]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: allow matrix algebras of "size" zero.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from itertools import repeat
9
10 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
11 from sage.categories.magmatic_algebras import MagmaticAlgebras
12 from sage.combinat.free_module import CombinatorialFreeModule
13 from sage.matrix.constructor import matrix
14 from sage.matrix.matrix_space import MatrixSpace
15 from sage.misc.cachefunc import cached_method
16 from sage.misc.lazy_import import lazy_import
17 from sage.misc.prandom import choice
18 from sage.misc.table import table
19 from sage.modules.free_module import FreeModule, VectorSpace
20 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
21 PolynomialRing,
22 QuadraticField)
23 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
24 lazy_import('mjo.eja.eja_subalgebra',
25 'FiniteDimensionalEuclideanJordanSubalgebra')
26 from mjo.eja.eja_utils import _mat2vec
27
28 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
29
30 def _coerce_map_from_base_ring(self):
31 """
32 Disable the map from the base ring into the algebra.
33
34 Performing a nonsense conversion like this automatically
35 is counterpedagogical. The fallback is to try the usual
36 element constructor, which should also fail.
37
38 SETUP::
39
40 sage: from mjo.eja.eja_algebra import random_eja
41
42 TESTS::
43
44 sage: set_random_seed()
45 sage: J = random_eja()
46 sage: J(1)
47 Traceback (most recent call last):
48 ...
49 ValueError: not a naturally-represented algebra element
50
51 """
52 return None
53
54 def __init__(self,
55 field,
56 mult_table,
57 prefix='e',
58 category=None,
59 natural_basis=None,
60 check=True):
61 """
62 SETUP::
63
64 sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja)
65
66 EXAMPLES:
67
68 By definition, Jordan multiplication commutes::
69
70 sage: set_random_seed()
71 sage: J = random_eja()
72 sage: x,y = J.random_elements(2)
73 sage: x*y == y*x
74 True
75
76 TESTS:
77
78 The ``field`` we're given must be real::
79
80 sage: JordanSpinEJA(2,QQbar)
81 Traceback (most recent call last):
82 ...
83 ValueError: field is not real
84
85 """
86 if check:
87 if not field.is_subring(RR):
88 # Note: this does return true for the real algebraic
89 # field, and any quadratic field where we've specified
90 # a real embedding.
91 raise ValueError('field is not real')
92
93 self._natural_basis = natural_basis
94
95 if category is None:
96 category = MagmaticAlgebras(field).FiniteDimensional()
97 category = category.WithBasis().Unital()
98
99 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
100 fda.__init__(field,
101 range(len(mult_table)),
102 prefix=prefix,
103 category=category)
104 self.print_options(bracket='')
105
106 # The multiplication table we're given is necessarily in terms
107 # of vectors, because we don't have an algebra yet for
108 # anything to be an element of. However, it's faster in the
109 # long run to have the multiplication table be in terms of
110 # algebra elements. We do this after calling the superclass
111 # constructor so that from_vector() knows what to do.
112 self._multiplication_table = [
113 list(map(lambda x: self.from_vector(x), ls))
114 for ls in mult_table
115 ]
116
117
118 def _element_constructor_(self, elt):
119 """
120 Construct an element of this algebra from its natural
121 representation.
122
123 This gets called only after the parent element _call_ method
124 fails to find a coercion for the argument.
125
126 SETUP::
127
128 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
129 ....: HadamardEJA,
130 ....: RealSymmetricEJA)
131
132 EXAMPLES:
133
134 The identity in `S^n` is converted to the identity in the EJA::
135
136 sage: J = RealSymmetricEJA(3)
137 sage: I = matrix.identity(QQ,3)
138 sage: J(I) == J.one()
139 True
140
141 This skew-symmetric matrix can't be represented in the EJA::
142
143 sage: J = RealSymmetricEJA(3)
144 sage: A = matrix(QQ,3, lambda i,j: i-j)
145 sage: J(A)
146 Traceback (most recent call last):
147 ...
148 ArithmeticError: vector is not in free module
149
150 TESTS:
151
152 Ensure that we can convert any element of the two non-matrix
153 simple algebras (whose natural representations are their usual
154 vector representations) back and forth faithfully::
155
156 sage: set_random_seed()
157 sage: J = HadamardEJA.random_instance()
158 sage: x = J.random_element()
159 sage: J(x.to_vector().column()) == x
160 True
161 sage: J = JordanSpinEJA.random_instance()
162 sage: x = J.random_element()
163 sage: J(x.to_vector().column()) == x
164 True
165
166 """
167 msg = "not a naturally-represented algebra element"
168 if elt == 0:
169 # The superclass implementation of random_element()
170 # needs to be able to coerce "0" into the algebra.
171 return self.zero()
172 elif elt in self.base_ring():
173 # Ensure that no base ring -> algebra coercion is performed
174 # by this method. There's some stupidity in sage that would
175 # otherwise propagate to this method; for example, sage thinks
176 # that the integer 3 belongs to the space of 2-by-2 matrices.
177 raise ValueError(msg)
178
179 natural_basis = self.natural_basis()
180 basis_space = natural_basis[0].matrix_space()
181 if elt not in basis_space:
182 raise ValueError(msg)
183
184 # Thanks for nothing! Matrix spaces aren't vector spaces in
185 # Sage, so we have to figure out its natural-basis coordinates
186 # ourselves. We use the basis space's ring instead of the
187 # element's ring because the basis space might be an algebraic
188 # closure whereas the base ring of the 3-by-3 identity matrix
189 # could be QQ instead of QQbar.
190 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
191 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
192 coords = W.coordinate_vector(_mat2vec(elt))
193 return self.from_vector(coords)
194
195 @staticmethod
196 def _max_test_case_size():
197 """
198 Return an integer "size" that is an upper bound on the size of
199 this algebra when it is used in a random test
200 case. Unfortunately, the term "size" is quite vague -- when
201 dealing with `R^n` under either the Hadamard or Jordan spin
202 product, the "size" refers to the dimension `n`. When dealing
203 with a matrix algebra (real symmetric or complex/quaternion
204 Hermitian), it refers to the size of the matrix, which is
205 far less than the dimension of the underlying vector space.
206
207 We default to five in this class, which is safe in `R^n`. The
208 matrix algebra subclasses (or any class where the "size" is
209 interpreted to be far less than the dimension) should override
210 with a smaller number.
211 """
212 return 5
213
214 def _repr_(self):
215 """
216 Return a string representation of ``self``.
217
218 SETUP::
219
220 sage: from mjo.eja.eja_algebra import JordanSpinEJA
221
222 TESTS:
223
224 Ensure that it says what we think it says::
225
226 sage: JordanSpinEJA(2, field=AA)
227 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
228 sage: JordanSpinEJA(3, field=RDF)
229 Euclidean Jordan algebra of dimension 3 over Real Double Field
230
231 """
232 fmt = "Euclidean Jordan algebra of dimension {} over {}"
233 return fmt.format(self.dimension(), self.base_ring())
234
235 def product_on_basis(self, i, j):
236 return self._multiplication_table[i][j]
237
238 @cached_method
239 def characteristic_polynomial(self):
240 """
241 Return a characteristic polynomial that works for all elements
242 of this algebra.
243
244 The resulting polynomial has `n+1` variables, where `n` is the
245 dimension of this algebra. The first `n` variables correspond to
246 the coordinates of an algebra element: when evaluated at the
247 coordinates of an algebra element with respect to a certain
248 basis, the result is a univariate polynomial (in the one
249 remaining variable ``t``), namely the characteristic polynomial
250 of that element.
251
252 SETUP::
253
254 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
255
256 EXAMPLES:
257
258 The characteristic polynomial in the spin algebra is given in
259 Alizadeh, Example 11.11::
260
261 sage: J = JordanSpinEJA(3)
262 sage: p = J.characteristic_polynomial(); p
263 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
264 sage: xvec = J.one().to_vector()
265 sage: p(*xvec)
266 t^2 - 2*t + 1
267
268 By definition, the characteristic polynomial is a monic
269 degree-zero polynomial in a rank-zero algebra. Note that
270 Cayley-Hamilton is indeed satisfied since the polynomial
271 ``1`` evaluates to the identity element of the algebra on
272 any argument::
273
274 sage: J = TrivialEJA()
275 sage: J.characteristic_polynomial()
276 1
277
278 """
279 r = self.rank()
280 n = self.dimension()
281
282 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
283 a = self._charpoly_coefficients()
284
285 # We go to a bit of trouble here to reorder the
286 # indeterminates, so that it's easier to evaluate the
287 # characteristic polynomial at x's coordinates and get back
288 # something in terms of t, which is what we want.
289 S = PolynomialRing(self.base_ring(),'t')
290 t = S.gen(0)
291 if r > 0:
292 R = a[0].parent()
293 S = PolynomialRing(S, R.variable_names())
294 t = S(t)
295
296 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
297
298
299 def inner_product(self, x, y):
300 """
301 The inner product associated with this Euclidean Jordan algebra.
302
303 Defaults to the trace inner product, but can be overridden by
304 subclasses if they are sure that the necessary properties are
305 satisfied.
306
307 SETUP::
308
309 sage: from mjo.eja.eja_algebra import random_eja
310
311 EXAMPLES:
312
313 Our inner product is "associative," which means the following for
314 a symmetric bilinear form::
315
316 sage: set_random_seed()
317 sage: J = random_eja()
318 sage: x,y,z = J.random_elements(3)
319 sage: (x*y).inner_product(z) == y.inner_product(x*z)
320 True
321
322 """
323 X = x.natural_representation()
324 Y = y.natural_representation()
325 return self.natural_inner_product(X,Y)
326
327
328 def is_trivial(self):
329 """
330 Return whether or not this algebra is trivial.
331
332 A trivial algebra contains only the zero element.
333
334 SETUP::
335
336 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
337 ....: TrivialEJA)
338
339 EXAMPLES::
340
341 sage: J = ComplexHermitianEJA(3)
342 sage: J.is_trivial()
343 False
344
345 ::
346
347 sage: J = TrivialEJA()
348 sage: J.is_trivial()
349 True
350
351 """
352 return self.dimension() == 0
353
354
355 def multiplication_table(self):
356 """
357 Return a visual representation of this algebra's multiplication
358 table (on basis elements).
359
360 SETUP::
361
362 sage: from mjo.eja.eja_algebra import JordanSpinEJA
363
364 EXAMPLES::
365
366 sage: J = JordanSpinEJA(4)
367 sage: J.multiplication_table()
368 +----++----+----+----+----+
369 | * || e0 | e1 | e2 | e3 |
370 +====++====+====+====+====+
371 | e0 || e0 | e1 | e2 | e3 |
372 +----++----+----+----+----+
373 | e1 || e1 | e0 | 0 | 0 |
374 +----++----+----+----+----+
375 | e2 || e2 | 0 | e0 | 0 |
376 +----++----+----+----+----+
377 | e3 || e3 | 0 | 0 | e0 |
378 +----++----+----+----+----+
379
380 """
381 M = list(self._multiplication_table) # copy
382 for i in range(len(M)):
383 # M had better be "square"
384 M[i] = [self.monomial(i)] + M[i]
385 M = [["*"] + list(self.gens())] + M
386 return table(M, header_row=True, header_column=True, frame=True)
387
388
389 def natural_basis(self):
390 """
391 Return a more-natural representation of this algebra's basis.
392
393 Every finite-dimensional Euclidean Jordan Algebra is a direct
394 sum of five simple algebras, four of which comprise Hermitian
395 matrices. This method returns the original "natural" basis
396 for our underlying vector space. (Typically, the natural basis
397 is used to construct the multiplication table in the first place.)
398
399 Note that this will always return a matrix. The standard basis
400 in `R^n` will be returned as `n`-by-`1` column matrices.
401
402 SETUP::
403
404 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
405 ....: RealSymmetricEJA)
406
407 EXAMPLES::
408
409 sage: J = RealSymmetricEJA(2)
410 sage: J.basis()
411 Finite family {0: e0, 1: e1, 2: e2}
412 sage: J.natural_basis()
413 (
414 [1 0] [ 0 0.7071067811865475?] [0 0]
415 [0 0], [0.7071067811865475? 0], [0 1]
416 )
417
418 ::
419
420 sage: J = JordanSpinEJA(2)
421 sage: J.basis()
422 Finite family {0: e0, 1: e1}
423 sage: J.natural_basis()
424 (
425 [1] [0]
426 [0], [1]
427 )
428
429 """
430 if self._natural_basis is None:
431 M = self.natural_basis_space()
432 return tuple( M(b.to_vector()) for b in self.basis() )
433 else:
434 return self._natural_basis
435
436
437 def natural_basis_space(self):
438 """
439 Return the matrix space in which this algebra's natural basis
440 elements live.
441 """
442 if self._natural_basis is None or len(self._natural_basis) == 0:
443 return MatrixSpace(self.base_ring(), self.dimension(), 1)
444 else:
445 return self._natural_basis[0].matrix_space()
446
447
448 @staticmethod
449 def natural_inner_product(X,Y):
450 """
451 Compute the inner product of two naturally-represented elements.
452
453 For example in the real symmetric matrix EJA, this will compute
454 the trace inner-product of two n-by-n symmetric matrices. The
455 default should work for the real cartesian product EJA, the
456 Jordan spin EJA, and the real symmetric matrices. The others
457 will have to be overridden.
458 """
459 return (X.conjugate_transpose()*Y).trace()
460
461
462 @cached_method
463 def one(self):
464 """
465 Return the unit element of this algebra.
466
467 SETUP::
468
469 sage: from mjo.eja.eja_algebra import (HadamardEJA,
470 ....: random_eja)
471
472 EXAMPLES::
473
474 sage: J = HadamardEJA(5)
475 sage: J.one()
476 e0 + e1 + e2 + e3 + e4
477
478 TESTS:
479
480 The identity element acts like the identity::
481
482 sage: set_random_seed()
483 sage: J = random_eja()
484 sage: x = J.random_element()
485 sage: J.one()*x == x and x*J.one() == x
486 True
487
488 The matrix of the unit element's operator is the identity::
489
490 sage: set_random_seed()
491 sage: J = random_eja()
492 sage: actual = J.one().operator().matrix()
493 sage: expected = matrix.identity(J.base_ring(), J.dimension())
494 sage: actual == expected
495 True
496
497 """
498 # We can brute-force compute the matrices of the operators
499 # that correspond to the basis elements of this algebra.
500 # If some linear combination of those basis elements is the
501 # algebra identity, then the same linear combination of
502 # their matrices has to be the identity matrix.
503 #
504 # Of course, matrices aren't vectors in sage, so we have to
505 # appeal to the "long vectors" isometry.
506 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
507
508 # Now we use basis linear algebra to find the coefficients,
509 # of the matrices-as-vectors-linear-combination, which should
510 # work for the original algebra basis too.
511 A = matrix.column(self.base_ring(), oper_vecs)
512
513 # We used the isometry on the left-hand side already, but we
514 # still need to do it for the right-hand side. Recall that we
515 # wanted something that summed to the identity matrix.
516 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
517
518 # Now if there's an identity element in the algebra, this should work.
519 coeffs = A.solve_right(b)
520 return self.linear_combination(zip(self.gens(), coeffs))
521
522
523 def peirce_decomposition(self, c):
524 """
525 The Peirce decomposition of this algebra relative to the
526 idempotent ``c``.
527
528 In the future, this can be extended to a complete system of
529 orthogonal idempotents.
530
531 INPUT:
532
533 - ``c`` -- an idempotent of this algebra.
534
535 OUTPUT:
536
537 A triple (J0, J5, J1) containing two subalgebras and one subspace
538 of this algebra,
539
540 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
541 corresponding to the eigenvalue zero.
542
543 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
544 corresponding to the eigenvalue one-half.
545
546 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
547 corresponding to the eigenvalue one.
548
549 These are the only possible eigenspaces for that operator, and this
550 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
551 orthogonal, and are subalgebras of this algebra with the appropriate
552 restrictions.
553
554 SETUP::
555
556 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
557
558 EXAMPLES:
559
560 The canonical example comes from the symmetric matrices, which
561 decompose into diagonal and off-diagonal parts::
562
563 sage: J = RealSymmetricEJA(3)
564 sage: C = matrix(QQ, [ [1,0,0],
565 ....: [0,1,0],
566 ....: [0,0,0] ])
567 sage: c = J(C)
568 sage: J0,J5,J1 = J.peirce_decomposition(c)
569 sage: J0
570 Euclidean Jordan algebra of dimension 1...
571 sage: J5
572 Vector space of degree 6 and dimension 2...
573 sage: J1
574 Euclidean Jordan algebra of dimension 3...
575
576 TESTS:
577
578 Every algebra decomposes trivially with respect to its identity
579 element::
580
581 sage: set_random_seed()
582 sage: J = random_eja()
583 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
584 sage: J0.dimension() == 0 and J5.dimension() == 0
585 True
586 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
587 True
588
589 The identity elements in the two subalgebras are the
590 projections onto their respective subspaces of the
591 superalgebra's identity element::
592
593 sage: set_random_seed()
594 sage: J = random_eja()
595 sage: x = J.random_element()
596 sage: if not J.is_trivial():
597 ....: while x.is_nilpotent():
598 ....: x = J.random_element()
599 sage: c = x.subalgebra_idempotent()
600 sage: J0,J5,J1 = J.peirce_decomposition(c)
601 sage: J1(c) == J1.one()
602 True
603 sage: J0(J.one() - c) == J0.one()
604 True
605
606 """
607 if not c.is_idempotent():
608 raise ValueError("element is not idempotent: %s" % c)
609
610 # Default these to what they should be if they turn out to be
611 # trivial, because eigenspaces_left() won't return eigenvalues
612 # corresponding to trivial spaces (e.g. it returns only the
613 # eigenspace corresponding to lambda=1 if you take the
614 # decomposition relative to the identity element).
615 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
616 J0 = trivial # eigenvalue zero
617 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
618 J1 = trivial # eigenvalue one
619
620 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
621 if eigval == ~(self.base_ring()(2)):
622 J5 = eigspace
623 else:
624 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
625 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens)
626 if eigval == 0:
627 J0 = subalg
628 elif eigval == 1:
629 J1 = subalg
630 else:
631 raise ValueError("unexpected eigenvalue: %s" % eigval)
632
633 return (J0, J5, J1)
634
635
636 def random_elements(self, count):
637 """
638 Return ``count`` random elements as a tuple.
639
640 SETUP::
641
642 sage: from mjo.eja.eja_algebra import JordanSpinEJA
643
644 EXAMPLES::
645
646 sage: J = JordanSpinEJA(3)
647 sage: x,y,z = J.random_elements(3)
648 sage: all( [ x in J, y in J, z in J ])
649 True
650 sage: len( J.random_elements(10) ) == 10
651 True
652
653 """
654 return tuple( self.random_element() for idx in range(count) )
655
656 @classmethod
657 def random_instance(cls, field=AA, **kwargs):
658 """
659 Return a random instance of this type of algebra.
660
661 Beware, this will crash for "most instances" because the
662 constructor below looks wrong.
663 """
664 if cls is TrivialEJA:
665 # The TrivialEJA class doesn't take an "n" argument because
666 # there's only one.
667 return cls(field)
668
669 n = ZZ.random_element(cls._max_test_case_size()) + 1
670 return cls(n, field, **kwargs)
671
672 @cached_method
673 def _charpoly_coefficients(self):
674 r"""
675 The `r` polynomial coefficients of the "characteristic polynomial
676 of" function.
677 """
678 n = self.dimension()
679 var_names = [ "X" + str(z) for z in range(1,n+1) ]
680 R = PolynomialRing(self.base_ring(), var_names)
681 vars = R.gens()
682 F = R.fraction_field()
683
684 def L_x_i_j(i,j):
685 # From a result in my book, these are the entries of the
686 # basis representation of L_x.
687 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
688 for k in range(n) )
689
690 L_x = matrix(F, n, n, L_x_i_j)
691
692 r = None
693 if self.rank.is_in_cache():
694 r = self.rank()
695 # There's no need to pad the system with redundant
696 # columns if we *know* they'll be redundant.
697 n = r
698
699 # Compute an extra power in case the rank is equal to
700 # the dimension (otherwise, we would stop at x^(r-1)).
701 x_powers = [ (L_x**k)*self.one().to_vector()
702 for k in range(n+1) ]
703 A = matrix.column(F, x_powers[:n])
704 AE = A.extended_echelon_form()
705 E = AE[:,n:]
706 A_rref = AE[:,:n]
707 if r is None:
708 r = A_rref.rank()
709 b = x_powers[r]
710
711 # The theory says that only the first "r" coefficients are
712 # nonzero, and they actually live in the original polynomial
713 # ring and not the fraction field. We negate them because
714 # in the actual characteristic polynomial, they get moved
715 # to the other side where x^r lives.
716 return -A_rref.solve_right(E*b).change_ring(R)[:r]
717
718 @cached_method
719 def rank(self):
720 r"""
721 Return the rank of this EJA.
722
723 This is a cached method because we know the rank a priori for
724 all of the algebras we can construct. Thus we can avoid the
725 expensive ``_charpoly_coefficients()`` call unless we truly
726 need to compute the whole characteristic polynomial.
727
728 SETUP::
729
730 sage: from mjo.eja.eja_algebra import (HadamardEJA,
731 ....: JordanSpinEJA,
732 ....: RealSymmetricEJA,
733 ....: ComplexHermitianEJA,
734 ....: QuaternionHermitianEJA,
735 ....: random_eja)
736
737 EXAMPLES:
738
739 The rank of the Jordan spin algebra is always two::
740
741 sage: JordanSpinEJA(2).rank()
742 2
743 sage: JordanSpinEJA(3).rank()
744 2
745 sage: JordanSpinEJA(4).rank()
746 2
747
748 The rank of the `n`-by-`n` Hermitian real, complex, or
749 quaternion matrices is `n`::
750
751 sage: RealSymmetricEJA(4).rank()
752 4
753 sage: ComplexHermitianEJA(3).rank()
754 3
755 sage: QuaternionHermitianEJA(2).rank()
756 2
757
758 TESTS:
759
760 Ensure that every EJA that we know how to construct has a
761 positive integer rank, unless the algebra is trivial in
762 which case its rank will be zero::
763
764 sage: set_random_seed()
765 sage: J = random_eja()
766 sage: r = J.rank()
767 sage: r in ZZ
768 True
769 sage: r > 0 or (r == 0 and J.is_trivial())
770 True
771
772 Ensure that computing the rank actually works, since the ranks
773 of all simple algebras are known and will be cached by default::
774
775 sage: J = HadamardEJA(4)
776 sage: J.rank.clear_cache()
777 sage: J.rank()
778 4
779
780 ::
781
782 sage: J = JordanSpinEJA(4)
783 sage: J.rank.clear_cache()
784 sage: J.rank()
785 2
786
787 ::
788
789 sage: J = RealSymmetricEJA(3)
790 sage: J.rank.clear_cache()
791 sage: J.rank()
792 3
793
794 ::
795
796 sage: J = ComplexHermitianEJA(2)
797 sage: J.rank.clear_cache()
798 sage: J.rank()
799 2
800
801 ::
802
803 sage: J = QuaternionHermitianEJA(2)
804 sage: J.rank.clear_cache()
805 sage: J.rank()
806 2
807 """
808 return len(self._charpoly_coefficients())
809
810
811 def vector_space(self):
812 """
813 Return the vector space that underlies this algebra.
814
815 SETUP::
816
817 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
818
819 EXAMPLES::
820
821 sage: J = RealSymmetricEJA(2)
822 sage: J.vector_space()
823 Vector space of dimension 3 over...
824
825 """
826 return self.zero().to_vector().parent().ambient_vector_space()
827
828
829 Element = FiniteDimensionalEuclideanJordanAlgebraElement
830
831
832 class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
833 """
834 Return the Euclidean Jordan Algebra corresponding to the set
835 `R^n` under the Hadamard product.
836
837 Note: this is nothing more than the Cartesian product of ``n``
838 copies of the spin algebra. Once Cartesian product algebras
839 are implemented, this can go.
840
841 SETUP::
842
843 sage: from mjo.eja.eja_algebra import HadamardEJA
844
845 EXAMPLES:
846
847 This multiplication table can be verified by hand::
848
849 sage: J = HadamardEJA(3)
850 sage: e0,e1,e2 = J.gens()
851 sage: e0*e0
852 e0
853 sage: e0*e1
854 0
855 sage: e0*e2
856 0
857 sage: e1*e1
858 e1
859 sage: e1*e2
860 0
861 sage: e2*e2
862 e2
863
864 TESTS:
865
866 We can change the generator prefix::
867
868 sage: HadamardEJA(3, prefix='r').gens()
869 (r0, r1, r2)
870
871 """
872 def __init__(self, n, field=AA, **kwargs):
873 V = VectorSpace(field, n)
874 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
875 for i in range(n) ]
876
877 fdeja = super(HadamardEJA, self)
878 fdeja.__init__(field, mult_table, **kwargs)
879 self.rank.set_cache(n)
880
881 def inner_product(self, x, y):
882 """
883 Faster to reimplement than to use natural representations.
884
885 SETUP::
886
887 sage: from mjo.eja.eja_algebra import HadamardEJA
888
889 TESTS:
890
891 Ensure that this is the usual inner product for the algebras
892 over `R^n`::
893
894 sage: set_random_seed()
895 sage: J = HadamardEJA.random_instance()
896 sage: x,y = J.random_elements(2)
897 sage: X = x.natural_representation()
898 sage: Y = y.natural_representation()
899 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
900 True
901
902 """
903 return x.to_vector().inner_product(y.to_vector())
904
905
906 def random_eja(field=AA, nontrivial=False):
907 """
908 Return a "random" finite-dimensional Euclidean Jordan Algebra.
909
910 SETUP::
911
912 sage: from mjo.eja.eja_algebra import random_eja
913
914 TESTS::
915
916 sage: random_eja()
917 Euclidean Jordan algebra of dimension...
918
919 """
920 eja_classes = [HadamardEJA,
921 JordanSpinEJA,
922 RealSymmetricEJA,
923 ComplexHermitianEJA,
924 QuaternionHermitianEJA]
925 if not nontrivial:
926 eja_classes.append(TrivialEJA)
927 classname = choice(eja_classes)
928 return classname.random_instance(field=field)
929
930
931
932
933
934
935 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
936 @staticmethod
937 def _max_test_case_size():
938 # Play it safe, since this will be squared and the underlying
939 # field can have dimension 4 (quaternions) too.
940 return 2
941
942 def __init__(self, field, basis, normalize_basis=True, **kwargs):
943 """
944 Compared to the superclass constructor, we take a basis instead of
945 a multiplication table because the latter can be computed in terms
946 of the former when the product is known (like it is here).
947 """
948 # Used in this class's fast _charpoly_coefficients() override.
949 self._basis_normalizers = None
950
951 # We're going to loop through this a few times, so now's a good
952 # time to ensure that it isn't a generator expression.
953 basis = tuple(basis)
954
955 if len(basis) > 1 and normalize_basis:
956 # We'll need sqrt(2) to normalize the basis, and this
957 # winds up in the multiplication table, so the whole
958 # algebra needs to be over the field extension.
959 R = PolynomialRing(field, 'z')
960 z = R.gen()
961 p = z**2 - 2
962 if p.is_irreducible():
963 field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
964 basis = tuple( s.change_ring(field) for s in basis )
965 self._basis_normalizers = tuple(
966 ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
967 basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
968
969 Qs = self.multiplication_table_from_matrix_basis(basis)
970
971 fdeja = super(MatrixEuclideanJordanAlgebra, self)
972 fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
973 return
974
975
976 @cached_method
977 def _charpoly_coefficients(self):
978 r"""
979 Override the parent method with something that tries to compute
980 over a faster (non-extension) field.
981 """
982 if self._basis_normalizers is None:
983 # We didn't normalize, so assume that the basis we started
984 # with had entries in a nice field.
985 return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coefficients()
986 else:
987 basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
988 self._basis_normalizers) )
989
990 # Do this over the rationals and convert back at the end.
991 # Only works because we know the entries of the basis are
992 # integers.
993 J = MatrixEuclideanJordanAlgebra(QQ,
994 basis,
995 normalize_basis=False)
996 a = J._charpoly_coefficients()
997
998 # Unfortunately, changing the basis does change the
999 # coefficients of the characteristic polynomial, but since
1000 # these are really the coefficients of the "characteristic
1001 # polynomial of" function, everything is still nice and
1002 # unevaluated. It's therefore "obvious" how scaling the
1003 # basis affects the coordinate variables X1, X2, et
1004 # cetera. Scaling the first basis vector up by "n" adds a
1005 # factor of 1/n into every "X1" term, for example. So here
1006 # we simply undo the basis_normalizer scaling that we
1007 # performed earlier.
1008 #
1009 # TODO: make this access safe.
1010 XS = a[0].variables()
1011 subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i]
1012 for i in range(len(XS)) }
1013 return tuple( a_i.subs(subs_dict) for a_i in a )
1014
1015
1016 @staticmethod
1017 def multiplication_table_from_matrix_basis(basis):
1018 """
1019 At least three of the five simple Euclidean Jordan algebras have the
1020 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1021 multiplication on the right is matrix multiplication. Given a basis
1022 for the underlying matrix space, this function returns a
1023 multiplication table (obtained by looping through the basis
1024 elements) for an algebra of those matrices.
1025 """
1026 # In S^2, for example, we nominally have four coordinates even
1027 # though the space is of dimension three only. The vector space V
1028 # is supposed to hold the entire long vector, and the subspace W
1029 # of V will be spanned by the vectors that arise from symmetric
1030 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1031 if len(basis) == 0:
1032 return []
1033
1034 field = basis[0].base_ring()
1035 dimension = basis[0].nrows()
1036
1037 V = VectorSpace(field, dimension**2)
1038 W = V.span_of_basis( _mat2vec(s) for s in basis )
1039 n = len(basis)
1040 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
1041 for i in range(n):
1042 for j in range(n):
1043 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
1044 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
1045
1046 return mult_table
1047
1048
1049 @staticmethod
1050 def real_embed(M):
1051 """
1052 Embed the matrix ``M`` into a space of real matrices.
1053
1054 The matrix ``M`` can have entries in any field at the moment:
1055 the real numbers, complex numbers, or quaternions. And although
1056 they are not a field, we can probably support octonions at some
1057 point, too. This function returns a real matrix that "acts like"
1058 the original with respect to matrix multiplication; i.e.
1059
1060 real_embed(M*N) = real_embed(M)*real_embed(N)
1061
1062 """
1063 raise NotImplementedError
1064
1065
1066 @staticmethod
1067 def real_unembed(M):
1068 """
1069 The inverse of :meth:`real_embed`.
1070 """
1071 raise NotImplementedError
1072
1073
1074 @classmethod
1075 def natural_inner_product(cls,X,Y):
1076 Xu = cls.real_unembed(X)
1077 Yu = cls.real_unembed(Y)
1078 tr = (Xu*Yu).trace()
1079
1080 if tr in RLF:
1081 # It's real already.
1082 return tr
1083
1084 # Otherwise, try the thing that works for complex numbers; and
1085 # if that doesn't work, the thing that works for quaternions.
1086 try:
1087 return tr.vector()[0] # real part, imag part is index 1
1088 except AttributeError:
1089 # A quaternions doesn't have a vector() method, but does
1090 # have coefficient_tuple() method that returns the
1091 # coefficients of 1, i, j, and k -- in that order.
1092 return tr.coefficient_tuple()[0]
1093
1094
1095 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1096 @staticmethod
1097 def real_embed(M):
1098 """
1099 The identity function, for embedding real matrices into real
1100 matrices.
1101 """
1102 return M
1103
1104 @staticmethod
1105 def real_unembed(M):
1106 """
1107 The identity function, for unembedding real matrices from real
1108 matrices.
1109 """
1110 return M
1111
1112
1113 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
1114 """
1115 The rank-n simple EJA consisting of real symmetric n-by-n
1116 matrices, the usual symmetric Jordan product, and the trace inner
1117 product. It has dimension `(n^2 + n)/2` over the reals.
1118
1119 SETUP::
1120
1121 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1122
1123 EXAMPLES::
1124
1125 sage: J = RealSymmetricEJA(2)
1126 sage: e0, e1, e2 = J.gens()
1127 sage: e0*e0
1128 e0
1129 sage: e1*e1
1130 1/2*e0 + 1/2*e2
1131 sage: e2*e2
1132 e2
1133
1134 In theory, our "field" can be any subfield of the reals::
1135
1136 sage: RealSymmetricEJA(2, RDF)
1137 Euclidean Jordan algebra of dimension 3 over Real Double Field
1138 sage: RealSymmetricEJA(2, RR)
1139 Euclidean Jordan algebra of dimension 3 over Real Field with
1140 53 bits of precision
1141
1142 TESTS:
1143
1144 The dimension of this algebra is `(n^2 + n) / 2`::
1145
1146 sage: set_random_seed()
1147 sage: n_max = RealSymmetricEJA._max_test_case_size()
1148 sage: n = ZZ.random_element(1, n_max)
1149 sage: J = RealSymmetricEJA(n)
1150 sage: J.dimension() == (n^2 + n)/2
1151 True
1152
1153 The Jordan multiplication is what we think it is::
1154
1155 sage: set_random_seed()
1156 sage: J = RealSymmetricEJA.random_instance()
1157 sage: x,y = J.random_elements(2)
1158 sage: actual = (x*y).natural_representation()
1159 sage: X = x.natural_representation()
1160 sage: Y = y.natural_representation()
1161 sage: expected = (X*Y + Y*X)/2
1162 sage: actual == expected
1163 True
1164 sage: J(expected) == x*y
1165 True
1166
1167 We can change the generator prefix::
1168
1169 sage: RealSymmetricEJA(3, prefix='q').gens()
1170 (q0, q1, q2, q3, q4, q5)
1171
1172 Our natural basis is normalized with respect to the natural inner
1173 product unless we specify otherwise::
1174
1175 sage: set_random_seed()
1176 sage: J = RealSymmetricEJA.random_instance()
1177 sage: all( b.norm() == 1 for b in J.gens() )
1178 True
1179
1180 Since our natural basis is normalized with respect to the natural
1181 inner product, and since we know that this algebra is an EJA, any
1182 left-multiplication operator's matrix will be symmetric because
1183 natural->EJA basis representation is an isometry and within the EJA
1184 the operator is self-adjoint by the Jordan axiom::
1185
1186 sage: set_random_seed()
1187 sage: x = RealSymmetricEJA.random_instance().random_element()
1188 sage: x.operator().matrix().is_symmetric()
1189 True
1190
1191 We can construct the (trivial) algebra of rank zero::
1192
1193 sage: RealSymmetricEJA(0)
1194 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1195
1196 """
1197 @classmethod
1198 def _denormalized_basis(cls, n, field):
1199 """
1200 Return a basis for the space of real symmetric n-by-n matrices.
1201
1202 SETUP::
1203
1204 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1205
1206 TESTS::
1207
1208 sage: set_random_seed()
1209 sage: n = ZZ.random_element(1,5)
1210 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1211 sage: all( M.is_symmetric() for M in B)
1212 True
1213
1214 """
1215 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1216 # coordinates.
1217 S = []
1218 for i in range(n):
1219 for j in range(i+1):
1220 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1221 if i == j:
1222 Sij = Eij
1223 else:
1224 Sij = Eij + Eij.transpose()
1225 S.append(Sij)
1226 return S
1227
1228
1229 @staticmethod
1230 def _max_test_case_size():
1231 return 4 # Dimension 10
1232
1233
1234 def __init__(self, n, field=AA, **kwargs):
1235 basis = self._denormalized_basis(n, field)
1236 super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
1237 self.rank.set_cache(n)
1238
1239
1240 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1241 @staticmethod
1242 def real_embed(M):
1243 """
1244 Embed the n-by-n complex matrix ``M`` into the space of real
1245 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1246 bi` to the block matrix ``[[a,b],[-b,a]]``.
1247
1248 SETUP::
1249
1250 sage: from mjo.eja.eja_algebra import \
1251 ....: ComplexMatrixEuclideanJordanAlgebra
1252
1253 EXAMPLES::
1254
1255 sage: F = QuadraticField(-1, 'I')
1256 sage: x1 = F(4 - 2*i)
1257 sage: x2 = F(1 + 2*i)
1258 sage: x3 = F(-i)
1259 sage: x4 = F(6)
1260 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1261 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1262 [ 4 -2| 1 2]
1263 [ 2 4|-2 1]
1264 [-----+-----]
1265 [ 0 -1| 6 0]
1266 [ 1 0| 0 6]
1267
1268 TESTS:
1269
1270 Embedding is a homomorphism (isomorphism, in fact)::
1271
1272 sage: set_random_seed()
1273 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1274 sage: n = ZZ.random_element(n_max)
1275 sage: F = QuadraticField(-1, 'I')
1276 sage: X = random_matrix(F, n)
1277 sage: Y = random_matrix(F, n)
1278 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1279 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1280 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1281 sage: Xe*Ye == XYe
1282 True
1283
1284 """
1285 n = M.nrows()
1286 if M.ncols() != n:
1287 raise ValueError("the matrix 'M' must be square")
1288
1289 # We don't need any adjoined elements...
1290 field = M.base_ring().base_ring()
1291
1292 blocks = []
1293 for z in M.list():
1294 a = z.list()[0] # real part, I guess
1295 b = z.list()[1] # imag part, I guess
1296 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1297
1298 return matrix.block(field, n, blocks)
1299
1300
1301 @staticmethod
1302 def real_unembed(M):
1303 """
1304 The inverse of _embed_complex_matrix().
1305
1306 SETUP::
1307
1308 sage: from mjo.eja.eja_algebra import \
1309 ....: ComplexMatrixEuclideanJordanAlgebra
1310
1311 EXAMPLES::
1312
1313 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1314 ....: [-2, 1, -4, 3],
1315 ....: [ 9, 10, 11, 12],
1316 ....: [-10, 9, -12, 11] ])
1317 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1318 [ 2*I + 1 4*I + 3]
1319 [ 10*I + 9 12*I + 11]
1320
1321 TESTS:
1322
1323 Unembedding is the inverse of embedding::
1324
1325 sage: set_random_seed()
1326 sage: F = QuadraticField(-1, 'I')
1327 sage: M = random_matrix(F, 3)
1328 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1329 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1330 True
1331
1332 """
1333 n = ZZ(M.nrows())
1334 if M.ncols() != n:
1335 raise ValueError("the matrix 'M' must be square")
1336 if not n.mod(2).is_zero():
1337 raise ValueError("the matrix 'M' must be a complex embedding")
1338
1339 # If "M" was normalized, its base ring might have roots
1340 # adjoined and they can stick around after unembedding.
1341 field = M.base_ring()
1342 R = PolynomialRing(field, 'z')
1343 z = R.gen()
1344 if field is AA:
1345 # Sage doesn't know how to embed AA into QQbar, i.e. how
1346 # to adjoin sqrt(-1) to AA.
1347 F = QQbar
1348 else:
1349 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1350 i = F.gen()
1351
1352 # Go top-left to bottom-right (reading order), converting every
1353 # 2-by-2 block we see to a single complex element.
1354 elements = []
1355 for k in range(n/2):
1356 for j in range(n/2):
1357 submat = M[2*k:2*k+2,2*j:2*j+2]
1358 if submat[0,0] != submat[1,1]:
1359 raise ValueError('bad on-diagonal submatrix')
1360 if submat[0,1] != -submat[1,0]:
1361 raise ValueError('bad off-diagonal submatrix')
1362 z = submat[0,0] + submat[0,1]*i
1363 elements.append(z)
1364
1365 return matrix(F, n/2, elements)
1366
1367
1368 @classmethod
1369 def natural_inner_product(cls,X,Y):
1370 """
1371 Compute a natural inner product in this algebra directly from
1372 its real embedding.
1373
1374 SETUP::
1375
1376 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1377
1378 TESTS:
1379
1380 This gives the same answer as the slow, default method implemented
1381 in :class:`MatrixEuclideanJordanAlgebra`::
1382
1383 sage: set_random_seed()
1384 sage: J = ComplexHermitianEJA.random_instance()
1385 sage: x,y = J.random_elements(2)
1386 sage: Xe = x.natural_representation()
1387 sage: Ye = y.natural_representation()
1388 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1389 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1390 sage: expected = (X*Y).trace().real()
1391 sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
1392 sage: actual == expected
1393 True
1394
1395 """
1396 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
1397
1398
1399 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
1400 """
1401 The rank-n simple EJA consisting of complex Hermitian n-by-n
1402 matrices over the real numbers, the usual symmetric Jordan product,
1403 and the real-part-of-trace inner product. It has dimension `n^2` over
1404 the reals.
1405
1406 SETUP::
1407
1408 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1409
1410 EXAMPLES:
1411
1412 In theory, our "field" can be any subfield of the reals::
1413
1414 sage: ComplexHermitianEJA(2, RDF)
1415 Euclidean Jordan algebra of dimension 4 over Real Double Field
1416 sage: ComplexHermitianEJA(2, RR)
1417 Euclidean Jordan algebra of dimension 4 over Real Field with
1418 53 bits of precision
1419
1420 TESTS:
1421
1422 The dimension of this algebra is `n^2`::
1423
1424 sage: set_random_seed()
1425 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1426 sage: n = ZZ.random_element(1, n_max)
1427 sage: J = ComplexHermitianEJA(n)
1428 sage: J.dimension() == n^2
1429 True
1430
1431 The Jordan multiplication is what we think it is::
1432
1433 sage: set_random_seed()
1434 sage: J = ComplexHermitianEJA.random_instance()
1435 sage: x,y = J.random_elements(2)
1436 sage: actual = (x*y).natural_representation()
1437 sage: X = x.natural_representation()
1438 sage: Y = y.natural_representation()
1439 sage: expected = (X*Y + Y*X)/2
1440 sage: actual == expected
1441 True
1442 sage: J(expected) == x*y
1443 True
1444
1445 We can change the generator prefix::
1446
1447 sage: ComplexHermitianEJA(2, prefix='z').gens()
1448 (z0, z1, z2, z3)
1449
1450 Our natural basis is normalized with respect to the natural inner
1451 product unless we specify otherwise::
1452
1453 sage: set_random_seed()
1454 sage: J = ComplexHermitianEJA.random_instance()
1455 sage: all( b.norm() == 1 for b in J.gens() )
1456 True
1457
1458 Since our natural basis is normalized with respect to the natural
1459 inner product, and since we know that this algebra is an EJA, any
1460 left-multiplication operator's matrix will be symmetric because
1461 natural->EJA basis representation is an isometry and within the EJA
1462 the operator is self-adjoint by the Jordan axiom::
1463
1464 sage: set_random_seed()
1465 sage: x = ComplexHermitianEJA.random_instance().random_element()
1466 sage: x.operator().matrix().is_symmetric()
1467 True
1468
1469 We can construct the (trivial) algebra of rank zero::
1470
1471 sage: ComplexHermitianEJA(0)
1472 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1473
1474 """
1475
1476 @classmethod
1477 def _denormalized_basis(cls, n, field):
1478 """
1479 Returns a basis for the space of complex Hermitian n-by-n matrices.
1480
1481 Why do we embed these? Basically, because all of numerical linear
1482 algebra assumes that you're working with vectors consisting of `n`
1483 entries from a field and scalars from the same field. There's no way
1484 to tell SageMath that (for example) the vectors contain complex
1485 numbers, while the scalar field is real.
1486
1487 SETUP::
1488
1489 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1490
1491 TESTS::
1492
1493 sage: set_random_seed()
1494 sage: n = ZZ.random_element(1,5)
1495 sage: field = QuadraticField(2, 'sqrt2')
1496 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1497 sage: all( M.is_symmetric() for M in B)
1498 True
1499
1500 """
1501 R = PolynomialRing(field, 'z')
1502 z = R.gen()
1503 F = field.extension(z**2 + 1, 'I')
1504 I = F.gen()
1505
1506 # This is like the symmetric case, but we need to be careful:
1507 #
1508 # * We want conjugate-symmetry, not just symmetry.
1509 # * The diagonal will (as a result) be real.
1510 #
1511 S = []
1512 for i in range(n):
1513 for j in range(i+1):
1514 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1515 if i == j:
1516 Sij = cls.real_embed(Eij)
1517 S.append(Sij)
1518 else:
1519 # The second one has a minus because it's conjugated.
1520 Sij_real = cls.real_embed(Eij + Eij.transpose())
1521 S.append(Sij_real)
1522 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1523 S.append(Sij_imag)
1524
1525 # Since we embedded these, we can drop back to the "field" that we
1526 # started with instead of the complex extension "F".
1527 return ( s.change_ring(field) for s in S )
1528
1529
1530 def __init__(self, n, field=AA, **kwargs):
1531 basis = self._denormalized_basis(n,field)
1532 super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
1533 self.rank.set_cache(n)
1534
1535
1536 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1537 @staticmethod
1538 def real_embed(M):
1539 """
1540 Embed the n-by-n quaternion matrix ``M`` into the space of real
1541 matrices of size 4n-by-4n by first sending each quaternion entry `z
1542 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1543 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1544 matrix.
1545
1546 SETUP::
1547
1548 sage: from mjo.eja.eja_algebra import \
1549 ....: QuaternionMatrixEuclideanJordanAlgebra
1550
1551 EXAMPLES::
1552
1553 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1554 sage: i,j,k = Q.gens()
1555 sage: x = 1 + 2*i + 3*j + 4*k
1556 sage: M = matrix(Q, 1, [[x]])
1557 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1558 [ 1 2 3 4]
1559 [-2 1 -4 3]
1560 [-3 4 1 -2]
1561 [-4 -3 2 1]
1562
1563 Embedding is a homomorphism (isomorphism, in fact)::
1564
1565 sage: set_random_seed()
1566 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1567 sage: n = ZZ.random_element(n_max)
1568 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1569 sage: X = random_matrix(Q, n)
1570 sage: Y = random_matrix(Q, n)
1571 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1572 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1573 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1574 sage: Xe*Ye == XYe
1575 True
1576
1577 """
1578 quaternions = M.base_ring()
1579 n = M.nrows()
1580 if M.ncols() != n:
1581 raise ValueError("the matrix 'M' must be square")
1582
1583 F = QuadraticField(-1, 'I')
1584 i = F.gen()
1585
1586 blocks = []
1587 for z in M.list():
1588 t = z.coefficient_tuple()
1589 a = t[0]
1590 b = t[1]
1591 c = t[2]
1592 d = t[3]
1593 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1594 [-c + d*i, a - b*i]])
1595 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1596 blocks.append(realM)
1597
1598 # We should have real entries by now, so use the realest field
1599 # we've got for the return value.
1600 return matrix.block(quaternions.base_ring(), n, blocks)
1601
1602
1603
1604 @staticmethod
1605 def real_unembed(M):
1606 """
1607 The inverse of _embed_quaternion_matrix().
1608
1609 SETUP::
1610
1611 sage: from mjo.eja.eja_algebra import \
1612 ....: QuaternionMatrixEuclideanJordanAlgebra
1613
1614 EXAMPLES::
1615
1616 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1617 ....: [-2, 1, -4, 3],
1618 ....: [-3, 4, 1, -2],
1619 ....: [-4, -3, 2, 1]])
1620 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1621 [1 + 2*i + 3*j + 4*k]
1622
1623 TESTS:
1624
1625 Unembedding is the inverse of embedding::
1626
1627 sage: set_random_seed()
1628 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1629 sage: M = random_matrix(Q, 3)
1630 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1631 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1632 True
1633
1634 """
1635 n = ZZ(M.nrows())
1636 if M.ncols() != n:
1637 raise ValueError("the matrix 'M' must be square")
1638 if not n.mod(4).is_zero():
1639 raise ValueError("the matrix 'M' must be a quaternion embedding")
1640
1641 # Use the base ring of the matrix to ensure that its entries can be
1642 # multiplied by elements of the quaternion algebra.
1643 field = M.base_ring()
1644 Q = QuaternionAlgebra(field,-1,-1)
1645 i,j,k = Q.gens()
1646
1647 # Go top-left to bottom-right (reading order), converting every
1648 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1649 # quaternion block.
1650 elements = []
1651 for l in range(n/4):
1652 for m in range(n/4):
1653 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1654 M[4*l:4*l+4,4*m:4*m+4] )
1655 if submat[0,0] != submat[1,1].conjugate():
1656 raise ValueError('bad on-diagonal submatrix')
1657 if submat[0,1] != -submat[1,0].conjugate():
1658 raise ValueError('bad off-diagonal submatrix')
1659 z = submat[0,0].real()
1660 z += submat[0,0].imag()*i
1661 z += submat[0,1].real()*j
1662 z += submat[0,1].imag()*k
1663 elements.append(z)
1664
1665 return matrix(Q, n/4, elements)
1666
1667
1668 @classmethod
1669 def natural_inner_product(cls,X,Y):
1670 """
1671 Compute a natural inner product in this algebra directly from
1672 its real embedding.
1673
1674 SETUP::
1675
1676 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1677
1678 TESTS:
1679
1680 This gives the same answer as the slow, default method implemented
1681 in :class:`MatrixEuclideanJordanAlgebra`::
1682
1683 sage: set_random_seed()
1684 sage: J = QuaternionHermitianEJA.random_instance()
1685 sage: x,y = J.random_elements(2)
1686 sage: Xe = x.natural_representation()
1687 sage: Ye = y.natural_representation()
1688 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1689 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1690 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1691 sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
1692 sage: actual == expected
1693 True
1694
1695 """
1696 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
1697
1698
1699 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
1700 """
1701 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1702 matrices, the usual symmetric Jordan product, and the
1703 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1704 the reals.
1705
1706 SETUP::
1707
1708 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1709
1710 EXAMPLES:
1711
1712 In theory, our "field" can be any subfield of the reals::
1713
1714 sage: QuaternionHermitianEJA(2, RDF)
1715 Euclidean Jordan algebra of dimension 6 over Real Double Field
1716 sage: QuaternionHermitianEJA(2, RR)
1717 Euclidean Jordan algebra of dimension 6 over Real Field with
1718 53 bits of precision
1719
1720 TESTS:
1721
1722 The dimension of this algebra is `2*n^2 - n`::
1723
1724 sage: set_random_seed()
1725 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1726 sage: n = ZZ.random_element(1, n_max)
1727 sage: J = QuaternionHermitianEJA(n)
1728 sage: J.dimension() == 2*(n^2) - n
1729 True
1730
1731 The Jordan multiplication is what we think it is::
1732
1733 sage: set_random_seed()
1734 sage: J = QuaternionHermitianEJA.random_instance()
1735 sage: x,y = J.random_elements(2)
1736 sage: actual = (x*y).natural_representation()
1737 sage: X = x.natural_representation()
1738 sage: Y = y.natural_representation()
1739 sage: expected = (X*Y + Y*X)/2
1740 sage: actual == expected
1741 True
1742 sage: J(expected) == x*y
1743 True
1744
1745 We can change the generator prefix::
1746
1747 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1748 (a0, a1, a2, a3, a4, a5)
1749
1750 Our natural basis is normalized with respect to the natural inner
1751 product unless we specify otherwise::
1752
1753 sage: set_random_seed()
1754 sage: J = QuaternionHermitianEJA.random_instance()
1755 sage: all( b.norm() == 1 for b in J.gens() )
1756 True
1757
1758 Since our natural basis is normalized with respect to the natural
1759 inner product, and since we know that this algebra is an EJA, any
1760 left-multiplication operator's matrix will be symmetric because
1761 natural->EJA basis representation is an isometry and within the EJA
1762 the operator is self-adjoint by the Jordan axiom::
1763
1764 sage: set_random_seed()
1765 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1766 sage: x.operator().matrix().is_symmetric()
1767 True
1768
1769 We can construct the (trivial) algebra of rank zero::
1770
1771 sage: QuaternionHermitianEJA(0)
1772 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1773
1774 """
1775 @classmethod
1776 def _denormalized_basis(cls, n, field):
1777 """
1778 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1779
1780 Why do we embed these? Basically, because all of numerical
1781 linear algebra assumes that you're working with vectors consisting
1782 of `n` entries from a field and scalars from the same field. There's
1783 no way to tell SageMath that (for example) the vectors contain
1784 complex numbers, while the scalar field is real.
1785
1786 SETUP::
1787
1788 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1789
1790 TESTS::
1791
1792 sage: set_random_seed()
1793 sage: n = ZZ.random_element(1,5)
1794 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1795 sage: all( M.is_symmetric() for M in B )
1796 True
1797
1798 """
1799 Q = QuaternionAlgebra(QQ,-1,-1)
1800 I,J,K = Q.gens()
1801
1802 # This is like the symmetric case, but we need to be careful:
1803 #
1804 # * We want conjugate-symmetry, not just symmetry.
1805 # * The diagonal will (as a result) be real.
1806 #
1807 S = []
1808 for i in range(n):
1809 for j in range(i+1):
1810 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1811 if i == j:
1812 Sij = cls.real_embed(Eij)
1813 S.append(Sij)
1814 else:
1815 # The second, third, and fourth ones have a minus
1816 # because they're conjugated.
1817 Sij_real = cls.real_embed(Eij + Eij.transpose())
1818 S.append(Sij_real)
1819 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1820 S.append(Sij_I)
1821 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1822 S.append(Sij_J)
1823 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
1824 S.append(Sij_K)
1825
1826 # Since we embedded these, we can drop back to the "field" that we
1827 # started with instead of the quaternion algebra "Q".
1828 return ( s.change_ring(field) for s in S )
1829
1830
1831 def __init__(self, n, field=AA, **kwargs):
1832 basis = self._denormalized_basis(n,field)
1833 super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
1834 self.rank.set_cache(n)
1835
1836
1837 class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
1838 r"""
1839 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1840 with the half-trace inner product and jordan product ``x*y =
1841 (x0*y0 + <B*x_bar,y_bar>, x0*y_bar + y0*x_bar)`` where ``B`` is a
1842 symmetric positive-definite "bilinear form" matrix. It has
1843 dimension `n` over the reals, and reduces to the ``JordanSpinEJA``
1844 when ``B`` is the identity matrix of order ``n-1``.
1845
1846 SETUP::
1847
1848 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1849 ....: JordanSpinEJA)
1850
1851 EXAMPLES:
1852
1853 When no bilinear form is specified, the identity matrix is used,
1854 and the resulting algebra is the Jordan spin algebra::
1855
1856 sage: J0 = BilinearFormEJA(3)
1857 sage: J1 = JordanSpinEJA(3)
1858 sage: J0.multiplication_table() == J0.multiplication_table()
1859 True
1860
1861 TESTS:
1862
1863 We can create a zero-dimensional algebra::
1864
1865 sage: J = BilinearFormEJA(0)
1866 sage: J.basis()
1867 Finite family {}
1868
1869 We can check the multiplication condition given in the Jordan, von
1870 Neumann, and Wigner paper (and also discussed on my "On the
1871 symmetry..." paper). Note that this relies heavily on the standard
1872 choice of basis, as does anything utilizing the bilinear form matrix::
1873
1874 sage: set_random_seed()
1875 sage: n = ZZ.random_element(5)
1876 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
1877 sage: B = M.transpose()*M
1878 sage: J = BilinearFormEJA(n, B=B)
1879 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
1880 sage: V = J.vector_space()
1881 sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
1882 ....: for ei in eis ]
1883 sage: actual = [ sis[i]*sis[j]
1884 ....: for i in range(n-1)
1885 ....: for j in range(n-1) ]
1886 sage: expected = [ J.one() if i == j else J.zero()
1887 ....: for i in range(n-1)
1888 ....: for j in range(n-1) ]
1889 sage: actual == expected
1890 True
1891 """
1892 def __init__(self, n, field=AA, B=None, **kwargs):
1893 if B is None:
1894 self._B = matrix.identity(field, max(0,n-1))
1895 else:
1896 self._B = B
1897
1898 V = VectorSpace(field, n)
1899 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
1900 for i in range(n):
1901 for j in range(n):
1902 x = V.gen(i)
1903 y = V.gen(j)
1904 x0 = x[0]
1905 xbar = x[1:]
1906 y0 = y[0]
1907 ybar = y[1:]
1908 z0 = x0*y0 + (self._B*xbar).inner_product(ybar)
1909 zbar = y0*xbar + x0*ybar
1910 z = V([z0] + zbar.list())
1911 mult_table[i][j] = z
1912
1913 # The rank of this algebra is two, unless we're in a
1914 # one-dimensional ambient space (because the rank is bounded
1915 # by the ambient dimension).
1916 fdeja = super(BilinearFormEJA, self)
1917 fdeja.__init__(field, mult_table, **kwargs)
1918 self.rank.set_cache(min(n,2))
1919
1920 def inner_product(self, x, y):
1921 r"""
1922 Half of the trace inner product.
1923
1924 This is defined so that the special case of the Jordan spin
1925 algebra gets the usual inner product.
1926
1927 SETUP::
1928
1929 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1930
1931 TESTS:
1932
1933 Ensure that this is one-half of the trace inner-product when
1934 the algebra isn't just the reals (when ``n`` isn't one). This
1935 is in Faraut and Koranyi, and also my "On the symmetry..."
1936 paper::
1937
1938 sage: set_random_seed()
1939 sage: n = ZZ.random_element(2,5)
1940 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
1941 sage: B = M.transpose()*M
1942 sage: J = BilinearFormEJA(n, B=B)
1943 sage: x = J.random_element()
1944 sage: y = J.random_element()
1945 sage: x.inner_product(y) == (x*y).trace()/2
1946 True
1947
1948 """
1949 xvec = x.to_vector()
1950 xbar = xvec[1:]
1951 yvec = y.to_vector()
1952 ybar = yvec[1:]
1953 return x[0]*y[0] + (self._B*xbar).inner_product(ybar)
1954
1955
1956 class JordanSpinEJA(BilinearFormEJA):
1957 """
1958 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1959 with the usual inner product and jordan product ``x*y =
1960 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1961 the reals.
1962
1963 SETUP::
1964
1965 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1966
1967 EXAMPLES:
1968
1969 This multiplication table can be verified by hand::
1970
1971 sage: J = JordanSpinEJA(4)
1972 sage: e0,e1,e2,e3 = J.gens()
1973 sage: e0*e0
1974 e0
1975 sage: e0*e1
1976 e1
1977 sage: e0*e2
1978 e2
1979 sage: e0*e3
1980 e3
1981 sage: e1*e2
1982 0
1983 sage: e1*e3
1984 0
1985 sage: e2*e3
1986 0
1987
1988 We can change the generator prefix::
1989
1990 sage: JordanSpinEJA(2, prefix='B').gens()
1991 (B0, B1)
1992
1993 TESTS:
1994
1995 Ensure that we have the usual inner product on `R^n`::
1996
1997 sage: set_random_seed()
1998 sage: J = JordanSpinEJA.random_instance()
1999 sage: x,y = J.random_elements(2)
2000 sage: X = x.natural_representation()
2001 sage: Y = y.natural_representation()
2002 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
2003 True
2004
2005 """
2006 def __init__(self, n, field=AA, **kwargs):
2007 # This is a special case of the BilinearFormEJA with the identity
2008 # matrix as its bilinear form.
2009 return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
2010
2011
2012 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
2013 """
2014 The trivial Euclidean Jordan algebra consisting of only a zero element.
2015
2016 SETUP::
2017
2018 sage: from mjo.eja.eja_algebra import TrivialEJA
2019
2020 EXAMPLES::
2021
2022 sage: J = TrivialEJA()
2023 sage: J.dimension()
2024 0
2025 sage: J.zero()
2026 0
2027 sage: J.one()
2028 0
2029 sage: 7*J.one()*12*J.one()
2030 0
2031 sage: J.one().inner_product(J.one())
2032 0
2033 sage: J.one().norm()
2034 0
2035 sage: J.one().subalgebra_generated_by()
2036 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2037 sage: J.rank()
2038 0
2039
2040 """
2041 def __init__(self, field=AA, **kwargs):
2042 mult_table = []
2043 fdeja = super(TrivialEJA, self)
2044 # The rank is zero using my definition, namely the dimension of the
2045 # largest subalgebra generated by any element.
2046 fdeja.__init__(field, mult_table, **kwargs)
2047 self.rank.set_cache(0)