1 from sage
.matrix
.constructor
import matrix
2 from sage
.modules
.free_module
import VectorSpace
3 from sage
.modules
.with_basis
.indexed_element
import IndexedFreeModuleElement
5 from mjo
.eja
.eja_operator
import FiniteDimensionalEuclideanJordanAlgebraOperator
6 from mjo
.eja
.eja_utils
import _mat2vec
8 class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement
):
10 An element of a Euclidean Jordan algebra.
15 Oh man, I should not be doing this. This hides the "disabled"
16 methods ``left_matrix`` and ``matrix`` from introspection;
17 in particular it removes them from tab-completion.
19 return filter(lambda s
: s
not in ['left_matrix', 'matrix'],
27 Return ``self`` raised to the power ``n``.
29 Jordan algebras are always power-associative; see for
30 example Faraut and Korányi, Proposition II.1.2 (ii).
32 We have to override this because our superclass uses row
33 vectors instead of column vectors! We, on the other hand,
34 assume column vectors everywhere.
38 sage: from mjo.eja.eja_algebra import random_eja
42 The definition of `x^2` is the unambiguous `x*x`::
44 sage: set_random_seed()
45 sage: x = random_eja().random_element()
49 A few examples of power-associativity::
51 sage: set_random_seed()
52 sage: x = random_eja().random_element()
53 sage: x*(x*x)*(x*x) == x^5
55 sage: (x*x)*(x*x*x) == x^5
58 We also know that powers operator-commute (Koecher, Chapter
61 sage: set_random_seed()
62 sage: x = random_eja().random_element()
63 sage: m = ZZ.random_element(0,10)
64 sage: n = ZZ.random_element(0,10)
65 sage: Lxm = (x^m).operator()
66 sage: Lxn = (x^n).operator()
67 sage: Lxm*Lxn == Lxn*Lxm
72 return self
.parent().one()
76 return (self
**(n
-1))*self
79 def apply_univariate_polynomial(self
, p
):
81 Apply the univariate polynomial ``p`` to this element.
83 A priori, SageMath won't allow us to apply a univariate
84 polynomial to an element of an EJA, because we don't know
85 that EJAs are rings (they are usually not associative). Of
86 course, we know that EJAs are power-associative, so the
87 operation is ultimately kosher. This function sidesteps
88 the CAS to get the answer we want and expect.
92 sage: from mjo.eja.eja_algebra import (HadamardEJA,
97 sage: R = PolynomialRing(QQ, 't')
99 sage: p = t^4 - t^3 + 5*t - 2
100 sage: J = HadamardEJA(5)
101 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
106 We should always get back an element of the algebra::
108 sage: set_random_seed()
109 sage: p = PolynomialRing(AA, 't').random_element()
110 sage: J = random_eja()
111 sage: x = J.random_element()
112 sage: x.apply_univariate_polynomial(p) in J
116 if len(p
.variables()) > 1:
117 raise ValueError("not a univariate polynomial")
120 # Convert the coeficcients to the parent's base ring,
121 # because a priori they might live in an (unnecessarily)
122 # larger ring for which P.sum() would fail below.
123 cs
= [ R(c
) for c
in p
.coefficients(sparse
=False) ]
124 return P
.sum( cs
[k
]*(self
**k
) for k
in range(len(cs
)) )
127 def characteristic_polynomial(self
):
129 Return the characteristic polynomial of this element.
133 sage: from mjo.eja.eja_algebra import HadamardEJA
137 The rank of `R^3` is three, and the minimal polynomial of
138 the identity element is `(t-1)` from which it follows that
139 the characteristic polynomial should be `(t-1)^3`::
141 sage: J = HadamardEJA(3)
142 sage: J.one().characteristic_polynomial()
143 t^3 - 3*t^2 + 3*t - 1
145 Likewise, the characteristic of the zero element in the
146 rank-three algebra `R^{n}` should be `t^{3}`::
148 sage: J = HadamardEJA(3)
149 sage: J.zero().characteristic_polynomial()
154 The characteristic polynomial of an element should evaluate
155 to zero on that element::
157 sage: set_random_seed()
158 sage: x = HadamardEJA(3).random_element()
159 sage: p = x.characteristic_polynomial()
160 sage: x.apply_univariate_polynomial(p)
163 The characteristic polynomials of the zero and unit elements
164 should be what we think they are in a subalgebra, too::
166 sage: J = HadamardEJA(3)
167 sage: p1 = J.one().characteristic_polynomial()
168 sage: q1 = J.zero().characteristic_polynomial()
169 sage: e0,e1,e2 = J.gens()
170 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
171 sage: p2 = A.one().characteristic_polynomial()
172 sage: q2 = A.zero().characteristic_polynomial()
179 p
= self
.parent().characteristic_polynomial_of()
180 return p(*self
.to_vector())
183 def inner_product(self
, other
):
185 Return the parent algebra's inner product of myself and ``other``.
189 sage: from mjo.eja.eja_algebra import (
190 ....: ComplexHermitianEJA,
192 ....: QuaternionHermitianEJA,
193 ....: RealSymmetricEJA,
198 The inner product in the Jordan spin algebra is the usual
199 inner product on `R^n` (this example only works because the
200 basis for the Jordan algebra is the standard basis in `R^n`)::
202 sage: J = JordanSpinEJA(3)
203 sage: x = vector(QQ,[1,2,3])
204 sage: y = vector(QQ,[4,5,6])
205 sage: x.inner_product(y)
207 sage: J.from_vector(x).inner_product(J.from_vector(y))
210 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
211 multiplication is the usual matrix multiplication in `S^n`,
212 so the inner product of the identity matrix with itself
215 sage: J = RealSymmetricEJA(3)
216 sage: J.one().inner_product(J.one())
219 Likewise, the inner product on `C^n` is `<X,Y> =
220 Re(trace(X*Y))`, where we must necessarily take the real
221 part because the product of Hermitian matrices may not be
224 sage: J = ComplexHermitianEJA(3)
225 sage: J.one().inner_product(J.one())
228 Ditto for the quaternions::
230 sage: J = QuaternionHermitianEJA(3)
231 sage: J.one().inner_product(J.one())
236 Ensure that we can always compute an inner product, and that
237 it gives us back a real number::
239 sage: set_random_seed()
240 sage: J = random_eja()
241 sage: x,y = J.random_elements(2)
242 sage: x.inner_product(y) in RLF
248 raise TypeError("'other' must live in the same algebra")
250 return P
.inner_product(self
, other
)
253 def operator_commutes_with(self
, other
):
255 Return whether or not this element operator-commutes
260 sage: from mjo.eja.eja_algebra import random_eja
264 The definition of a Jordan algebra says that any element
265 operator-commutes with its square::
267 sage: set_random_seed()
268 sage: x = random_eja().random_element()
269 sage: x.operator_commutes_with(x^2)
274 Test Lemma 1 from Chapter III of Koecher::
276 sage: set_random_seed()
277 sage: u,v = random_eja().random_elements(2)
278 sage: lhs = u.operator_commutes_with(u*v)
279 sage: rhs = v.operator_commutes_with(u^2)
283 Test the first polarization identity from my notes, Koecher
284 Chapter III, or from Baes (2.3)::
286 sage: set_random_seed()
287 sage: x,y = random_eja().random_elements(2)
288 sage: Lx = x.operator()
289 sage: Ly = y.operator()
290 sage: Lxx = (x*x).operator()
291 sage: Lxy = (x*y).operator()
292 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
295 Test the second polarization identity from my notes or from
298 sage: set_random_seed()
299 sage: x,y,z = random_eja().random_elements(3)
300 sage: Lx = x.operator()
301 sage: Ly = y.operator()
302 sage: Lz = z.operator()
303 sage: Lzy = (z*y).operator()
304 sage: Lxy = (x*y).operator()
305 sage: Lxz = (x*z).operator()
306 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
309 Test the third polarization identity from my notes or from
312 sage: set_random_seed()
313 sage: u,y,z = random_eja().random_elements(3)
314 sage: Lu = u.operator()
315 sage: Ly = y.operator()
316 sage: Lz = z.operator()
317 sage: Lzy = (z*y).operator()
318 sage: Luy = (u*y).operator()
319 sage: Luz = (u*z).operator()
320 sage: Luyz = (u*(y*z)).operator()
321 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
322 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
323 sage: bool(lhs == rhs)
327 if not other
in self
.parent():
328 raise TypeError("'other' must live in the same algebra")
337 Return my determinant, the product of my eigenvalues.
341 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
347 sage: J = JordanSpinEJA(2)
348 sage: e0,e1 = J.gens()
349 sage: x = sum( J.gens() )
355 sage: J = JordanSpinEJA(3)
356 sage: e0,e1,e2 = J.gens()
357 sage: x = sum( J.gens() )
361 The determinant of the sole element in the rank-zero trivial
362 algebra is ``1``, by three paths of reasoning. First, its
363 characteristic polynomial is a constant ``1``, so the constant
364 term in that polynomial is ``1``. Second, the characteristic
365 polynomial evaluated at zero is again ``1``. And finally, the
366 (empty) product of its eigenvalues is likewise just unity::
368 sage: J = TrivialEJA()
374 An element is invertible if and only if its determinant is
377 sage: set_random_seed()
378 sage: x = random_eja().random_element()
379 sage: x.is_invertible() == (x.det() != 0)
382 Ensure that the determinant is multiplicative on an associative
383 subalgebra as in Faraut and Korányi's Proposition II.2.2::
385 sage: set_random_seed()
386 sage: J = random_eja().random_element().subalgebra_generated_by()
387 sage: x,y = J.random_elements(2)
388 sage: (x*y).det() == x.det()*y.det()
395 # Special case, since we don't get the a0=1
396 # coefficient when the rank of the algebra
398 return P
.base_ring().one()
400 p
= P
._charpoly
_coefficients
()[0]
401 # The _charpoly_coeff function already adds the factor of -1
402 # to ensure that _charpoly_coefficients()[0] is really what
403 # appears in front of t^{0} in the charpoly. However, we want
404 # (-1)^r times THAT for the determinant.
405 return ((-1)**r
)*p(*self
.to_vector())
410 Return the Jordan-multiplicative inverse of this element.
414 We appeal to the quadratic representation as in Koecher's
415 Theorem 12 in Chapter III, Section 5.
419 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
425 The inverse in the spin factor algebra is given in Alizadeh's
428 sage: set_random_seed()
429 sage: J = JordanSpinEJA.random_instance()
430 sage: x = J.random_element()
431 sage: while not x.is_invertible():
432 ....: x = J.random_element()
433 sage: x_vec = x.to_vector()
435 sage: x_bar = x_vec[1:]
436 sage: coeff = x0.inner_product(x0) - x_bar.inner_product(x_bar)
437 sage: x_inverse = x_vec.parent()(x0.list() + (-x_bar).list())
438 sage: if not coeff.is_zero(): x_inverse = x_inverse/coeff
439 sage: x.inverse() == J.from_vector(x_inverse)
442 Trying to invert a non-invertible element throws an error:
444 sage: JordanSpinEJA(3).zero().inverse()
445 Traceback (most recent call last):
447 ValueError: element is not invertible
451 The identity element is its own inverse::
453 sage: set_random_seed()
454 sage: J = random_eja()
455 sage: J.one().inverse() == J.one()
458 If an element has an inverse, it acts like one::
460 sage: set_random_seed()
461 sage: J = random_eja()
462 sage: x = J.random_element()
463 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
466 The inverse of the inverse is what we started with::
468 sage: set_random_seed()
469 sage: J = random_eja()
470 sage: x = J.random_element()
471 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
474 Proposition II.2.3 in Faraut and Korányi says that the inverse
475 of an element is the inverse of its left-multiplication operator
476 applied to the algebra's identity, when that inverse exists::
478 sage: set_random_seed()
479 sage: J = random_eja()
480 sage: x = J.random_element()
481 sage: (not x.operator().is_invertible()) or (
482 ....: x.operator().inverse()(J.one()) == x.inverse() )
485 Proposition II.2.4 in Faraut and Korányi gives a formula for
486 the inverse based on the characteristic polynomial and the
487 Cayley-Hamilton theorem for Euclidean Jordan algebras::
489 sage: set_random_seed()
490 sage: J = ComplexHermitianEJA(3)
491 sage: x = J.random_element()
492 sage: while not x.is_invertible():
493 ....: x = J.random_element()
495 sage: a = x.characteristic_polynomial().coefficients(sparse=False)
496 sage: expected = (-1)^(r+1)/x.det()
497 sage: expected *= sum( a[i+1]*x^i for i in range(r) )
498 sage: x.inverse() == expected
502 if not self
.is_invertible():
503 raise ValueError("element is not invertible")
505 if self
.parent()._charpoly
_coefficients
.is_in_cache():
506 # We can invert using our charpoly if it will be fast to
507 # compute. If the coefficients are cached, our rank had
509 r
= self
.parent().rank()
510 a
= self
.characteristic_polynomial().coefficients(sparse
=False)
511 return (-1)**(r
+1)*sum(a
[i
+1]*self
**i
for i
in range(r
))/self
.det()
513 return (~self
.quadratic_representation())(self
)
516 def is_invertible(self
):
518 Return whether or not this element is invertible.
522 The usual way to do this is to check if the determinant is
523 zero, but we need the characteristic polynomial for the
524 determinant. The minimal polynomial is a lot easier to get,
525 so we use Corollary 2 in Chapter V of Koecher to check
526 whether or not the paren't algebra's zero element is a root
527 of this element's minimal polynomial.
529 That is... unless the coefficients of our algebra's
530 "characteristic polynomial of" function are already cached!
531 In that case, we just use the determinant (which will be fast
534 Beware that we can't use the superclass method, because it
535 relies on the algebra being associative.
539 sage: from mjo.eja.eja_algebra import random_eja
543 The identity element is always invertible::
545 sage: set_random_seed()
546 sage: J = random_eja()
547 sage: J.one().is_invertible()
550 The zero element is never invertible in a non-trivial algebra::
552 sage: set_random_seed()
553 sage: J = random_eja()
554 sage: (not J.is_trivial()) and J.zero().is_invertible()
559 if self
.parent().is_trivial():
564 if self
.parent()._charpoly
_coefficients
.is_in_cache():
565 # The determinant will be quicker than computing the minimal
566 # polynomial from scratch, most likely.
567 return (not self
.det().is_zero())
569 # In fact, we only need to know if the constant term is non-zero,
570 # so we can pass in the field's zero element instead.
571 zero
= self
.base_ring().zero()
572 p
= self
.minimal_polynomial()
573 return not (p(zero
) == zero
)
576 def is_primitive_idempotent(self
):
578 Return whether or not this element is a primitive (or minimal)
581 A primitive idempotent is a non-zero idempotent that is not
582 the sum of two other non-zero idempotents. Remark 2.7.15 in
583 Baes shows that this is what he refers to as a "minimal
586 An element of a Euclidean Jordan algebra is a minimal idempotent
587 if it :meth:`is_idempotent` and if its Peirce subalgebra
588 corresponding to the eigenvalue ``1`` has dimension ``1`` (Baes,
593 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
594 ....: RealSymmetricEJA,
600 This method is sloooooow.
604 The spectral decomposition of a non-regular element should always
605 contain at least one non-minimal idempotent::
607 sage: J = RealSymmetricEJA(3)
608 sage: x = sum(J.gens())
611 sage: [ c.is_primitive_idempotent()
612 ....: for (l,c) in x.spectral_decomposition() ]
615 On the other hand, the spectral decomposition of a regular
616 element should always be in terms of minimal idempotents::
618 sage: J = JordanSpinEJA(4)
619 sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) )
622 sage: [ c.is_primitive_idempotent()
623 ....: for (l,c) in x.spectral_decomposition() ]
628 The identity element is minimal only in an EJA of rank one::
630 sage: set_random_seed()
631 sage: J = random_eja()
632 sage: J.rank() == 1 or not J.one().is_primitive_idempotent()
635 A non-idempotent cannot be a minimal idempotent::
637 sage: set_random_seed()
638 sage: J = JordanSpinEJA(4)
639 sage: x = J.random_element()
640 sage: (not x.is_idempotent()) and x.is_primitive_idempotent()
643 Proposition 2.7.19 in Baes says that an element is a minimal
644 idempotent if and only if it's idempotent with trace equal to
647 sage: set_random_seed()
648 sage: J = JordanSpinEJA(4)
649 sage: x = J.random_element()
650 sage: expected = (x.is_idempotent() and x.trace() == 1)
651 sage: actual = x.is_primitive_idempotent()
652 sage: actual == expected
655 Primitive idempotents must be non-zero::
657 sage: set_random_seed()
658 sage: J = random_eja()
659 sage: J.zero().is_idempotent()
661 sage: J.zero().is_primitive_idempotent()
664 As a consequence of the fact that primitive idempotents must
665 be non-zero, there are no primitive idempotents in a trivial
666 Euclidean Jordan algebra::
668 sage: J = TrivialEJA()
669 sage: J.one().is_idempotent()
671 sage: J.one().is_primitive_idempotent()
675 if not self
.is_idempotent():
681 (_
,_
,J1
) = self
.parent().peirce_decomposition(self
)
682 return (J1
.dimension() == 1)
685 def is_nilpotent(self
):
687 Return whether or not some power of this element is zero.
691 We use Theorem 5 in Chapter III of Koecher, which says that
692 an element ``x`` is nilpotent if and only if ``x.operator()``
693 is nilpotent. And it is a basic fact of linear algebra that
694 an operator on an `n`-dimensional space is nilpotent if and
695 only if, when raised to the `n`th power, it equals the zero
696 operator (for example, see Axler Corollary 8.8).
700 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
705 sage: J = JordanSpinEJA(3)
706 sage: x = sum(J.gens())
707 sage: x.is_nilpotent()
712 The identity element is never nilpotent, except in a trivial EJA::
714 sage: set_random_seed()
715 sage: J = random_eja()
716 sage: J.one().is_nilpotent() and not J.is_trivial()
719 The additive identity is always nilpotent::
721 sage: set_random_seed()
722 sage: random_eja().zero().is_nilpotent()
727 zero_operator
= P
.zero().operator()
728 return self
.operator()**P
.dimension() == zero_operator
731 def is_regular(self
):
733 Return whether or not this is a regular element.
737 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
742 The identity element always has degree one, but any element
743 linearly-independent from it is regular::
745 sage: J = JordanSpinEJA(5)
746 sage: J.one().is_regular()
748 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
749 sage: for x in J.gens():
750 ....: (J.one() + x).is_regular()
759 The zero element should never be regular, unless the parent
760 algebra has dimension less than or equal to one::
762 sage: set_random_seed()
763 sage: J = random_eja()
764 sage: J.dimension() <= 1 or not J.zero().is_regular()
767 The unit element isn't regular unless the algebra happens to
768 consist of only its scalar multiples::
770 sage: set_random_seed()
771 sage: J = random_eja()
772 sage: J.dimension() <= 1 or not J.one().is_regular()
776 return self
.degree() == self
.parent().rank()
781 Return the degree of this element, which is defined to be
782 the degree of its minimal polynomial.
786 For now, we skip the messy minimal polynomial computation
787 and instead return the dimension of the vector space spanned
788 by the powers of this element. The latter is a bit more
789 straightforward to compute.
793 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
798 sage: J = JordanSpinEJA(4)
799 sage: J.one().degree()
801 sage: e0,e1,e2,e3 = J.gens()
802 sage: (e0 - e1).degree()
805 In the spin factor algebra (of rank two), all elements that
806 aren't multiples of the identity are regular::
808 sage: set_random_seed()
809 sage: J = JordanSpinEJA.random_instance()
810 sage: n = J.dimension()
811 sage: x = J.random_element()
812 sage: x.degree() == min(n,2) or (x == x.coefficient(0)*J.one())
817 The zero and unit elements are both of degree one in nontrivial
820 sage: set_random_seed()
821 sage: J = random_eja()
822 sage: d = J.zero().degree()
823 sage: (J.is_trivial() and d == 0) or d == 1
825 sage: d = J.one().degree()
826 sage: (J.is_trivial() and d == 0) or d == 1
829 Our implementation agrees with the definition::
831 sage: set_random_seed()
832 sage: x = random_eja().random_element()
833 sage: x.degree() == x.minimal_polynomial().degree()
837 if self
.is_zero() and not self
.parent().is_trivial():
838 # The minimal polynomial of zero in a nontrivial algebra
839 # is "t"; in a trivial algebra it's "1" by convention
840 # (it's an empty product).
842 return self
.subalgebra_generated_by().dimension()
845 def left_matrix(self
):
847 Our parent class defines ``left_matrix`` and ``matrix``
848 methods whose names are misleading. We don't want them.
850 raise NotImplementedError("use operator().matrix() instead")
855 def minimal_polynomial(self
):
857 Return the minimal polynomial of this element,
858 as a function of the variable `t`.
862 We restrict ourselves to the associative subalgebra
863 generated by this element, and then return the minimal
864 polynomial of this element's operator matrix (in that
865 subalgebra). This works by Baes Proposition 2.3.16.
869 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
870 ....: RealSymmetricEJA,
876 Keeping in mind that the polynomial ``1`` evaluates the identity
877 element (also the zero element) of the trivial algebra, it is clear
878 that the polynomial ``1`` is the minimal polynomial of the only
879 element in a trivial algebra::
881 sage: J = TrivialEJA()
882 sage: J.one().minimal_polynomial()
884 sage: J.zero().minimal_polynomial()
889 The minimal polynomial of the identity and zero elements are
890 always the same, except in trivial algebras where the minimal
891 polynomial of the unit/zero element is ``1``::
893 sage: set_random_seed()
894 sage: J = random_eja()
895 sage: mu = J.one().minimal_polynomial()
896 sage: t = mu.parent().gen()
897 sage: mu + int(J.is_trivial())*(t-2)
899 sage: mu = J.zero().minimal_polynomial()
900 sage: t = mu.parent().gen()
901 sage: mu + int(J.is_trivial())*(t-1)
904 The degree of an element is (by one definition) the degree
905 of its minimal polynomial::
907 sage: set_random_seed()
908 sage: x = random_eja().random_element()
909 sage: x.degree() == x.minimal_polynomial().degree()
912 The minimal polynomial and the characteristic polynomial coincide
913 and are known (see Alizadeh, Example 11.11) for all elements of
914 the spin factor algebra that aren't scalar multiples of the
915 identity. We require the dimension of the algebra to be at least
916 two here so that said elements actually exist::
918 sage: set_random_seed()
919 sage: n_max = max(2, JordanSpinEJA._max_random_instance_size())
920 sage: n = ZZ.random_element(2, n_max)
921 sage: J = JordanSpinEJA(n)
922 sage: y = J.random_element()
923 sage: while y == y.coefficient(0)*J.one():
924 ....: y = J.random_element()
925 sage: y0 = y.to_vector()[0]
926 sage: y_bar = y.to_vector()[1:]
927 sage: actual = y.minimal_polynomial()
928 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
929 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
930 sage: bool(actual == expected)
933 The minimal polynomial should always kill its element::
935 sage: set_random_seed()
936 sage: x = random_eja().random_element()
937 sage: p = x.minimal_polynomial()
938 sage: x.apply_univariate_polynomial(p)
941 The minimal polynomial is invariant under a change of basis,
942 and in particular, a re-scaling of the basis::
944 sage: set_random_seed()
945 sage: n_max = RealSymmetricEJA._max_random_instance_size()
946 sage: n = ZZ.random_element(1, n_max)
947 sage: J1 = RealSymmetricEJA(n)
948 sage: J2 = RealSymmetricEJA(n,normalize_basis=False)
949 sage: X = random_matrix(AA,n)
950 sage: X = X*X.transpose()
953 sage: x1.minimal_polynomial() == x2.minimal_polynomial()
958 # We would generate a zero-dimensional subalgebra
959 # where the minimal polynomial would be constant.
960 # That might be correct, but only if *this* algebra
962 if not self
.parent().is_trivial():
963 # Pretty sure we know what the minimal polynomial of
964 # the zero operator is going to be. This ensures
965 # consistency of e.g. the polynomial variable returned
966 # in the "normal" case without us having to think about it.
967 return self
.operator().minimal_polynomial()
969 A
= self
.subalgebra_generated_by(orthonormalize_basis
=False)
970 return A(self
).operator().minimal_polynomial()
976 Return an (often more natural) representation of this element as a
979 Every finite-dimensional Euclidean Jordan Algebra is a direct
980 sum of five simple algebras, four of which comprise Hermitian
981 matrices. This method returns a "natural" matrix
982 representation of this element as either a Hermitian matrix or
987 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
988 ....: QuaternionHermitianEJA)
992 sage: J = ComplexHermitianEJA(3)
995 sage: J.one().to_matrix()
1005 sage: J = QuaternionHermitianEJA(3)
1008 sage: J.one().to_matrix()
1009 [1 0 0 0 0 0 0 0 0 0 0 0]
1010 [0 1 0 0 0 0 0 0 0 0 0 0]
1011 [0 0 1 0 0 0 0 0 0 0 0 0]
1012 [0 0 0 1 0 0 0 0 0 0 0 0]
1013 [0 0 0 0 1 0 0 0 0 0 0 0]
1014 [0 0 0 0 0 1 0 0 0 0 0 0]
1015 [0 0 0 0 0 0 1 0 0 0 0 0]
1016 [0 0 0 0 0 0 0 1 0 0 0 0]
1017 [0 0 0 0 0 0 0 0 1 0 0 0]
1018 [0 0 0 0 0 0 0 0 0 1 0 0]
1019 [0 0 0 0 0 0 0 0 0 0 1 0]
1020 [0 0 0 0 0 0 0 0 0 0 0 1]
1022 B
= self
.parent().matrix_basis()
1023 W
= self
.parent().matrix_space()
1025 # This is just a manual "from_vector()", but of course
1026 # matrix spaces aren't vector spaces in sage, so they
1027 # don't have a from_vector() method.
1028 return W
.linear_combination( zip(B
, self
.to_vector()) )
1033 The norm of this element with respect to :meth:`inner_product`.
1037 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1042 sage: J = HadamardEJA(2)
1043 sage: x = sum(J.gens())
1049 sage: J = JordanSpinEJA(4)
1050 sage: x = sum(J.gens())
1055 return self
.inner_product(self
).sqrt()
1060 Return the left-multiplication-by-this-element
1061 operator on the ambient algebra.
1065 sage: from mjo.eja.eja_algebra import random_eja
1069 sage: set_random_seed()
1070 sage: J = random_eja()
1071 sage: x,y = J.random_elements(2)
1072 sage: x.operator()(y) == x*y
1074 sage: y.operator()(x) == x*y
1079 left_mult_by_self
= lambda y
: self
*y
1080 L
= P
.module_morphism(function
=left_mult_by_self
, codomain
=P
)
1081 return FiniteDimensionalEuclideanJordanAlgebraOperator(
1087 def quadratic_representation(self
, other
=None):
1089 Return the quadratic representation of this element.
1093 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1098 The explicit form in the spin factor algebra is given by
1099 Alizadeh's Example 11.12::
1101 sage: set_random_seed()
1102 sage: x = JordanSpinEJA.random_instance().random_element()
1103 sage: x_vec = x.to_vector()
1104 sage: Q = matrix.identity(x.base_ring(), 0)
1105 sage: n = x_vec.degree()
1108 ....: x_bar = x_vec[1:]
1109 ....: A = matrix(x.base_ring(), 1, [x_vec.inner_product(x_vec)])
1110 ....: B = 2*x0*x_bar.row()
1111 ....: C = 2*x0*x_bar.column()
1112 ....: D = matrix.identity(x.base_ring(), n-1)
1113 ....: D = (x0^2 - x_bar.inner_product(x_bar))*D
1114 ....: D = D + 2*x_bar.tensor_product(x_bar)
1115 ....: Q = matrix.block(2,2,[A,B,C,D])
1116 sage: Q == x.quadratic_representation().matrix()
1119 Test all of the properties from Theorem 11.2 in Alizadeh::
1121 sage: set_random_seed()
1122 sage: J = random_eja()
1123 sage: x,y = J.random_elements(2)
1124 sage: Lx = x.operator()
1125 sage: Lxx = (x*x).operator()
1126 sage: Qx = x.quadratic_representation()
1127 sage: Qy = y.quadratic_representation()
1128 sage: Qxy = x.quadratic_representation(y)
1129 sage: Qex = J.one().quadratic_representation(x)
1130 sage: n = ZZ.random_element(10)
1131 sage: Qxn = (x^n).quadratic_representation()
1135 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
1138 Property 2 (multiply on the right for :trac:`28272`):
1140 sage: alpha = J.base_ring().random_element()
1141 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
1146 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
1149 sage: not x.is_invertible() or (
1152 ....: x.inverse().quadratic_representation() )
1155 sage: Qxy(J.one()) == x*y
1160 sage: not x.is_invertible() or (
1161 ....: x.quadratic_representation(x.inverse())*Qx
1162 ....: == Qx*x.quadratic_representation(x.inverse()) )
1165 sage: not x.is_invertible() or (
1166 ....: x.quadratic_representation(x.inverse())*Qx
1168 ....: 2*Lx*Qex - Qx )
1171 sage: 2*Lx*Qex - Qx == Lxx
1176 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
1186 sage: not x.is_invertible() or (
1187 ....: Qx*x.inverse().operator() == Lx )
1192 sage: not x.operator_commutes_with(y) or (
1193 ....: Qx(y)^n == Qxn(y^n) )
1199 elif not other
in self
.parent():
1200 raise TypeError("'other' must live in the same algebra")
1203 M
= other
.operator()
1204 return ( L
*M
+ M
*L
- (self
*other
).operator() )
1208 def spectral_decomposition(self
):
1210 Return the unique spectral decomposition of this element.
1214 Following Faraut and Korányi's Theorem III.1.1, we restrict this
1215 element's left-multiplication-by operator to the subalgebra it
1216 generates. We then compute the spectral decomposition of that
1217 operator, and the spectral projectors we get back must be the
1218 left-multiplication-by operators for the idempotents we
1219 seek. Thus applying them to the identity element gives us those
1222 Since the eigenvalues are required to be distinct, we take
1223 the spectral decomposition of the zero element to be zero
1224 times the identity element of the algebra (which is idempotent,
1229 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1233 The spectral decomposition of the identity is ``1`` times itself,
1234 and the spectral decomposition of zero is ``0`` times the identity::
1236 sage: J = RealSymmetricEJA(3)
1239 sage: J.one().spectral_decomposition()
1241 sage: J.zero().spectral_decomposition()
1246 sage: J = RealSymmetricEJA(4)
1247 sage: x = sum(J.gens())
1248 sage: sd = x.spectral_decomposition()
1253 sage: c0.inner_product(c1) == 0
1255 sage: c0.is_idempotent()
1257 sage: c1.is_idempotent()
1259 sage: c0 + c1 == J.one()
1261 sage: l0*c0 + l1*c1 == x
1264 The spectral decomposition should work in subalgebras, too::
1266 sage: J = RealSymmetricEJA(4)
1267 sage: (e0, e1, e2, e3, e4, e5, e6, e7, e8, e9) = J.gens()
1268 sage: A = 2*e5 - 2*e8
1269 sage: (lambda1, c1) = A.spectral_decomposition()[1]
1270 sage: (J0, J5, J1) = J.peirce_decomposition(c1)
1271 sage: (f0, f1, f2) = J1.gens()
1272 sage: f0.spectral_decomposition()
1276 A
= self
.subalgebra_generated_by(orthonormalize_basis
=True)
1278 for (evalue
, proj
) in A(self
).operator().spectral_decomposition():
1279 result
.append( (evalue
, proj(A
.one()).superalgebra_element()) )
1282 def subalgebra_generated_by(self
, orthonormalize_basis
=False):
1284 Return the associative subalgebra of the parent EJA generated
1287 Since our parent algebra is unital, we want "subalgebra" to mean
1288 "unital subalgebra" as well; thus the subalgebra that an element
1289 generates will itself be a Euclidean Jordan algebra after
1290 restricting the algebra operations appropriately. This is the
1291 subalgebra that Faraut and Korányi work with in section II.2, for
1296 sage: from mjo.eja.eja_algebra import random_eja
1300 This subalgebra, being composed of only powers, is associative::
1302 sage: set_random_seed()
1303 sage: x0 = random_eja().random_element()
1304 sage: A = x0.subalgebra_generated_by()
1305 sage: x,y,z = A.random_elements(3)
1306 sage: (x*y)*z == x*(y*z)
1309 Squaring in the subalgebra should work the same as in
1312 sage: set_random_seed()
1313 sage: x = random_eja().random_element()
1314 sage: A = x.subalgebra_generated_by()
1315 sage: A(x^2) == A(x)*A(x)
1318 By definition, the subalgebra generated by the zero element is
1319 the one-dimensional algebra generated by the identity
1320 element... unless the original algebra was trivial, in which
1321 case the subalgebra is trivial too::
1323 sage: set_random_seed()
1324 sage: A = random_eja().zero().subalgebra_generated_by()
1325 sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1
1329 from mjo
.eja
.eja_element_subalgebra
import FiniteDimensionalEuclideanJordanElementSubalgebra
1330 return FiniteDimensionalEuclideanJordanElementSubalgebra(self
, orthonormalize_basis
)
1333 def subalgebra_idempotent(self
):
1335 Find an idempotent in the associative subalgebra I generate
1336 using Proposition 2.3.5 in Baes.
1340 sage: from mjo.eja.eja_algebra import random_eja
1344 Ensure that we can find an idempotent in a non-trivial algebra
1345 where there are non-nilpotent elements, or that we get the dumb
1346 solution in the trivial algebra::
1348 sage: set_random_seed()
1349 sage: J = random_eja()
1350 sage: x = J.random_element()
1351 sage: while x.is_nilpotent() and not J.is_trivial():
1352 ....: x = J.random_element()
1353 sage: c = x.subalgebra_idempotent()
1358 if self
.parent().is_trivial():
1361 if self
.is_nilpotent():
1362 raise ValueError("this only works with non-nilpotent elements!")
1364 J
= self
.subalgebra_generated_by()
1367 # The image of the matrix of left-u^m-multiplication
1368 # will be minimal for some natural number s...
1370 minimal_dim
= J
.dimension()
1371 for i
in range(1, minimal_dim
):
1372 this_dim
= (u
**i
).operator().matrix().image().dimension()
1373 if this_dim
< minimal_dim
:
1374 minimal_dim
= this_dim
1377 # Now minimal_matrix should correspond to the smallest
1378 # non-zero subspace in Baes's (or really, Koecher's)
1381 # However, we need to restrict the matrix to work on the
1382 # subspace... or do we? Can't we just solve, knowing that
1383 # A(c) = u^(s+1) should have a solution in the big space,
1386 # Beware, solve_right() means that we're using COLUMN vectors.
1387 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1389 A
= u_next
.operator().matrix()
1390 c
= J
.from_vector(A
.solve_right(u_next
.to_vector()))
1392 # Now c is the idempotent we want, but it still lives in the subalgebra.
1393 return c
.superalgebra_element()
1398 Return my trace, the sum of my eigenvalues.
1400 In a trivial algebra, however you want to look at it, the trace is
1401 an empty sum for which we declare the result to be zero.
1405 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1412 sage: J = TrivialEJA()
1413 sage: J.zero().trace()
1417 sage: J = JordanSpinEJA(3)
1418 sage: x = sum(J.gens())
1424 sage: J = HadamardEJA(5)
1425 sage: J.one().trace()
1430 The trace of an element is a real number::
1432 sage: set_random_seed()
1433 sage: J = random_eja()
1434 sage: J.random_element().trace() in RLF
1442 # Special case for the trivial algebra where
1443 # the trace is an empty sum.
1444 return P
.base_ring().zero()
1446 p
= P
._charpoly
_coefficients
()[r
-1]
1447 # The _charpoly_coeff function already adds the factor of
1448 # -1 to ensure that _charpoly_coeff(r-1) is really what
1449 # appears in front of t^{r-1} in the charpoly. However,
1450 # we want the negative of THAT for the trace.
1451 return -p(*self
.to_vector())
1454 def trace_inner_product(self
, other
):
1456 Return the trace inner product of myself and ``other``.
1460 sage: from mjo.eja.eja_algebra import random_eja
1464 The trace inner product is commutative, bilinear, and associative::
1466 sage: set_random_seed()
1467 sage: J = random_eja()
1468 sage: x,y,z = J.random_elements(3)
1470 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1473 sage: a = J.base_ring().random_element();
1474 sage: actual = (a*(x+z)).trace_inner_product(y)
1475 sage: expected = ( a*x.trace_inner_product(y) +
1476 ....: a*z.trace_inner_product(y) )
1477 sage: actual == expected
1479 sage: actual = x.trace_inner_product(a*(y+z))
1480 sage: expected = ( a*x.trace_inner_product(y) +
1481 ....: a*x.trace_inner_product(z) )
1482 sage: actual == expected
1485 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1489 if not other
in self
.parent():
1490 raise TypeError("'other' must live in the same algebra")
1492 return (self
*other
).trace()
1495 def trace_norm(self
):
1497 The norm of this element with respect to :meth:`trace_inner_product`.
1501 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1506 sage: J = HadamardEJA(2)
1507 sage: x = sum(J.gens())
1508 sage: x.trace_norm()
1513 sage: J = JordanSpinEJA(4)
1514 sage: x = sum(J.gens())
1515 sage: x.trace_norm()
1519 return self
.trace_inner_product(self
).sqrt()