]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: add random_elements() method to get multiple random elements at once.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from itertools import repeat
9
10 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
11 from sage.categories.magmatic_algebras import MagmaticAlgebras
12 from sage.combinat.free_module import CombinatorialFreeModule
13 from sage.matrix.constructor import matrix
14 from sage.matrix.matrix_space import MatrixSpace
15 from sage.misc.cachefunc import cached_method
16 from sage.misc.prandom import choice
17 from sage.misc.table import table
18 from sage.modules.free_module import FreeModule, VectorSpace
19 from sage.rings.integer_ring import ZZ
20 from sage.rings.number_field.number_field import NumberField, QuadraticField
21 from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
22 from sage.rings.rational_field import QQ
23 from sage.rings.real_lazy import CLF, RLF
24 from sage.structure.element import is_Matrix
25
26 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
27 from mjo.eja.eja_utils import _mat2vec
28
29 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
30 # This is an ugly hack needed to prevent the category framework
31 # from implementing a coercion from our base ring (e.g. the
32 # rationals) into the algebra. First of all -- such a coercion is
33 # nonsense to begin with. But more importantly, it tries to do so
34 # in the category of rings, and since our algebras aren't
35 # associative they generally won't be rings.
36 _no_generic_basering_coercion = True
37
38 def __init__(self,
39 field,
40 mult_table,
41 rank,
42 prefix='e',
43 category=None,
44 natural_basis=None):
45 """
46 SETUP::
47
48 sage: from mjo.eja.eja_algebra import random_eja
49
50 EXAMPLES:
51
52 By definition, Jordan multiplication commutes::
53
54 sage: set_random_seed()
55 sage: J = random_eja()
56 sage: x,y = J.random_elements(2)
57 sage: x*y == y*x
58 True
59
60 """
61 self._rank = rank
62 self._natural_basis = natural_basis
63
64 # TODO: HACK for the charpoly.. needs redesign badly.
65 self._basis_normalizers = None
66
67 if category is None:
68 category = MagmaticAlgebras(field).FiniteDimensional()
69 category = category.WithBasis().Unital()
70
71 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
72 fda.__init__(field,
73 range(len(mult_table)),
74 prefix=prefix,
75 category=category)
76 self.print_options(bracket='')
77
78 # The multiplication table we're given is necessarily in terms
79 # of vectors, because we don't have an algebra yet for
80 # anything to be an element of. However, it's faster in the
81 # long run to have the multiplication table be in terms of
82 # algebra elements. We do this after calling the superclass
83 # constructor so that from_vector() knows what to do.
84 self._multiplication_table = [ map(lambda x: self.from_vector(x), ls)
85 for ls in mult_table ]
86
87
88 def _element_constructor_(self, elt):
89 """
90 Construct an element of this algebra from its natural
91 representation.
92
93 This gets called only after the parent element _call_ method
94 fails to find a coercion for the argument.
95
96 SETUP::
97
98 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
99 ....: RealCartesianProductEJA,
100 ....: RealSymmetricEJA)
101
102 EXAMPLES:
103
104 The identity in `S^n` is converted to the identity in the EJA::
105
106 sage: J = RealSymmetricEJA(3)
107 sage: I = matrix.identity(QQ,3)
108 sage: J(I) == J.one()
109 True
110
111 This skew-symmetric matrix can't be represented in the EJA::
112
113 sage: J = RealSymmetricEJA(3)
114 sage: A = matrix(QQ,3, lambda i,j: i-j)
115 sage: J(A)
116 Traceback (most recent call last):
117 ...
118 ArithmeticError: vector is not in free module
119
120 TESTS:
121
122 Ensure that we can convert any element of the two non-matrix
123 simple algebras (whose natural representations are their usual
124 vector representations) back and forth faithfully::
125
126 sage: set_random_seed()
127 sage: J = RealCartesianProductEJA.random_instance()
128 sage: x = J.random_element()
129 sage: J(x.to_vector().column()) == x
130 True
131 sage: J = JordanSpinEJA.random_instance()
132 sage: x = J.random_element()
133 sage: J(x.to_vector().column()) == x
134 True
135
136 """
137 if elt == 0:
138 # The superclass implementation of random_element()
139 # needs to be able to coerce "0" into the algebra.
140 return self.zero()
141
142 natural_basis = self.natural_basis()
143 basis_space = natural_basis[0].matrix_space()
144 if elt not in basis_space:
145 raise ValueError("not a naturally-represented algebra element")
146
147 # Thanks for nothing! Matrix spaces aren't vector spaces in
148 # Sage, so we have to figure out its natural-basis coordinates
149 # ourselves. We use the basis space's ring instead of the
150 # element's ring because the basis space might be an algebraic
151 # closure whereas the base ring of the 3-by-3 identity matrix
152 # could be QQ instead of QQbar.
153 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
154 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
155 coords = W.coordinate_vector(_mat2vec(elt))
156 return self.from_vector(coords)
157
158
159 @staticmethod
160 def _max_test_case_size():
161 """
162 Return an integer "size" that is an upper bound on the size of
163 this algebra when it is used in a random test
164 case. Unfortunately, the term "size" is quite vague -- when
165 dealing with `R^n` under either the Hadamard or Jordan spin
166 product, the "size" refers to the dimension `n`. When dealing
167 with a matrix algebra (real symmetric or complex/quaternion
168 Hermitian), it refers to the size of the matrix, which is
169 far less than the dimension of the underlying vector space.
170
171 We default to five in this class, which is safe in `R^n`. The
172 matrix algebra subclasses (or any class where the "size" is
173 interpreted to be far less than the dimension) should override
174 with a smaller number.
175 """
176 return 5
177
178
179 def _repr_(self):
180 """
181 Return a string representation of ``self``.
182
183 SETUP::
184
185 sage: from mjo.eja.eja_algebra import JordanSpinEJA
186
187 TESTS:
188
189 Ensure that it says what we think it says::
190
191 sage: JordanSpinEJA(2, field=QQ)
192 Euclidean Jordan algebra of dimension 2 over Rational Field
193 sage: JordanSpinEJA(3, field=RDF)
194 Euclidean Jordan algebra of dimension 3 over Real Double Field
195
196 """
197 fmt = "Euclidean Jordan algebra of dimension {} over {}"
198 return fmt.format(self.dimension(), self.base_ring())
199
200 def product_on_basis(self, i, j):
201 return self._multiplication_table[i][j]
202
203 def _a_regular_element(self):
204 """
205 Guess a regular element. Needed to compute the basis for our
206 characteristic polynomial coefficients.
207
208 SETUP::
209
210 sage: from mjo.eja.eja_algebra import random_eja
211
212 TESTS:
213
214 Ensure that this hacky method succeeds for every algebra that we
215 know how to construct::
216
217 sage: set_random_seed()
218 sage: J = random_eja()
219 sage: J._a_regular_element().is_regular()
220 True
221
222 """
223 gs = self.gens()
224 z = self.sum( (i+1)*gs[i] for i in range(len(gs)) )
225 if not z.is_regular():
226 raise ValueError("don't know a regular element")
227 return z
228
229
230 @cached_method
231 def _charpoly_basis_space(self):
232 """
233 Return the vector space spanned by the basis used in our
234 characteristic polynomial coefficients. This is used not only to
235 compute those coefficients, but also any time we need to
236 evaluate the coefficients (like when we compute the trace or
237 determinant).
238 """
239 z = self._a_regular_element()
240 # Don't use the parent vector space directly here in case this
241 # happens to be a subalgebra. In that case, we would be e.g.
242 # two-dimensional but span_of_basis() would expect three
243 # coordinates.
244 V = VectorSpace(self.base_ring(), self.vector_space().dimension())
245 basis = [ (z**k).to_vector() for k in range(self.rank()) ]
246 V1 = V.span_of_basis( basis )
247 b = (V1.basis() + V1.complement().basis())
248 return V.span_of_basis(b)
249
250
251
252 @cached_method
253 def _charpoly_coeff(self, i):
254 """
255 Return the coefficient polynomial "a_{i}" of this algebra's
256 general characteristic polynomial.
257
258 Having this be a separate cached method lets us compute and
259 store the trace/determinant (a_{r-1} and a_{0} respectively)
260 separate from the entire characteristic polynomial.
261 """
262 if self._basis_normalizers is not None:
263 # Must be a matrix class?
264 # WARNING/TODO: this whole mess is mis-designed.
265 n = self.natural_basis_space().nrows()
266 field = self.base_ring().base_ring() # yeeeeaaaahhh
267 J = self.__class__(n, field, False)
268 (_,x,_,_) = J._charpoly_matrix_system()
269 p = J._charpoly_coeff(i)
270 # p might be missing some vars, have to substitute "optionally"
271 pairs = zip(x.base_ring().gens(), self._basis_normalizers)
272 substitutions = { v: v*c for (v,c) in pairs }
273 return p.subs(substitutions)
274
275 (A_of_x, x, xr, detA) = self._charpoly_matrix_system()
276 R = A_of_x.base_ring()
277 if i >= self.rank():
278 # Guaranteed by theory
279 return R.zero()
280
281 # Danger: the in-place modification is done for performance
282 # reasons (reconstructing a matrix with huge polynomial
283 # entries is slow), but I don't know how cached_method works,
284 # so it's highly possible that we're modifying some global
285 # list variable by reference, here. In other words, you
286 # probably shouldn't call this method twice on the same
287 # algebra, at the same time, in two threads
288 Ai_orig = A_of_x.column(i)
289 A_of_x.set_column(i,xr)
290 numerator = A_of_x.det()
291 A_of_x.set_column(i,Ai_orig)
292
293 # We're relying on the theory here to ensure that each a_i is
294 # indeed back in R, and the added negative signs are to make
295 # the whole charpoly expression sum to zero.
296 return R(-numerator/detA)
297
298
299 @cached_method
300 def _charpoly_matrix_system(self):
301 """
302 Compute the matrix whose entries A_ij are polynomials in
303 X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector
304 corresponding to `x^r` and the determinent of the matrix A =
305 [A_ij]. In other words, all of the fixed (cachable) data needed
306 to compute the coefficients of the characteristic polynomial.
307 """
308 r = self.rank()
309 n = self.dimension()
310
311 # Turn my vector space into a module so that "vectors" can
312 # have multivatiate polynomial entries.
313 names = tuple('X' + str(i) for i in range(1,n+1))
314 R = PolynomialRing(self.base_ring(), names)
315
316 # Using change_ring() on the parent's vector space doesn't work
317 # here because, in a subalgebra, that vector space has a basis
318 # and change_ring() tries to bring the basis along with it. And
319 # that doesn't work unless the new ring is a PID, which it usually
320 # won't be.
321 V = FreeModule(R,n)
322
323 # Now let x = (X1,X2,...,Xn) be the vector whose entries are
324 # indeterminates...
325 x = V(names)
326
327 # And figure out the "left multiplication by x" matrix in
328 # that setting.
329 lmbx_cols = []
330 monomial_matrices = [ self.monomial(i).operator().matrix()
331 for i in range(n) ] # don't recompute these!
332 for k in range(n):
333 ek = self.monomial(k).to_vector()
334 lmbx_cols.append(
335 sum( x[i]*(monomial_matrices[i]*ek)
336 for i in range(n) ) )
337 Lx = matrix.column(R, lmbx_cols)
338
339 # Now we can compute powers of x "symbolically"
340 x_powers = [self.one().to_vector(), x]
341 for d in range(2, r+1):
342 x_powers.append( Lx*(x_powers[-1]) )
343
344 idmat = matrix.identity(R, n)
345
346 W = self._charpoly_basis_space()
347 W = W.change_ring(R.fraction_field())
348
349 # Starting with the standard coordinates x = (X1,X2,...,Xn)
350 # and then converting the entries to W-coordinates allows us
351 # to pass in the standard coordinates to the charpoly and get
352 # back the right answer. Specifically, with x = (X1,X2,...,Xn),
353 # we have
354 #
355 # W.coordinates(x^2) eval'd at (standard z-coords)
356 # =
357 # W-coords of (z^2)
358 # =
359 # W-coords of (standard coords of x^2 eval'd at std-coords of z)
360 #
361 # We want the middle equivalent thing in our matrix, but use
362 # the first equivalent thing instead so that we can pass in
363 # standard coordinates.
364 x_powers = [ W.coordinate_vector(xp) for xp in x_powers ]
365 l2 = [idmat.column(k-1) for k in range(r+1, n+1)]
366 A_of_x = matrix.column(R, n, (x_powers[:r] + l2))
367 return (A_of_x, x, x_powers[r], A_of_x.det())
368
369
370 @cached_method
371 def characteristic_polynomial(self):
372 """
373 Return a characteristic polynomial that works for all elements
374 of this algebra.
375
376 The resulting polynomial has `n+1` variables, where `n` is the
377 dimension of this algebra. The first `n` variables correspond to
378 the coordinates of an algebra element: when evaluated at the
379 coordinates of an algebra element with respect to a certain
380 basis, the result is a univariate polynomial (in the one
381 remaining variable ``t``), namely the characteristic polynomial
382 of that element.
383
384 SETUP::
385
386 sage: from mjo.eja.eja_algebra import JordanSpinEJA
387
388 EXAMPLES:
389
390 The characteristic polynomial in the spin algebra is given in
391 Alizadeh, Example 11.11::
392
393 sage: J = JordanSpinEJA(3)
394 sage: p = J.characteristic_polynomial(); p
395 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
396 sage: xvec = J.one().to_vector()
397 sage: p(*xvec)
398 t^2 - 2*t + 1
399
400 """
401 r = self.rank()
402 n = self.dimension()
403
404 # The list of coefficient polynomials a_1, a_2, ..., a_n.
405 a = [ self._charpoly_coeff(i) for i in range(n) ]
406
407 # We go to a bit of trouble here to reorder the
408 # indeterminates, so that it's easier to evaluate the
409 # characteristic polynomial at x's coordinates and get back
410 # something in terms of t, which is what we want.
411 R = a[0].parent()
412 S = PolynomialRing(self.base_ring(),'t')
413 t = S.gen(0)
414 S = PolynomialRing(S, R.variable_names())
415 t = S(t)
416
417 # Note: all entries past the rth should be zero. The
418 # coefficient of the highest power (x^r) is 1, but it doesn't
419 # appear in the solution vector which contains coefficients
420 # for the other powers (to make them sum to x^r).
421 if (r < n):
422 a[r] = 1 # corresponds to x^r
423 else:
424 # When the rank is equal to the dimension, trying to
425 # assign a[r] goes out-of-bounds.
426 a.append(1) # corresponds to x^r
427
428 return sum( a[k]*(t**k) for k in range(len(a)) )
429
430
431 def inner_product(self, x, y):
432 """
433 The inner product associated with this Euclidean Jordan algebra.
434
435 Defaults to the trace inner product, but can be overridden by
436 subclasses if they are sure that the necessary properties are
437 satisfied.
438
439 SETUP::
440
441 sage: from mjo.eja.eja_algebra import random_eja
442
443 EXAMPLES:
444
445 Our inner product satisfies the Jordan axiom, which is also
446 referred to as "associativity" for a symmetric bilinear form::
447
448 sage: set_random_seed()
449 sage: J = random_eja()
450 sage: x,y,z = J.random_elements(3)
451 sage: (x*y).inner_product(z) == y.inner_product(x*z)
452 True
453
454 """
455 X = x.natural_representation()
456 Y = y.natural_representation()
457 return self.natural_inner_product(X,Y)
458
459
460 def is_trivial(self):
461 """
462 Return whether or not this algebra is trivial.
463
464 A trivial algebra contains only the zero element.
465
466 SETUP::
467
468 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
469
470 EXAMPLES::
471
472 sage: J = ComplexHermitianEJA(3)
473 sage: J.is_trivial()
474 False
475 sage: A = J.zero().subalgebra_generated_by()
476 sage: A.is_trivial()
477 True
478
479 """
480 return self.dimension() == 0
481
482
483 def multiplication_table(self):
484 """
485 Return a visual representation of this algebra's multiplication
486 table (on basis elements).
487
488 SETUP::
489
490 sage: from mjo.eja.eja_algebra import JordanSpinEJA
491
492 EXAMPLES::
493
494 sage: J = JordanSpinEJA(4)
495 sage: J.multiplication_table()
496 +----++----+----+----+----+
497 | * || e0 | e1 | e2 | e3 |
498 +====++====+====+====+====+
499 | e0 || e0 | e1 | e2 | e3 |
500 +----++----+----+----+----+
501 | e1 || e1 | e0 | 0 | 0 |
502 +----++----+----+----+----+
503 | e2 || e2 | 0 | e0 | 0 |
504 +----++----+----+----+----+
505 | e3 || e3 | 0 | 0 | e0 |
506 +----++----+----+----+----+
507
508 """
509 M = list(self._multiplication_table) # copy
510 for i in range(len(M)):
511 # M had better be "square"
512 M[i] = [self.monomial(i)] + M[i]
513 M = [["*"] + list(self.gens())] + M
514 return table(M, header_row=True, header_column=True, frame=True)
515
516
517 def natural_basis(self):
518 """
519 Return a more-natural representation of this algebra's basis.
520
521 Every finite-dimensional Euclidean Jordan Algebra is a direct
522 sum of five simple algebras, four of which comprise Hermitian
523 matrices. This method returns the original "natural" basis
524 for our underlying vector space. (Typically, the natural basis
525 is used to construct the multiplication table in the first place.)
526
527 Note that this will always return a matrix. The standard basis
528 in `R^n` will be returned as `n`-by-`1` column matrices.
529
530 SETUP::
531
532 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
533 ....: RealSymmetricEJA)
534
535 EXAMPLES::
536
537 sage: J = RealSymmetricEJA(2)
538 sage: J.basis()
539 Finite family {0: e0, 1: e1, 2: e2}
540 sage: J.natural_basis()
541 (
542 [1 0] [ 0 1/2*sqrt2] [0 0]
543 [0 0], [1/2*sqrt2 0], [0 1]
544 )
545
546 ::
547
548 sage: J = JordanSpinEJA(2)
549 sage: J.basis()
550 Finite family {0: e0, 1: e1}
551 sage: J.natural_basis()
552 (
553 [1] [0]
554 [0], [1]
555 )
556
557 """
558 if self._natural_basis is None:
559 M = self.natural_basis_space()
560 return tuple( M(b.to_vector()) for b in self.basis() )
561 else:
562 return self._natural_basis
563
564
565 def natural_basis_space(self):
566 """
567 Return the matrix space in which this algebra's natural basis
568 elements live.
569 """
570 if self._natural_basis is None or len(self._natural_basis) == 0:
571 return MatrixSpace(self.base_ring(), self.dimension(), 1)
572 else:
573 return self._natural_basis[0].matrix_space()
574
575
576 @staticmethod
577 def natural_inner_product(X,Y):
578 """
579 Compute the inner product of two naturally-represented elements.
580
581 For example in the real symmetric matrix EJA, this will compute
582 the trace inner-product of two n-by-n symmetric matrices. The
583 default should work for the real cartesian product EJA, the
584 Jordan spin EJA, and the real symmetric matrices. The others
585 will have to be overridden.
586 """
587 return (X.conjugate_transpose()*Y).trace()
588
589
590 @cached_method
591 def one(self):
592 """
593 Return the unit element of this algebra.
594
595 SETUP::
596
597 sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
598 ....: random_eja)
599
600 EXAMPLES::
601
602 sage: J = RealCartesianProductEJA(5)
603 sage: J.one()
604 e0 + e1 + e2 + e3 + e4
605
606 TESTS:
607
608 The identity element acts like the identity::
609
610 sage: set_random_seed()
611 sage: J = random_eja()
612 sage: x = J.random_element()
613 sage: J.one()*x == x and x*J.one() == x
614 True
615
616 The matrix of the unit element's operator is the identity::
617
618 sage: set_random_seed()
619 sage: J = random_eja()
620 sage: actual = J.one().operator().matrix()
621 sage: expected = matrix.identity(J.base_ring(), J.dimension())
622 sage: actual == expected
623 True
624
625 """
626 # We can brute-force compute the matrices of the operators
627 # that correspond to the basis elements of this algebra.
628 # If some linear combination of those basis elements is the
629 # algebra identity, then the same linear combination of
630 # their matrices has to be the identity matrix.
631 #
632 # Of course, matrices aren't vectors in sage, so we have to
633 # appeal to the "long vectors" isometry.
634 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
635
636 # Now we use basis linear algebra to find the coefficients,
637 # of the matrices-as-vectors-linear-combination, which should
638 # work for the original algebra basis too.
639 A = matrix.column(self.base_ring(), oper_vecs)
640
641 # We used the isometry on the left-hand side already, but we
642 # still need to do it for the right-hand side. Recall that we
643 # wanted something that summed to the identity matrix.
644 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
645
646 # Now if there's an identity element in the algebra, this should work.
647 coeffs = A.solve_right(b)
648 return self.linear_combination(zip(self.gens(), coeffs))
649
650
651 def random_element(self):
652 # Temporary workaround for https://trac.sagemath.org/ticket/28327
653 if self.is_trivial():
654 return self.zero()
655 else:
656 s = super(FiniteDimensionalEuclideanJordanAlgebra, self)
657 return s.random_element()
658
659 def random_elements(self, count):
660 """
661 Return ``count`` random elements as a tuple.
662
663 SETUP::
664
665 sage: from mjo.eja.eja_algebra import JordanSpinEJA
666
667 EXAMPLES::
668
669 sage: J = JordanSpinEJA(3)
670 sage: x,y,z = J.random_elements(3)
671 sage: all( [ x in J, y in J, z in J ])
672 True
673 sage: len( J.random_elements(10) ) == 10
674 True
675
676 """
677 return tuple( self.random_element() for idx in xrange(count) )
678
679 @classmethod
680 def random_instance(cls, field=QQ, **kwargs):
681 """
682 Return a random instance of this type of algebra.
683
684 In subclasses for algebras that we know how to construct, this
685 is a shortcut for constructing test cases and examples.
686 """
687 if cls is FiniteDimensionalEuclideanJordanAlgebra:
688 # Red flag! But in theory we could do this I guess. The
689 # only finite-dimensional exceptional EJA is the
690 # octononions. So, we could just create an EJA from an
691 # associative matrix algebra (generated by a subset of
692 # elements) with the symmetric product. Or, we could punt
693 # to random_eja() here, override it in our subclasses, and
694 # not worry about it.
695 raise NotImplementedError
696
697 n = ZZ.random_element(1, cls._max_test_case_size())
698 return cls(n, field, **kwargs)
699
700
701 def rank(self):
702 """
703 Return the rank of this EJA.
704
705 ALGORITHM:
706
707 The author knows of no algorithm to compute the rank of an EJA
708 where only the multiplication table is known. In lieu of one, we
709 require the rank to be specified when the algebra is created,
710 and simply pass along that number here.
711
712 SETUP::
713
714 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
715 ....: RealSymmetricEJA,
716 ....: ComplexHermitianEJA,
717 ....: QuaternionHermitianEJA,
718 ....: random_eja)
719
720 EXAMPLES:
721
722 The rank of the Jordan spin algebra is always two::
723
724 sage: JordanSpinEJA(2).rank()
725 2
726 sage: JordanSpinEJA(3).rank()
727 2
728 sage: JordanSpinEJA(4).rank()
729 2
730
731 The rank of the `n`-by-`n` Hermitian real, complex, or
732 quaternion matrices is `n`::
733
734 sage: RealSymmetricEJA(2).rank()
735 2
736 sage: ComplexHermitianEJA(2).rank()
737 2
738 sage: QuaternionHermitianEJA(2).rank()
739 2
740 sage: RealSymmetricEJA(5).rank()
741 5
742 sage: ComplexHermitianEJA(5).rank()
743 5
744 sage: QuaternionHermitianEJA(5).rank()
745 5
746
747 TESTS:
748
749 Ensure that every EJA that we know how to construct has a
750 positive integer rank::
751
752 sage: set_random_seed()
753 sage: r = random_eja().rank()
754 sage: r in ZZ and r > 0
755 True
756
757 """
758 return self._rank
759
760
761 def vector_space(self):
762 """
763 Return the vector space that underlies this algebra.
764
765 SETUP::
766
767 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
768
769 EXAMPLES::
770
771 sage: J = RealSymmetricEJA(2)
772 sage: J.vector_space()
773 Vector space of dimension 3 over...
774
775 """
776 return self.zero().to_vector().parent().ambient_vector_space()
777
778
779 Element = FiniteDimensionalEuclideanJordanAlgebraElement
780
781
782 class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
783 """
784 Return the Euclidean Jordan Algebra corresponding to the set
785 `R^n` under the Hadamard product.
786
787 Note: this is nothing more than the Cartesian product of ``n``
788 copies of the spin algebra. Once Cartesian product algebras
789 are implemented, this can go.
790
791 SETUP::
792
793 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
794
795 EXAMPLES:
796
797 This multiplication table can be verified by hand::
798
799 sage: J = RealCartesianProductEJA(3)
800 sage: e0,e1,e2 = J.gens()
801 sage: e0*e0
802 e0
803 sage: e0*e1
804 0
805 sage: e0*e2
806 0
807 sage: e1*e1
808 e1
809 sage: e1*e2
810 0
811 sage: e2*e2
812 e2
813
814 TESTS:
815
816 We can change the generator prefix::
817
818 sage: RealCartesianProductEJA(3, prefix='r').gens()
819 (r0, r1, r2)
820
821 """
822 def __init__(self, n, field=QQ, **kwargs):
823 V = VectorSpace(field, n)
824 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
825 for i in range(n) ]
826
827 fdeja = super(RealCartesianProductEJA, self)
828 return fdeja.__init__(field, mult_table, rank=n, **kwargs)
829
830 def inner_product(self, x, y):
831 """
832 Faster to reimplement than to use natural representations.
833
834 SETUP::
835
836 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
837
838 TESTS:
839
840 Ensure that this is the usual inner product for the algebras
841 over `R^n`::
842
843 sage: set_random_seed()
844 sage: J = RealCartesianProductEJA.random_instance()
845 sage: x,y = J.random_elements(2)
846 sage: X = x.natural_representation()
847 sage: Y = y.natural_representation()
848 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
849 True
850
851 """
852 return x.to_vector().inner_product(y.to_vector())
853
854
855 def random_eja():
856 """
857 Return a "random" finite-dimensional Euclidean Jordan Algebra.
858
859 ALGORITHM:
860
861 For now, we choose a random natural number ``n`` (greater than zero)
862 and then give you back one of the following:
863
864 * The cartesian product of the rational numbers ``n`` times; this is
865 ``QQ^n`` with the Hadamard product.
866
867 * The Jordan spin algebra on ``QQ^n``.
868
869 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
870 product.
871
872 * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
873 in the space of ``2n``-by-``2n`` real symmetric matrices.
874
875 * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
876 in the space of ``4n``-by-``4n`` real symmetric matrices.
877
878 Later this might be extended to return Cartesian products of the
879 EJAs above.
880
881 SETUP::
882
883 sage: from mjo.eja.eja_algebra import random_eja
884
885 TESTS::
886
887 sage: random_eja()
888 Euclidean Jordan algebra of dimension...
889
890 """
891 classname = choice([RealCartesianProductEJA,
892 JordanSpinEJA,
893 RealSymmetricEJA,
894 ComplexHermitianEJA,
895 QuaternionHermitianEJA])
896 return classname.random_instance()
897
898
899
900
901
902
903 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
904 @staticmethod
905 def _max_test_case_size():
906 # Play it safe, since this will be squared and the underlying
907 # field can have dimension 4 (quaternions) too.
908 return 3
909
910 @classmethod
911 def _denormalized_basis(cls, n, field):
912 raise NotImplementedError
913
914 def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
915 S = self._denormalized_basis(n, field)
916
917 if n > 1 and normalize_basis:
918 # We'll need sqrt(2) to normalize the basis, and this
919 # winds up in the multiplication table, so the whole
920 # algebra needs to be over the field extension.
921 R = PolynomialRing(field, 'z')
922 z = R.gen()
923 p = z**2 - 2
924 if p.is_irreducible():
925 field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
926 S = [ s.change_ring(field) for s in S ]
927 self._basis_normalizers = tuple(
928 ~(self.natural_inner_product(s,s).sqrt()) for s in S )
929 S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
930
931 Qs = self.multiplication_table_from_matrix_basis(S)
932
933 fdeja = super(MatrixEuclideanJordanAlgebra, self)
934 return fdeja.__init__(field,
935 Qs,
936 rank=n,
937 natural_basis=S,
938 **kwargs)
939
940
941 @staticmethod
942 def multiplication_table_from_matrix_basis(basis):
943 """
944 At least three of the five simple Euclidean Jordan algebras have the
945 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
946 multiplication on the right is matrix multiplication. Given a basis
947 for the underlying matrix space, this function returns a
948 multiplication table (obtained by looping through the basis
949 elements) for an algebra of those matrices.
950 """
951 # In S^2, for example, we nominally have four coordinates even
952 # though the space is of dimension three only. The vector space V
953 # is supposed to hold the entire long vector, and the subspace W
954 # of V will be spanned by the vectors that arise from symmetric
955 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
956 field = basis[0].base_ring()
957 dimension = basis[0].nrows()
958
959 V = VectorSpace(field, dimension**2)
960 W = V.span_of_basis( _mat2vec(s) for s in basis )
961 n = len(basis)
962 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
963 for i in range(n):
964 for j in range(n):
965 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
966 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
967
968 return mult_table
969
970
971 @staticmethod
972 def real_embed(M):
973 """
974 Embed the matrix ``M`` into a space of real matrices.
975
976 The matrix ``M`` can have entries in any field at the moment:
977 the real numbers, complex numbers, or quaternions. And although
978 they are not a field, we can probably support octonions at some
979 point, too. This function returns a real matrix that "acts like"
980 the original with respect to matrix multiplication; i.e.
981
982 real_embed(M*N) = real_embed(M)*real_embed(N)
983
984 """
985 raise NotImplementedError
986
987
988 @staticmethod
989 def real_unembed(M):
990 """
991 The inverse of :meth:`real_embed`.
992 """
993 raise NotImplementedError
994
995
996 @classmethod
997 def natural_inner_product(cls,X,Y):
998 Xu = cls.real_unembed(X)
999 Yu = cls.real_unembed(Y)
1000 tr = (Xu*Yu).trace()
1001 if tr in RLF:
1002 # It's real already.
1003 return tr
1004
1005 # Otherwise, try the thing that works for complex numbers; and
1006 # if that doesn't work, the thing that works for quaternions.
1007 try:
1008 return tr.vector()[0] # real part, imag part is index 1
1009 except AttributeError:
1010 # A quaternions doesn't have a vector() method, but does
1011 # have coefficient_tuple() method that returns the
1012 # coefficients of 1, i, j, and k -- in that order.
1013 return tr.coefficient_tuple()[0]
1014
1015
1016 class RealSymmetricEJA(MatrixEuclideanJordanAlgebra):
1017 """
1018 The rank-n simple EJA consisting of real symmetric n-by-n
1019 matrices, the usual symmetric Jordan product, and the trace inner
1020 product. It has dimension `(n^2 + n)/2` over the reals.
1021
1022 SETUP::
1023
1024 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1025
1026 EXAMPLES::
1027
1028 sage: J = RealSymmetricEJA(2)
1029 sage: e0, e1, e2 = J.gens()
1030 sage: e0*e0
1031 e0
1032 sage: e1*e1
1033 1/2*e0 + 1/2*e2
1034 sage: e2*e2
1035 e2
1036
1037 TESTS:
1038
1039 The dimension of this algebra is `(n^2 + n) / 2`::
1040
1041 sage: set_random_seed()
1042 sage: n_max = RealSymmetricEJA._max_test_case_size()
1043 sage: n = ZZ.random_element(1, n_max)
1044 sage: J = RealSymmetricEJA(n)
1045 sage: J.dimension() == (n^2 + n)/2
1046 True
1047
1048 The Jordan multiplication is what we think it is::
1049
1050 sage: set_random_seed()
1051 sage: J = RealSymmetricEJA.random_instance()
1052 sage: x,y = J.random_elements(2)
1053 sage: actual = (x*y).natural_representation()
1054 sage: X = x.natural_representation()
1055 sage: Y = y.natural_representation()
1056 sage: expected = (X*Y + Y*X)/2
1057 sage: actual == expected
1058 True
1059 sage: J(expected) == x*y
1060 True
1061
1062 We can change the generator prefix::
1063
1064 sage: RealSymmetricEJA(3, prefix='q').gens()
1065 (q0, q1, q2, q3, q4, q5)
1066
1067 Our natural basis is normalized with respect to the natural inner
1068 product unless we specify otherwise::
1069
1070 sage: set_random_seed()
1071 sage: J = RealSymmetricEJA.random_instance()
1072 sage: all( b.norm() == 1 for b in J.gens() )
1073 True
1074
1075 Since our natural basis is normalized with respect to the natural
1076 inner product, and since we know that this algebra is an EJA, any
1077 left-multiplication operator's matrix will be symmetric because
1078 natural->EJA basis representation is an isometry and within the EJA
1079 the operator is self-adjoint by the Jordan axiom::
1080
1081 sage: set_random_seed()
1082 sage: x = RealSymmetricEJA.random_instance().random_element()
1083 sage: x.operator().matrix().is_symmetric()
1084 True
1085
1086 """
1087 @classmethod
1088 def _denormalized_basis(cls, n, field):
1089 """
1090 Return a basis for the space of real symmetric n-by-n matrices.
1091
1092 SETUP::
1093
1094 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1095
1096 TESTS::
1097
1098 sage: set_random_seed()
1099 sage: n = ZZ.random_element(1,5)
1100 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1101 sage: all( M.is_symmetric() for M in B)
1102 True
1103
1104 """
1105 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1106 # coordinates.
1107 S = []
1108 for i in xrange(n):
1109 for j in xrange(i+1):
1110 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1111 if i == j:
1112 Sij = Eij
1113 else:
1114 Sij = Eij + Eij.transpose()
1115 S.append(Sij)
1116 return tuple(S)
1117
1118
1119 @staticmethod
1120 def _max_test_case_size():
1121 return 5 # Dimension 10
1122
1123 @staticmethod
1124 def real_embed(M):
1125 """
1126 Embed the matrix ``M`` into a space of real matrices.
1127
1128 The matrix ``M`` can have entries in any field at the moment:
1129 the real numbers, complex numbers, or quaternions. And although
1130 they are not a field, we can probably support octonions at some
1131 point, too. This function returns a real matrix that "acts like"
1132 the original with respect to matrix multiplication; i.e.
1133
1134 real_embed(M*N) = real_embed(M)*real_embed(N)
1135
1136 """
1137 return M
1138
1139
1140 @staticmethod
1141 def real_unembed(M):
1142 """
1143 The inverse of :meth:`real_embed`.
1144 """
1145 return M
1146
1147
1148
1149 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1150 @staticmethod
1151 def real_embed(M):
1152 """
1153 Embed the n-by-n complex matrix ``M`` into the space of real
1154 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1155 bi` to the block matrix ``[[a,b],[-b,a]]``.
1156
1157 SETUP::
1158
1159 sage: from mjo.eja.eja_algebra import \
1160 ....: ComplexMatrixEuclideanJordanAlgebra
1161
1162 EXAMPLES::
1163
1164 sage: F = QuadraticField(-1, 'i')
1165 sage: x1 = F(4 - 2*i)
1166 sage: x2 = F(1 + 2*i)
1167 sage: x3 = F(-i)
1168 sage: x4 = F(6)
1169 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1170 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1171 [ 4 -2| 1 2]
1172 [ 2 4|-2 1]
1173 [-----+-----]
1174 [ 0 -1| 6 0]
1175 [ 1 0| 0 6]
1176
1177 TESTS:
1178
1179 Embedding is a homomorphism (isomorphism, in fact)::
1180
1181 sage: set_random_seed()
1182 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1183 sage: n = ZZ.random_element(n_max)
1184 sage: F = QuadraticField(-1, 'i')
1185 sage: X = random_matrix(F, n)
1186 sage: Y = random_matrix(F, n)
1187 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1188 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1189 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1190 sage: Xe*Ye == XYe
1191 True
1192
1193 """
1194 n = M.nrows()
1195 if M.ncols() != n:
1196 raise ValueError("the matrix 'M' must be square")
1197 field = M.base_ring()
1198 blocks = []
1199 for z in M.list():
1200 a = z.vector()[0] # real part, I guess
1201 b = z.vector()[1] # imag part, I guess
1202 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1203
1204 # We can drop the imaginaries here.
1205 return matrix.block(field.base_ring(), n, blocks)
1206
1207
1208 @staticmethod
1209 def real_unembed(M):
1210 """
1211 The inverse of _embed_complex_matrix().
1212
1213 SETUP::
1214
1215 sage: from mjo.eja.eja_algebra import \
1216 ....: ComplexMatrixEuclideanJordanAlgebra
1217
1218 EXAMPLES::
1219
1220 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1221 ....: [-2, 1, -4, 3],
1222 ....: [ 9, 10, 11, 12],
1223 ....: [-10, 9, -12, 11] ])
1224 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1225 [ 2*i + 1 4*i + 3]
1226 [ 10*i + 9 12*i + 11]
1227
1228 TESTS:
1229
1230 Unembedding is the inverse of embedding::
1231
1232 sage: set_random_seed()
1233 sage: F = QuadraticField(-1, 'i')
1234 sage: M = random_matrix(F, 3)
1235 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1236 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1237 True
1238
1239 """
1240 n = ZZ(M.nrows())
1241 if M.ncols() != n:
1242 raise ValueError("the matrix 'M' must be square")
1243 if not n.mod(2).is_zero():
1244 raise ValueError("the matrix 'M' must be a complex embedding")
1245
1246 field = M.base_ring() # This should already have sqrt2
1247 R = PolynomialRing(field, 'z')
1248 z = R.gen()
1249 F = NumberField(z**2 + 1,'i', embedding=CLF(-1).sqrt())
1250 i = F.gen()
1251
1252 # Go top-left to bottom-right (reading order), converting every
1253 # 2-by-2 block we see to a single complex element.
1254 elements = []
1255 for k in xrange(n/2):
1256 for j in xrange(n/2):
1257 submat = M[2*k:2*k+2,2*j:2*j+2]
1258 if submat[0,0] != submat[1,1]:
1259 raise ValueError('bad on-diagonal submatrix')
1260 if submat[0,1] != -submat[1,0]:
1261 raise ValueError('bad off-diagonal submatrix')
1262 z = submat[0,0] + submat[0,1]*i
1263 elements.append(z)
1264
1265 return matrix(F, n/2, elements)
1266
1267
1268 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
1269 """
1270 The rank-n simple EJA consisting of complex Hermitian n-by-n
1271 matrices over the real numbers, the usual symmetric Jordan product,
1272 and the real-part-of-trace inner product. It has dimension `n^2` over
1273 the reals.
1274
1275 SETUP::
1276
1277 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1278
1279 TESTS:
1280
1281 The dimension of this algebra is `n^2`::
1282
1283 sage: set_random_seed()
1284 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1285 sage: n = ZZ.random_element(1, n_max)
1286 sage: J = ComplexHermitianEJA(n)
1287 sage: J.dimension() == n^2
1288 True
1289
1290 The Jordan multiplication is what we think it is::
1291
1292 sage: set_random_seed()
1293 sage: J = ComplexHermitianEJA.random_instance()
1294 sage: x,y = J.random_elements(2)
1295 sage: actual = (x*y).natural_representation()
1296 sage: X = x.natural_representation()
1297 sage: Y = y.natural_representation()
1298 sage: expected = (X*Y + Y*X)/2
1299 sage: actual == expected
1300 True
1301 sage: J(expected) == x*y
1302 True
1303
1304 We can change the generator prefix::
1305
1306 sage: ComplexHermitianEJA(2, prefix='z').gens()
1307 (z0, z1, z2, z3)
1308
1309 Our natural basis is normalized with respect to the natural inner
1310 product unless we specify otherwise::
1311
1312 sage: set_random_seed()
1313 sage: J = ComplexHermitianEJA.random_instance()
1314 sage: all( b.norm() == 1 for b in J.gens() )
1315 True
1316
1317 Since our natural basis is normalized with respect to the natural
1318 inner product, and since we know that this algebra is an EJA, any
1319 left-multiplication operator's matrix will be symmetric because
1320 natural->EJA basis representation is an isometry and within the EJA
1321 the operator is self-adjoint by the Jordan axiom::
1322
1323 sage: set_random_seed()
1324 sage: x = ComplexHermitianEJA.random_instance().random_element()
1325 sage: x.operator().matrix().is_symmetric()
1326 True
1327
1328 """
1329 @classmethod
1330 def _denormalized_basis(cls, n, field):
1331 """
1332 Returns a basis for the space of complex Hermitian n-by-n matrices.
1333
1334 Why do we embed these? Basically, because all of numerical linear
1335 algebra assumes that you're working with vectors consisting of `n`
1336 entries from a field and scalars from the same field. There's no way
1337 to tell SageMath that (for example) the vectors contain complex
1338 numbers, while the scalar field is real.
1339
1340 SETUP::
1341
1342 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1343
1344 TESTS::
1345
1346 sage: set_random_seed()
1347 sage: n = ZZ.random_element(1,5)
1348 sage: field = QuadraticField(2, 'sqrt2')
1349 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1350 sage: all( M.is_symmetric() for M in B)
1351 True
1352
1353 """
1354 R = PolynomialRing(field, 'z')
1355 z = R.gen()
1356 F = NumberField(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1357 I = F.gen()
1358
1359 # This is like the symmetric case, but we need to be careful:
1360 #
1361 # * We want conjugate-symmetry, not just symmetry.
1362 # * The diagonal will (as a result) be real.
1363 #
1364 S = []
1365 for i in xrange(n):
1366 for j in xrange(i+1):
1367 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1368 if i == j:
1369 Sij = cls.real_embed(Eij)
1370 S.append(Sij)
1371 else:
1372 # The second one has a minus because it's conjugated.
1373 Sij_real = cls.real_embed(Eij + Eij.transpose())
1374 S.append(Sij_real)
1375 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1376 S.append(Sij_imag)
1377
1378 # Since we embedded these, we can drop back to the "field" that we
1379 # started with instead of the complex extension "F".
1380 return tuple( s.change_ring(field) for s in S )
1381
1382
1383
1384 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1385 @staticmethod
1386 def real_embed(M):
1387 """
1388 Embed the n-by-n quaternion matrix ``M`` into the space of real
1389 matrices of size 4n-by-4n by first sending each quaternion entry `z
1390 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1391 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1392 matrix.
1393
1394 SETUP::
1395
1396 sage: from mjo.eja.eja_algebra import \
1397 ....: QuaternionMatrixEuclideanJordanAlgebra
1398
1399 EXAMPLES::
1400
1401 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1402 sage: i,j,k = Q.gens()
1403 sage: x = 1 + 2*i + 3*j + 4*k
1404 sage: M = matrix(Q, 1, [[x]])
1405 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1406 [ 1 2 3 4]
1407 [-2 1 -4 3]
1408 [-3 4 1 -2]
1409 [-4 -3 2 1]
1410
1411 Embedding is a homomorphism (isomorphism, in fact)::
1412
1413 sage: set_random_seed()
1414 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1415 sage: n = ZZ.random_element(n_max)
1416 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1417 sage: X = random_matrix(Q, n)
1418 sage: Y = random_matrix(Q, n)
1419 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1420 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1421 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1422 sage: Xe*Ye == XYe
1423 True
1424
1425 """
1426 quaternions = M.base_ring()
1427 n = M.nrows()
1428 if M.ncols() != n:
1429 raise ValueError("the matrix 'M' must be square")
1430
1431 F = QuadraticField(-1, 'i')
1432 i = F.gen()
1433
1434 blocks = []
1435 for z in M.list():
1436 t = z.coefficient_tuple()
1437 a = t[0]
1438 b = t[1]
1439 c = t[2]
1440 d = t[3]
1441 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1442 [-c + d*i, a - b*i]])
1443 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1444 blocks.append(realM)
1445
1446 # We should have real entries by now, so use the realest field
1447 # we've got for the return value.
1448 return matrix.block(quaternions.base_ring(), n, blocks)
1449
1450
1451
1452 @staticmethod
1453 def real_unembed(M):
1454 """
1455 The inverse of _embed_quaternion_matrix().
1456
1457 SETUP::
1458
1459 sage: from mjo.eja.eja_algebra import \
1460 ....: QuaternionMatrixEuclideanJordanAlgebra
1461
1462 EXAMPLES::
1463
1464 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1465 ....: [-2, 1, -4, 3],
1466 ....: [-3, 4, 1, -2],
1467 ....: [-4, -3, 2, 1]])
1468 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1469 [1 + 2*i + 3*j + 4*k]
1470
1471 TESTS:
1472
1473 Unembedding is the inverse of embedding::
1474
1475 sage: set_random_seed()
1476 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1477 sage: M = random_matrix(Q, 3)
1478 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1479 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1480 True
1481
1482 """
1483 n = ZZ(M.nrows())
1484 if M.ncols() != n:
1485 raise ValueError("the matrix 'M' must be square")
1486 if not n.mod(4).is_zero():
1487 raise ValueError("the matrix 'M' must be a complex embedding")
1488
1489 # Use the base ring of the matrix to ensure that its entries can be
1490 # multiplied by elements of the quaternion algebra.
1491 field = M.base_ring()
1492 Q = QuaternionAlgebra(field,-1,-1)
1493 i,j,k = Q.gens()
1494
1495 # Go top-left to bottom-right (reading order), converting every
1496 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1497 # quaternion block.
1498 elements = []
1499 for l in xrange(n/4):
1500 for m in xrange(n/4):
1501 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1502 M[4*l:4*l+4,4*m:4*m+4] )
1503 if submat[0,0] != submat[1,1].conjugate():
1504 raise ValueError('bad on-diagonal submatrix')
1505 if submat[0,1] != -submat[1,0].conjugate():
1506 raise ValueError('bad off-diagonal submatrix')
1507 z = submat[0,0].vector()[0] # real part
1508 z += submat[0,0].vector()[1]*i # imag part
1509 z += submat[0,1].vector()[0]*j # real part
1510 z += submat[0,1].vector()[1]*k # imag part
1511 elements.append(z)
1512
1513 return matrix(Q, n/4, elements)
1514
1515
1516
1517 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
1518 """
1519 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1520 matrices, the usual symmetric Jordan product, and the
1521 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1522 the reals.
1523
1524 SETUP::
1525
1526 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1527
1528 TESTS:
1529
1530 The dimension of this algebra is `2*n^2 - n`::
1531
1532 sage: set_random_seed()
1533 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1534 sage: n = ZZ.random_element(1, n_max)
1535 sage: J = QuaternionHermitianEJA(n)
1536 sage: J.dimension() == 2*(n^2) - n
1537 True
1538
1539 The Jordan multiplication is what we think it is::
1540
1541 sage: set_random_seed()
1542 sage: J = QuaternionHermitianEJA.random_instance()
1543 sage: x,y = J.random_elements(2)
1544 sage: actual = (x*y).natural_representation()
1545 sage: X = x.natural_representation()
1546 sage: Y = y.natural_representation()
1547 sage: expected = (X*Y + Y*X)/2
1548 sage: actual == expected
1549 True
1550 sage: J(expected) == x*y
1551 True
1552
1553 We can change the generator prefix::
1554
1555 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1556 (a0, a1, a2, a3, a4, a5)
1557
1558 Our natural basis is normalized with respect to the natural inner
1559 product unless we specify otherwise::
1560
1561 sage: set_random_seed()
1562 sage: J = QuaternionHermitianEJA.random_instance()
1563 sage: all( b.norm() == 1 for b in J.gens() )
1564 True
1565
1566 Since our natural basis is normalized with respect to the natural
1567 inner product, and since we know that this algebra is an EJA, any
1568 left-multiplication operator's matrix will be symmetric because
1569 natural->EJA basis representation is an isometry and within the EJA
1570 the operator is self-adjoint by the Jordan axiom::
1571
1572 sage: set_random_seed()
1573 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1574 sage: x.operator().matrix().is_symmetric()
1575 True
1576
1577 """
1578 @classmethod
1579 def _denormalized_basis(cls, n, field):
1580 """
1581 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1582
1583 Why do we embed these? Basically, because all of numerical
1584 linear algebra assumes that you're working with vectors consisting
1585 of `n` entries from a field and scalars from the same field. There's
1586 no way to tell SageMath that (for example) the vectors contain
1587 complex numbers, while the scalar field is real.
1588
1589 SETUP::
1590
1591 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1592
1593 TESTS::
1594
1595 sage: set_random_seed()
1596 sage: n = ZZ.random_element(1,5)
1597 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1598 sage: all( M.is_symmetric() for M in B )
1599 True
1600
1601 """
1602 Q = QuaternionAlgebra(QQ,-1,-1)
1603 I,J,K = Q.gens()
1604
1605 # This is like the symmetric case, but we need to be careful:
1606 #
1607 # * We want conjugate-symmetry, not just symmetry.
1608 # * The diagonal will (as a result) be real.
1609 #
1610 S = []
1611 for i in xrange(n):
1612 for j in xrange(i+1):
1613 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1614 if i == j:
1615 Sij = cls.real_embed(Eij)
1616 S.append(Sij)
1617 else:
1618 # The second, third, and fourth ones have a minus
1619 # because they're conjugated.
1620 Sij_real = cls.real_embed(Eij + Eij.transpose())
1621 S.append(Sij_real)
1622 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1623 S.append(Sij_I)
1624 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1625 S.append(Sij_J)
1626 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
1627 S.append(Sij_K)
1628 return tuple(S)
1629
1630
1631
1632 class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
1633 """
1634 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1635 with the usual inner product and jordan product ``x*y =
1636 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1637 the reals.
1638
1639 SETUP::
1640
1641 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1642
1643 EXAMPLES:
1644
1645 This multiplication table can be verified by hand::
1646
1647 sage: J = JordanSpinEJA(4)
1648 sage: e0,e1,e2,e3 = J.gens()
1649 sage: e0*e0
1650 e0
1651 sage: e0*e1
1652 e1
1653 sage: e0*e2
1654 e2
1655 sage: e0*e3
1656 e3
1657 sage: e1*e2
1658 0
1659 sage: e1*e3
1660 0
1661 sage: e2*e3
1662 0
1663
1664 We can change the generator prefix::
1665
1666 sage: JordanSpinEJA(2, prefix='B').gens()
1667 (B0, B1)
1668
1669 """
1670 def __init__(self, n, field=QQ, **kwargs):
1671 V = VectorSpace(field, n)
1672 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
1673 for i in range(n):
1674 for j in range(n):
1675 x = V.gen(i)
1676 y = V.gen(j)
1677 x0 = x[0]
1678 xbar = x[1:]
1679 y0 = y[0]
1680 ybar = y[1:]
1681 # z = x*y
1682 z0 = x.inner_product(y)
1683 zbar = y0*xbar + x0*ybar
1684 z = V([z0] + zbar.list())
1685 mult_table[i][j] = z
1686
1687 # The rank of the spin algebra is two, unless we're in a
1688 # one-dimensional ambient space (because the rank is bounded by
1689 # the ambient dimension).
1690 fdeja = super(JordanSpinEJA, self)
1691 return fdeja.__init__(field, mult_table, rank=min(n,2), **kwargs)
1692
1693 def inner_product(self, x, y):
1694 """
1695 Faster to reimplement than to use natural representations.
1696
1697 SETUP::
1698
1699 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1700
1701 TESTS:
1702
1703 Ensure that this is the usual inner product for the algebras
1704 over `R^n`::
1705
1706 sage: set_random_seed()
1707 sage: J = JordanSpinEJA.random_instance()
1708 sage: x,y = J.random_elements(2)
1709 sage: X = x.natural_representation()
1710 sage: Y = y.natural_representation()
1711 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
1712 True
1713
1714 """
1715 return x.to_vector().inner_product(y.to_vector())