Baes says that an element is a minimal
615 idempotent if and only if it's idempotent with trace equal to
618 sage: set_random_seed()
619 sage: J = JordanSpinEJA(4)
620 sage: x = J.random_element()
621 sage: expected = (x.is_idempotent() and x.trace() == 1)
622 sage: actual = x.is_primitive_idempotent()
623 sage: actual == expected
626 Primitive idempotents must be non-zero::
628 sage: set_random_seed()
629 sage: J = random_eja()
630 sage: J.zero().is_idempotent()
632 sage: J.zero().is_primitive_idempotent()
635 As a consequence of the fact that primitive idempotents must
636 be non-zero, there are no primitive idempotents in a trivial
637 Euclidean Jordan algebra::
639 sage: J = TrivialEJA()
640 sage: J.one().is_idempotent()
642 sage: J.one().is_primitive_idempotent()
646 if not self
.is_idempotent():
652 (_
,_
,J1
) = self
.parent().peirce_decomposition(self
)
653 return (J1
.dimension() == 1)
656 def is_nilpotent(self
):
658 Return whether or not some power of this element is zero.
662 We use Theorem 5 in Chapter III of Koecher, which says that
663 an element ``x`` is nilpotent if and only if ``x.operator()``
664 is nilpotent. And it is a basic fact of linear algebra that
665 an operator on an `n`-dimensional space is nilpotent if and
666 only if, when raised to the `n`th power, it equals the zero
667 operator (for example, see Axler Corollary 8.8).
671 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
676 sage: J = JordanSpinEJA(3)
677 sage: x = sum(J.gens())
678 sage: x.is_nilpotent()
683 The identity element is never nilpotent, except in a trivial EJA::
685 sage: set_random_seed()
686 sage: J = random_eja()
687 sage: J.one().is_nilpotent() and not J.is_trivial()
690 The additive identity is always nilpotent::
692 sage: set_random_seed()
693 sage: random_eja().zero().is_nilpotent()
698 zero_operator
= P
.zero().operator()
699 return self
.operator()**P
.dimension() == zero_operator
702 def is_regular(self
):
704 Return whether or not this is a regular element.
708 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
713 The identity element always has degree one, but any element
714 linearly-independent from it is regular::
716 sage: J = JordanSpinEJA(5)
717 sage: J.one().is_regular()
719 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
720 sage: for x in J.gens():
721 ....: (J.one() + x).is_regular()
730 The zero element should never be regular, unless the parent
731 algebra has dimension less than or equal to one::
733 sage: set_random_seed()
734 sage: J = random_eja()
735 sage: J.dimension() <= 1 or not J.zero().is_regular()
738 The unit element isn't regular unless the algebra happens to
739 consist of only its scalar multiples::
741 sage: set_random_seed()
742 sage: J = random_eja()
743 sage: J.dimension() <= 1 or not J.one().is_regular()
747 return self
.degree() == self
.parent().rank()
752 Return the degree of this element, which is defined to be
753 the degree of its minimal polynomial.
757 For now, we skip the messy minimal polynomial computation
758 and instead return the dimension of the vector space spanned
759 by the powers of this element. The latter is a bit more
760 straightforward to compute.
764 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
769 sage: J = JordanSpinEJA(4)
770 sage: J.one().degree()
772 sage: e0,e1,e2,e3 = J.gens()
773 sage: (e0 - e1).degree()
776 In the spin factor algebra (of rank two), all elements that
777 aren't multiples of the identity are regular::
779 sage: set_random_seed()
780 sage: J = JordanSpinEJA.random_instance()
781 sage: x = J.random_element()
782 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
787 The zero and unit elements are both of degree one in nontrivial
790 sage: set_random_seed()
791 sage: J = random_eja()
792 sage: d = J.zero().degree()
793 sage: (J.is_trivial() and d == 0) or d == 1
795 sage: d = J.one().degree()
796 sage: (J.is_trivial() and d == 0) or d == 1
799 Our implementation agrees with the definition::
801 sage: set_random_seed()
802 sage: x = random_eja().random_element()
803 sage: x.degree() == x.minimal_polynomial().degree()
807 if self
.is_zero() and not self
.parent().is_trivial():
808 # The minimal polynomial of zero in a nontrivial algebra
809 # is "t"; in a trivial algebra it's "1" by convention
810 # (it's an empty product).
812 return self
.subalgebra_generated_by().dimension()
815 def left_matrix(self
):
817 Our parent class defines ``left_matrix`` and ``matrix``
818 methods whose names are misleading. We don't want them.
820 raise NotImplementedError("use operator().matrix() instead")
825 def minimal_polynomial(self
):
827 Return the minimal polynomial of this element,
828 as a function of the variable `t`.
832 We restrict ourselves to the associative subalgebra
833 generated by this element, and then return the minimal
834 polynomial of this element's operator matrix (in that
835 subalgebra). This works by Baes Proposition 2.3.16.
839 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
840 ....: RealSymmetricEJA,
846 Keeping in mind that the polynomial ``1`` evaluates the identity
847 element (also the zero element) of the trivial algebra, it is clear
848 that the polynomial ``1`` is the minimal polynomial of the only
849 element in a trivial algebra::
851 sage: J = TrivialEJA()
852 sage: J.one().minimal_polynomial()
854 sage: J.zero().minimal_polynomial()
859 The minimal polynomial of the identity and zero elements are
862 sage: set_random_seed()
863 sage: J = random_eja(nontrivial=True)
864 sage: J.one().minimal_polynomial()
866 sage: J.zero().minimal_polynomial()
869 The degree of an element is (by one definition) the degree
870 of its minimal polynomial::
872 sage: set_random_seed()
873 sage: x = random_eja().random_element()
874 sage: x.degree() == x.minimal_polynomial().degree()
877 The minimal polynomial and the characteristic polynomial coincide
878 and are known (see Alizadeh, Example 11.11) for all elements of
879 the spin factor algebra that aren't scalar multiples of the
880 identity. We require the dimension of the algebra to be at least
881 two here so that said elements actually exist::
883 sage: set_random_seed()
884 sage: n_max = max(2, JordanSpinEJA._max_test_case_size())
885 sage: n = ZZ.random_element(2, n_max)
886 sage: J = JordanSpinEJA(n)
887 sage: y = J.random_element()
888 sage: while y == y.coefficient(0)*J.one():
889 ....: y = J.random_element()
890 sage: y0 = y.to_vector()[0]
891 sage: y_bar = y.to_vector()[1:]
892 sage: actual = y.minimal_polynomial()
893 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
894 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
895 sage: bool(actual == expected)
898 The minimal polynomial should always kill its element::
900 sage: set_random_seed()
901 sage: x = random_eja().random_element()
902 sage: p = x.minimal_polynomial()
903 sage: x.apply_univariate_polynomial(p)
906 The minimal polynomial is invariant under a change of basis,
907 and in particular, a re-scaling of the basis::
909 sage: set_random_seed()
910 sage: n_max = RealSymmetricEJA._max_test_case_size()
911 sage: n = ZZ.random_element(1, n_max)
912 sage: J1 = RealSymmetricEJA(n,QQ)
913 sage: J2 = RealSymmetricEJA(n,QQ,normalize_basis=False)
914 sage: X = random_matrix(QQ,n)
915 sage: X = X*X.transpose()
918 sage: x1.minimal_polynomial() == x2.minimal_polynomial()
923 # We would generate a zero-dimensional subalgebra
924 # where the minimal polynomial would be constant.
925 # That might be correct, but only if *this* algebra
927 if not self
.parent().is_trivial():
928 # Pretty sure we know what the minimal polynomial of
929 # the zero operator is going to be. This ensures
930 # consistency of e.g. the polynomial variable returned
931 # in the "normal" case without us having to think about it.
932 return self
.operator().minimal_polynomial()
934 A
= self
.subalgebra_generated_by()
935 return A(self
).operator().minimal_polynomial()
939 def natural_representation(self
):
941 Return a more-natural representation of this element.
943 Every finite-dimensional Euclidean Jordan Algebra is a
944 direct sum of five simple algebras, four of which comprise
945 Hermitian matrices. This method returns the original
946 "natural" representation of this element as a Hermitian
947 matrix, if it has one. If not, you get the usual representation.
951 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
952 ....: QuaternionHermitianEJA)
956 sage: J = ComplexHermitianEJA(3)
959 sage: J.one().natural_representation()
969 sage: J = QuaternionHermitianEJA(3)
972 sage: J.one().natural_representation()
973 [1 0 0 0 0 0 0 0 0 0 0 0]
974 [0 1 0 0 0 0 0 0 0 0 0 0]
975 [0 0 1 0 0 0 0 0 0 0 0 0]
976 [0 0 0 1 0 0 0 0 0 0 0 0]
977 [0 0 0 0 1 0 0 0 0 0 0 0]
978 [0 0 0 0 0 1 0 0 0 0 0 0]
979 [0 0 0 0 0 0 1 0 0 0 0 0]
980 [0 0 0 0 0 0 0 1 0 0 0 0]
981 [0 0 0 0 0 0 0 0 1 0 0 0]
982 [0 0 0 0 0 0 0 0 0 1 0 0]
983 [0 0 0 0 0 0 0 0 0 0 1 0]
984 [0 0 0 0 0 0 0 0 0 0 0 1]
987 B
= self
.parent().natural_basis()
988 W
= self
.parent().natural_basis_space()
989 return W
.linear_combination(zip(B
,self
.to_vector()))
994 The norm of this element with respect to :meth:`inner_product`.
998 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1003 sage: J = HadamardEJA(2)
1004 sage: x = sum(J.gens())
1010 sage: J = JordanSpinEJA(4)
1011 sage: x = sum(J.gens())
1016 return self
.inner_product(self
).sqrt()
1021 Return the left-multiplication-by-this-element
1022 operator on the ambient algebra.
1026 sage: from mjo.eja.eja_algebra import random_eja
1030 sage: set_random_seed()
1031 sage: J = random_eja()
1032 sage: x,y = J.random_elements(2)
1033 sage: x.operator()(y) == x*y
1035 sage: y.operator()(x) == x*y
1040 left_mult_by_self
= lambda y
: self
*y
1041 L
= P
.module_morphism(function
=left_mult_by_self
, codomain
=P
)
1042 return FiniteDimensionalEuclideanJordanAlgebraOperator(
1048 def quadratic_representation(self
, other
=None):
1050 Return the quadratic representation of this element.
1054 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1059 The explicit form in the spin factor algebra is given by
1060 Alizadeh's Example 11.12::
1062 sage: set_random_seed()
1063 sage: x = JordanSpinEJA.random_instance().random_element()
1064 sage: x_vec = x.to_vector()
1065 sage: n = x_vec.degree()
1067 sage: x_bar = x_vec[1:]
1068 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
1069 sage: B = 2*x0*x_bar.row()
1070 sage: C = 2*x0*x_bar.column()
1071 sage: D = matrix.identity(QQ, n-1)
1072 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
1073 sage: D = D + 2*x_bar.tensor_product(x_bar)
1074 sage: Q = matrix.block(2,2,[A,B,C,D])
1075 sage: Q == x.quadratic_representation().matrix()
1078 Test all of the properties from Theorem 11.2 in Alizadeh::
1080 sage: set_random_seed()
1081 sage: J = random_eja()
1082 sage: x,y = J.random_elements(2)
1083 sage: Lx = x.operator()
1084 sage: Lxx = (x*x).operator()
1085 sage: Qx = x.quadratic_representation()
1086 sage: Qy = y.quadratic_representation()
1087 sage: Qxy = x.quadratic_representation(y)
1088 sage: Qex = J.one().quadratic_representation(x)
1089 sage: n = ZZ.random_element(10)
1090 sage: Qxn = (x^n).quadratic_representation()
1094 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
1097 Property 2 (multiply on the right for :trac:`28272`):
1099 sage: alpha = J.base_ring().random_element()
1100 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
1105 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
1108 sage: not x.is_invertible() or (
1111 ....: x.inverse().quadratic_representation() )
1114 sage: Qxy(J.one()) == x*y
1119 sage: not x.is_invertible() or (
1120 ....: x.quadratic_representation(x.inverse())*Qx
1121 ....: == Qx*x.quadratic_representation(x.inverse()) )
1124 sage: not x.is_invertible() or (
1125 ....: x.quadratic_representation(x.inverse())*Qx
1127 ....: 2*Lx*Qex - Qx )
1130 sage: 2*Lx*Qex - Qx == Lxx
1135 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
1145 sage: not x.is_invertible() or (
1146 ....: Qx*x.inverse().operator() == Lx )
1151 sage: not x.operator_commutes_with(y) or (
1152 ....: Qx(y)^n == Qxn(y^n) )
1158 elif not other
in self
.parent():
1159 raise TypeError("'other' must live in the same algebra")
1162 M
= other
.operator()
1163 return ( L
*M
+ M
*L
- (self
*other
).operator() )
1167 def spectral_decomposition(self
):
1169 Return the unique spectral decomposition of this element.
1173 Following Faraut and Korányi's Theorem III.1.1, we restrict this
1174 element's left-multiplication-by operator to the subalgebra it
1175 generates. We then compute the spectral decomposition of that
1176 operator, and the spectral projectors we get back must be the
1177 left-multiplication-by operators for the idempotents we
1178 seek. Thus applying them to the identity element gives us those
1181 Since the eigenvalues are required to be distinct, we take
1182 the spectral decomposition of the zero element to be zero
1183 times the identity element of the algebra (which is idempotent,
1188 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1192 The spectral decomposition of the identity is ``1`` times itself,
1193 and the spectral decomposition of zero is ``0`` times the identity::
1195 sage: J = RealSymmetricEJA(3,AA)
1198 sage: J.one().spectral_decomposition()
1200 sage: J.zero().spectral_decomposition()
1205 sage: J = RealSymmetricEJA(4,AA)
1206 sage: x = sum(J.gens())
1207 sage: sd = x.spectral_decomposition()
1212 sage: c0.inner_product(c1) == 0
1214 sage: c0.is_idempotent()
1216 sage: c1.is_idempotent()
1218 sage: c0 + c1 == J.one()
1220 sage: l0*c0 + l1*c1 == x
1225 A
= self
.subalgebra_generated_by(orthonormalize_basis
=True)
1227 for (evalue
, proj
) in A(self
).operator().spectral_decomposition():
1228 result
.append( (evalue
, proj(A
.one()).superalgebra_element()) )
1231 def subalgebra_generated_by(self
, orthonormalize_basis
=False):
1233 Return the associative subalgebra of the parent EJA generated
1236 Since our parent algebra is unital, we want "subalgebra" to mean
1237 "unital subalgebra" as well; thus the subalgebra that an element
1238 generates will itself be a Euclidean Jordan algebra after
1239 restricting the algebra operations appropriately. This is the
1240 subalgebra that Faraut and Korányi work with in section II.2, for
1245 sage: from mjo.eja.eja_algebra import random_eja
1249 This subalgebra, being composed of only powers, is associative::
1251 sage: set_random_seed()
1252 sage: x0 = random_eja().random_element()
1253 sage: A = x0.subalgebra_generated_by()
1254 sage: x,y,z = A.random_elements(3)
1255 sage: (x*y)*z == x*(y*z)
1258 Squaring in the subalgebra should work the same as in
1261 sage: set_random_seed()
1262 sage: x = random_eja().random_element()
1263 sage: A = x.subalgebra_generated_by()
1264 sage: A(x^2) == A(x)*A(x)
1267 By definition, the subalgebra generated by the zero element is
1268 the one-dimensional algebra generated by the identity
1269 element... unless the original algebra was trivial, in which
1270 case the subalgebra is trivial too::
1272 sage: set_random_seed()
1273 sage: A = random_eja().zero().subalgebra_generated_by()
1274 sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1
1278 return FiniteDimensionalEuclideanJordanElementSubalgebra(self
, orthonormalize_basis
)
1281 def subalgebra_idempotent(self
):
1283 Find an idempotent in the associative subalgebra I generate
1284 using Proposition 2.3.5 in Baes.
1288 sage: from mjo.eja.eja_algebra import random_eja
1292 Ensure that we can find an idempotent in a non-trivial algebra
1293 where there are non-nilpotent elements::
1295 sage: set_random_seed()
1296 sage: J = random_eja(nontrivial=True)
1297 sage: x = J.random_element()
1298 sage: while x.is_nilpotent():
1299 ....: x = J.random_element()
1300 sage: c = x.subalgebra_idempotent()
1305 if self
.parent().is_trivial():
1308 if self
.is_nilpotent():
1309 raise ValueError("this only works with non-nilpotent elements!")
1311 J
= self
.subalgebra_generated_by()
1314 # The image of the matrix of left-u^m-multiplication
1315 # will be minimal for some natural number s...
1317 minimal_dim
= J
.dimension()
1318 for i
in range(1, minimal_dim
):
1319 this_dim
= (u
**i
).operator().matrix().image().dimension()
1320 if this_dim
< minimal_dim
:
1321 minimal_dim
= this_dim
1324 # Now minimal_matrix should correspond to the smallest
1325 # non-zero subspace in Baes's (or really, Koecher's)
1328 # However, we need to restrict the matrix to work on the
1329 # subspace... or do we? Can't we just solve, knowing that
1330 # A(c) = u^(s+1) should have a solution in the big space,
1333 # Beware, solve_right() means that we're using COLUMN vectors.
1334 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1336 A
= u_next
.operator().matrix()
1337 c
= J
.from_vector(A
.solve_right(u_next
.to_vector()))
1339 # Now c is the idempotent we want, but it still lives in the subalgebra.
1340 return c
.superalgebra_element()
1345 Return my trace, the sum of my eigenvalues.
1347 In a trivial algebra, however you want to look at it, the trace is
1348 an empty sum for which we declare the result to be zero.
1352 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1359 sage: J = TrivialEJA()
1360 sage: J.zero().trace()
1364 sage: J = JordanSpinEJA(3)
1365 sage: x = sum(J.gens())
1371 sage: J = HadamardEJA(5)
1372 sage: J.one().trace()
1377 The trace of an element is a real number::
1379 sage: set_random_seed()
1380 sage: J = random_eja()
1381 sage: J.random_element().trace() in RLF
1389 # Special case for the trivial algebra where
1390 # the trace is an empty sum.
1391 return P
.base_ring().zero()
1393 p
= P
._charpoly
_coeff
(r
-1)
1394 # The _charpoly_coeff function already adds the factor of
1395 # -1 to ensure that _charpoly_coeff(r-1) is really what
1396 # appears in front of t^{r-1} in the charpoly. However,
1397 # we want the negative of THAT for the trace.
1398 return -p(*self
.to_vector())
1401 def trace_inner_product(self
, other
):
1403 Return the trace inner product of myself and ``other``.
1407 sage: from mjo.eja.eja_algebra import random_eja
1411 The trace inner product is commutative, bilinear, and associative::
1413 sage: set_random_seed()
1414 sage: J = random_eja()
1415 sage: x,y,z = J.random_elements(3)
1417 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1420 sage: a = J.base_ring().random_element();
1421 sage: actual = (a*(x+z)).trace_inner_product(y)
1422 sage: expected = ( a*x.trace_inner_product(y) +
1423 ....: a*z.trace_inner_product(y) )
1424 sage: actual == expected
1426 sage: actual = x.trace_inner_product(a*(y+z))
1427 sage: expected = ( a*x.trace_inner_product(y) +
1428 ....: a*x.trace_inner_product(z) )
1429 sage: actual == expected
1432 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1436 if not other
in self
.parent():
1437 raise TypeError("'other' must live in the same algebra")
1439 return (self
*other
).trace()
1442 def trace_norm(self
):
1444 The norm of this element with respect to :meth:`trace_inner_product`.
1448 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1453 sage: J = HadamardEJA(2)
1454 sage: x = sum(J.gens())
1455 sage: x.trace_norm()
1460 sage: J = JordanSpinEJA(4)
1461 sage: x = sum(J.gens())
1462 sage: x.trace_norm()
1466 return self
.trace_inner_product(self
).sqrt()