]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: fix the fast matrix _charpoly_coefficients() method.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from itertools import repeat
9
10 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
11 from sage.categories.magmatic_algebras import MagmaticAlgebras
12 from sage.combinat.free_module import CombinatorialFreeModule
13 from sage.matrix.constructor import matrix
14 from sage.matrix.matrix_space import MatrixSpace
15 from sage.misc.cachefunc import cached_method
16 from sage.misc.lazy_import import lazy_import
17 from sage.misc.prandom import choice
18 from sage.misc.table import table
19 from sage.modules.free_module import FreeModule, VectorSpace
20 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
21 PolynomialRing,
22 QuadraticField)
23 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
24 lazy_import('mjo.eja.eja_subalgebra',
25 'FiniteDimensionalEuclideanJordanSubalgebra')
26 from mjo.eja.eja_utils import _mat2vec
27
28 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
29
30 def _coerce_map_from_base_ring(self):
31 """
32 Disable the map from the base ring into the algebra.
33
34 Performing a nonsense conversion like this automatically
35 is counterpedagogical. The fallback is to try the usual
36 element constructor, which should also fail.
37
38 SETUP::
39
40 sage: from mjo.eja.eja_algebra import random_eja
41
42 TESTS::
43
44 sage: set_random_seed()
45 sage: J = random_eja()
46 sage: J(1)
47 Traceback (most recent call last):
48 ...
49 ValueError: not a naturally-represented algebra element
50
51 """
52 return None
53
54 def __init__(self,
55 field,
56 mult_table,
57 prefix='e',
58 category=None,
59 natural_basis=None,
60 check=True):
61 """
62 SETUP::
63
64 sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja)
65
66 EXAMPLES:
67
68 By definition, Jordan multiplication commutes::
69
70 sage: set_random_seed()
71 sage: J = random_eja()
72 sage: x,y = J.random_elements(2)
73 sage: x*y == y*x
74 True
75
76 TESTS:
77
78 The ``field`` we're given must be real::
79
80 sage: JordanSpinEJA(2,QQbar)
81 Traceback (most recent call last):
82 ...
83 ValueError: field is not real
84
85 """
86 if check:
87 if not field.is_subring(RR):
88 # Note: this does return true for the real algebraic
89 # field, and any quadratic field where we've specified
90 # a real embedding.
91 raise ValueError('field is not real')
92
93 self._natural_basis = natural_basis
94
95 if category is None:
96 category = MagmaticAlgebras(field).FiniteDimensional()
97 category = category.WithBasis().Unital()
98
99 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
100 fda.__init__(field,
101 range(len(mult_table)),
102 prefix=prefix,
103 category=category)
104 self.print_options(bracket='')
105
106 # The multiplication table we're given is necessarily in terms
107 # of vectors, because we don't have an algebra yet for
108 # anything to be an element of. However, it's faster in the
109 # long run to have the multiplication table be in terms of
110 # algebra elements. We do this after calling the superclass
111 # constructor so that from_vector() knows what to do.
112 self._multiplication_table = [
113 list(map(lambda x: self.from_vector(x), ls))
114 for ls in mult_table
115 ]
116
117
118 def _element_constructor_(self, elt):
119 """
120 Construct an element of this algebra from its natural
121 representation.
122
123 This gets called only after the parent element _call_ method
124 fails to find a coercion for the argument.
125
126 SETUP::
127
128 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
129 ....: HadamardEJA,
130 ....: RealSymmetricEJA)
131
132 EXAMPLES:
133
134 The identity in `S^n` is converted to the identity in the EJA::
135
136 sage: J = RealSymmetricEJA(3)
137 sage: I = matrix.identity(QQ,3)
138 sage: J(I) == J.one()
139 True
140
141 This skew-symmetric matrix can't be represented in the EJA::
142
143 sage: J = RealSymmetricEJA(3)
144 sage: A = matrix(QQ,3, lambda i,j: i-j)
145 sage: J(A)
146 Traceback (most recent call last):
147 ...
148 ArithmeticError: vector is not in free module
149
150 TESTS:
151
152 Ensure that we can convert any element of the two non-matrix
153 simple algebras (whose natural representations are their usual
154 vector representations) back and forth faithfully::
155
156 sage: set_random_seed()
157 sage: J = HadamardEJA.random_instance()
158 sage: x = J.random_element()
159 sage: J(x.to_vector().column()) == x
160 True
161 sage: J = JordanSpinEJA.random_instance()
162 sage: x = J.random_element()
163 sage: J(x.to_vector().column()) == x
164 True
165
166 """
167 msg = "not a naturally-represented algebra element"
168 if elt == 0:
169 # The superclass implementation of random_element()
170 # needs to be able to coerce "0" into the algebra.
171 return self.zero()
172 elif elt in self.base_ring():
173 # Ensure that no base ring -> algebra coercion is performed
174 # by this method. There's some stupidity in sage that would
175 # otherwise propagate to this method; for example, sage thinks
176 # that the integer 3 belongs to the space of 2-by-2 matrices.
177 raise ValueError(msg)
178
179 natural_basis = self.natural_basis()
180 basis_space = natural_basis[0].matrix_space()
181 if elt not in basis_space:
182 raise ValueError(msg)
183
184 # Thanks for nothing! Matrix spaces aren't vector spaces in
185 # Sage, so we have to figure out its natural-basis coordinates
186 # ourselves. We use the basis space's ring instead of the
187 # element's ring because the basis space might be an algebraic
188 # closure whereas the base ring of the 3-by-3 identity matrix
189 # could be QQ instead of QQbar.
190 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
191 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
192 coords = W.coordinate_vector(_mat2vec(elt))
193 return self.from_vector(coords)
194
195 @staticmethod
196 def _max_test_case_size():
197 """
198 Return an integer "size" that is an upper bound on the size of
199 this algebra when it is used in a random test
200 case. Unfortunately, the term "size" is quite vague -- when
201 dealing with `R^n` under either the Hadamard or Jordan spin
202 product, the "size" refers to the dimension `n`. When dealing
203 with a matrix algebra (real symmetric or complex/quaternion
204 Hermitian), it refers to the size of the matrix, which is
205 far less than the dimension of the underlying vector space.
206
207 We default to five in this class, which is safe in `R^n`. The
208 matrix algebra subclasses (or any class where the "size" is
209 interpreted to be far less than the dimension) should override
210 with a smaller number.
211 """
212 return 5
213
214 def _repr_(self):
215 """
216 Return a string representation of ``self``.
217
218 SETUP::
219
220 sage: from mjo.eja.eja_algebra import JordanSpinEJA
221
222 TESTS:
223
224 Ensure that it says what we think it says::
225
226 sage: JordanSpinEJA(2, field=AA)
227 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
228 sage: JordanSpinEJA(3, field=RDF)
229 Euclidean Jordan algebra of dimension 3 over Real Double Field
230
231 """
232 fmt = "Euclidean Jordan algebra of dimension {} over {}"
233 return fmt.format(self.dimension(), self.base_ring())
234
235 def product_on_basis(self, i, j):
236 return self._multiplication_table[i][j]
237
238 @cached_method
239 def characteristic_polynomial(self):
240 """
241 Return a characteristic polynomial that works for all elements
242 of this algebra.
243
244 The resulting polynomial has `n+1` variables, where `n` is the
245 dimension of this algebra. The first `n` variables correspond to
246 the coordinates of an algebra element: when evaluated at the
247 coordinates of an algebra element with respect to a certain
248 basis, the result is a univariate polynomial (in the one
249 remaining variable ``t``), namely the characteristic polynomial
250 of that element.
251
252 SETUP::
253
254 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
255
256 EXAMPLES:
257
258 The characteristic polynomial in the spin algebra is given in
259 Alizadeh, Example 11.11::
260
261 sage: J = JordanSpinEJA(3)
262 sage: p = J.characteristic_polynomial(); p
263 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
264 sage: xvec = J.one().to_vector()
265 sage: p(*xvec)
266 t^2 - 2*t + 1
267
268 By definition, the characteristic polynomial is a monic
269 degree-zero polynomial in a rank-zero algebra. Note that
270 Cayley-Hamilton is indeed satisfied since the polynomial
271 ``1`` evaluates to the identity element of the algebra on
272 any argument::
273
274 sage: J = TrivialEJA()
275 sage: J.characteristic_polynomial()
276 1
277
278 """
279 r = self.rank()
280 n = self.dimension()
281
282 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
283 a = self._charpoly_coefficients()
284
285 # We go to a bit of trouble here to reorder the
286 # indeterminates, so that it's easier to evaluate the
287 # characteristic polynomial at x's coordinates and get back
288 # something in terms of t, which is what we want.
289 S = PolynomialRing(self.base_ring(),'t')
290 t = S.gen(0)
291 if r > 0:
292 R = a[0].parent()
293 S = PolynomialRing(S, R.variable_names())
294 t = S(t)
295
296 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
297
298
299 def inner_product(self, x, y):
300 """
301 The inner product associated with this Euclidean Jordan algebra.
302
303 Defaults to the trace inner product, but can be overridden by
304 subclasses if they are sure that the necessary properties are
305 satisfied.
306
307 SETUP::
308
309 sage: from mjo.eja.eja_algebra import random_eja
310
311 EXAMPLES:
312
313 Our inner product is "associative," which means the following for
314 a symmetric bilinear form::
315
316 sage: set_random_seed()
317 sage: J = random_eja()
318 sage: x,y,z = J.random_elements(3)
319 sage: (x*y).inner_product(z) == y.inner_product(x*z)
320 True
321
322 """
323 X = x.natural_representation()
324 Y = y.natural_representation()
325 return self.natural_inner_product(X,Y)
326
327
328 def is_trivial(self):
329 """
330 Return whether or not this algebra is trivial.
331
332 A trivial algebra contains only the zero element.
333
334 SETUP::
335
336 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
337 ....: TrivialEJA)
338
339 EXAMPLES::
340
341 sage: J = ComplexHermitianEJA(3)
342 sage: J.is_trivial()
343 False
344
345 ::
346
347 sage: J = TrivialEJA()
348 sage: J.is_trivial()
349 True
350
351 """
352 return self.dimension() == 0
353
354
355 def multiplication_table(self):
356 """
357 Return a visual representation of this algebra's multiplication
358 table (on basis elements).
359
360 SETUP::
361
362 sage: from mjo.eja.eja_algebra import JordanSpinEJA
363
364 EXAMPLES::
365
366 sage: J = JordanSpinEJA(4)
367 sage: J.multiplication_table()
368 +----++----+----+----+----+
369 | * || e0 | e1 | e2 | e3 |
370 +====++====+====+====+====+
371 | e0 || e0 | e1 | e2 | e3 |
372 +----++----+----+----+----+
373 | e1 || e1 | e0 | 0 | 0 |
374 +----++----+----+----+----+
375 | e2 || e2 | 0 | e0 | 0 |
376 +----++----+----+----+----+
377 | e3 || e3 | 0 | 0 | e0 |
378 +----++----+----+----+----+
379
380 """
381 M = list(self._multiplication_table) # copy
382 for i in range(len(M)):
383 # M had better be "square"
384 M[i] = [self.monomial(i)] + M[i]
385 M = [["*"] + list(self.gens())] + M
386 return table(M, header_row=True, header_column=True, frame=True)
387
388
389 def natural_basis(self):
390 """
391 Return a more-natural representation of this algebra's basis.
392
393 Every finite-dimensional Euclidean Jordan Algebra is a direct
394 sum of five simple algebras, four of which comprise Hermitian
395 matrices. This method returns the original "natural" basis
396 for our underlying vector space. (Typically, the natural basis
397 is used to construct the multiplication table in the first place.)
398
399 Note that this will always return a matrix. The standard basis
400 in `R^n` will be returned as `n`-by-`1` column matrices.
401
402 SETUP::
403
404 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
405 ....: RealSymmetricEJA)
406
407 EXAMPLES::
408
409 sage: J = RealSymmetricEJA(2)
410 sage: J.basis()
411 Finite family {0: e0, 1: e1, 2: e2}
412 sage: J.natural_basis()
413 (
414 [1 0] [ 0 0.7071067811865475?] [0 0]
415 [0 0], [0.7071067811865475? 0], [0 1]
416 )
417
418 ::
419
420 sage: J = JordanSpinEJA(2)
421 sage: J.basis()
422 Finite family {0: e0, 1: e1}
423 sage: J.natural_basis()
424 (
425 [1] [0]
426 [0], [1]
427 )
428
429 """
430 if self._natural_basis is None:
431 M = self.natural_basis_space()
432 return tuple( M(b.to_vector()) for b in self.basis() )
433 else:
434 return self._natural_basis
435
436
437 def natural_basis_space(self):
438 """
439 Return the matrix space in which this algebra's natural basis
440 elements live.
441 """
442 if self._natural_basis is None or len(self._natural_basis) == 0:
443 return MatrixSpace(self.base_ring(), self.dimension(), 1)
444 else:
445 return self._natural_basis[0].matrix_space()
446
447
448 @staticmethod
449 def natural_inner_product(X,Y):
450 """
451 Compute the inner product of two naturally-represented elements.
452
453 For example in the real symmetric matrix EJA, this will compute
454 the trace inner-product of two n-by-n symmetric matrices. The
455 default should work for the real cartesian product EJA, the
456 Jordan spin EJA, and the real symmetric matrices. The others
457 will have to be overridden.
458 """
459 return (X.conjugate_transpose()*Y).trace()
460
461
462 @cached_method
463 def one(self):
464 """
465 Return the unit element of this algebra.
466
467 SETUP::
468
469 sage: from mjo.eja.eja_algebra import (HadamardEJA,
470 ....: random_eja)
471
472 EXAMPLES::
473
474 sage: J = HadamardEJA(5)
475 sage: J.one()
476 e0 + e1 + e2 + e3 + e4
477
478 TESTS:
479
480 The identity element acts like the identity::
481
482 sage: set_random_seed()
483 sage: J = random_eja()
484 sage: x = J.random_element()
485 sage: J.one()*x == x and x*J.one() == x
486 True
487
488 The matrix of the unit element's operator is the identity::
489
490 sage: set_random_seed()
491 sage: J = random_eja()
492 sage: actual = J.one().operator().matrix()
493 sage: expected = matrix.identity(J.base_ring(), J.dimension())
494 sage: actual == expected
495 True
496
497 """
498 # We can brute-force compute the matrices of the operators
499 # that correspond to the basis elements of this algebra.
500 # If some linear combination of those basis elements is the
501 # algebra identity, then the same linear combination of
502 # their matrices has to be the identity matrix.
503 #
504 # Of course, matrices aren't vectors in sage, so we have to
505 # appeal to the "long vectors" isometry.
506 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
507
508 # Now we use basis linear algebra to find the coefficients,
509 # of the matrices-as-vectors-linear-combination, which should
510 # work for the original algebra basis too.
511 A = matrix.column(self.base_ring(), oper_vecs)
512
513 # We used the isometry on the left-hand side already, but we
514 # still need to do it for the right-hand side. Recall that we
515 # wanted something that summed to the identity matrix.
516 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
517
518 # Now if there's an identity element in the algebra, this should work.
519 coeffs = A.solve_right(b)
520 return self.linear_combination(zip(self.gens(), coeffs))
521
522
523 def peirce_decomposition(self, c):
524 """
525 The Peirce decomposition of this algebra relative to the
526 idempotent ``c``.
527
528 In the future, this can be extended to a complete system of
529 orthogonal idempotents.
530
531 INPUT:
532
533 - ``c`` -- an idempotent of this algebra.
534
535 OUTPUT:
536
537 A triple (J0, J5, J1) containing two subalgebras and one subspace
538 of this algebra,
539
540 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
541 corresponding to the eigenvalue zero.
542
543 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
544 corresponding to the eigenvalue one-half.
545
546 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
547 corresponding to the eigenvalue one.
548
549 These are the only possible eigenspaces for that operator, and this
550 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
551 orthogonal, and are subalgebras of this algebra with the appropriate
552 restrictions.
553
554 SETUP::
555
556 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
557
558 EXAMPLES:
559
560 The canonical example comes from the symmetric matrices, which
561 decompose into diagonal and off-diagonal parts::
562
563 sage: J = RealSymmetricEJA(3)
564 sage: C = matrix(QQ, [ [1,0,0],
565 ....: [0,1,0],
566 ....: [0,0,0] ])
567 sage: c = J(C)
568 sage: J0,J5,J1 = J.peirce_decomposition(c)
569 sage: J0
570 Euclidean Jordan algebra of dimension 1...
571 sage: J5
572 Vector space of degree 6 and dimension 2...
573 sage: J1
574 Euclidean Jordan algebra of dimension 3...
575
576 TESTS:
577
578 Every algebra decomposes trivially with respect to its identity
579 element::
580
581 sage: set_random_seed()
582 sage: J = random_eja()
583 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
584 sage: J0.dimension() == 0 and J5.dimension() == 0
585 True
586 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
587 True
588
589 The identity elements in the two subalgebras are the
590 projections onto their respective subspaces of the
591 superalgebra's identity element::
592
593 sage: set_random_seed()
594 sage: J = random_eja()
595 sage: x = J.random_element()
596 sage: if not J.is_trivial():
597 ....: while x.is_nilpotent():
598 ....: x = J.random_element()
599 sage: c = x.subalgebra_idempotent()
600 sage: J0,J5,J1 = J.peirce_decomposition(c)
601 sage: J1(c) == J1.one()
602 True
603 sage: J0(J.one() - c) == J0.one()
604 True
605
606 """
607 if not c.is_idempotent():
608 raise ValueError("element is not idempotent: %s" % c)
609
610 # Default these to what they should be if they turn out to be
611 # trivial, because eigenspaces_left() won't return eigenvalues
612 # corresponding to trivial spaces (e.g. it returns only the
613 # eigenspace corresponding to lambda=1 if you take the
614 # decomposition relative to the identity element).
615 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
616 J0 = trivial # eigenvalue zero
617 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
618 J1 = trivial # eigenvalue one
619
620 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
621 if eigval == ~(self.base_ring()(2)):
622 J5 = eigspace
623 else:
624 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
625 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens)
626 if eigval == 0:
627 J0 = subalg
628 elif eigval == 1:
629 J1 = subalg
630 else:
631 raise ValueError("unexpected eigenvalue: %s" % eigval)
632
633 return (J0, J5, J1)
634
635
636 def random_elements(self, count):
637 """
638 Return ``count`` random elements as a tuple.
639
640 SETUP::
641
642 sage: from mjo.eja.eja_algebra import JordanSpinEJA
643
644 EXAMPLES::
645
646 sage: J = JordanSpinEJA(3)
647 sage: x,y,z = J.random_elements(3)
648 sage: all( [ x in J, y in J, z in J ])
649 True
650 sage: len( J.random_elements(10) ) == 10
651 True
652
653 """
654 return tuple( self.random_element() for idx in range(count) )
655
656 @classmethod
657 def random_instance(cls, field=AA, **kwargs):
658 """
659 Return a random instance of this type of algebra.
660
661 Beware, this will crash for "most instances" because the
662 constructor below looks wrong.
663 """
664 if cls is TrivialEJA:
665 # The TrivialEJA class doesn't take an "n" argument because
666 # there's only one.
667 return cls(field)
668
669 n = ZZ.random_element(cls._max_test_case_size()) + 1
670 return cls(n, field, **kwargs)
671
672 @cached_method
673 def _charpoly_coefficients(self):
674 r"""
675 The `r` polynomial coefficients of the "characteristic polynomial
676 of" function.
677 """
678 n = self.dimension()
679 var_names = [ "X" + str(z) for z in range(1,n+1) ]
680 R = PolynomialRing(self.base_ring(), var_names)
681 vars = R.gens()
682 F = R.fraction_field()
683
684 def L_x_i_j(i,j):
685 # From a result in my book, these are the entries of the
686 # basis representation of L_x.
687 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
688 for k in range(n) )
689
690 L_x = matrix(F, n, n, L_x_i_j)
691
692 r = None
693 if self.rank.is_in_cache():
694 r = self.rank()
695 # There's no need to pad the system with redundant
696 # columns if we *know* they'll be redundant.
697 n = r
698
699 # Compute an extra power in case the rank is equal to
700 # the dimension (otherwise, we would stop at x^(r-1)).
701 x_powers = [ (L_x**k)*self.one().to_vector()
702 for k in range(n+1) ]
703 A = matrix.column(F, x_powers[:n])
704 AE = A.extended_echelon_form()
705 E = AE[:,n:]
706 A_rref = AE[:,:n]
707 if r is None:
708 r = A_rref.rank()
709 b = x_powers[r]
710
711 # The theory says that only the first "r" coefficients are
712 # nonzero, and they actually live in the original polynomial
713 # ring and not the fraction field. We negate them because
714 # in the actual characteristic polynomial, they get moved
715 # to the other side where x^r lives.
716 return -A_rref.solve_right(E*b).change_ring(R)[:r]
717
718 @cached_method
719 def rank(self):
720 r"""
721 Return the rank of this EJA.
722
723 This is a cached method because we know the rank a priori for
724 all of the algebras we can construct. Thus we can avoid the
725 expensive ``_charpoly_coefficients()`` call unless we truly
726 need to compute the whole characteristic polynomial.
727
728 SETUP::
729
730 sage: from mjo.eja.eja_algebra import (HadamardEJA,
731 ....: JordanSpinEJA,
732 ....: RealSymmetricEJA,
733 ....: ComplexHermitianEJA,
734 ....: QuaternionHermitianEJA,
735 ....: random_eja)
736
737 EXAMPLES:
738
739 The rank of the Jordan spin algebra is always two::
740
741 sage: JordanSpinEJA(2).rank()
742 2
743 sage: JordanSpinEJA(3).rank()
744 2
745 sage: JordanSpinEJA(4).rank()
746 2
747
748 The rank of the `n`-by-`n` Hermitian real, complex, or
749 quaternion matrices is `n`::
750
751 sage: RealSymmetricEJA(4).rank()
752 4
753 sage: ComplexHermitianEJA(3).rank()
754 3
755 sage: QuaternionHermitianEJA(2).rank()
756 2
757
758 TESTS:
759
760 Ensure that every EJA that we know how to construct has a
761 positive integer rank, unless the algebra is trivial in
762 which case its rank will be zero::
763
764 sage: set_random_seed()
765 sage: J = random_eja()
766 sage: r = J.rank()
767 sage: r in ZZ
768 True
769 sage: r > 0 or (r == 0 and J.is_trivial())
770 True
771
772 Ensure that computing the rank actually works, since the ranks
773 of all simple algebras are known and will be cached by default::
774
775 sage: J = HadamardEJA(4)
776 sage: J.rank.clear_cache()
777 sage: J.rank()
778 4
779
780 ::
781
782 sage: J = JordanSpinEJA(4)
783 sage: J.rank.clear_cache()
784 sage: J.rank()
785 2
786
787 ::
788
789 sage: J = RealSymmetricEJA(3)
790 sage: J.rank.clear_cache()
791 sage: J.rank()
792 3
793
794 ::
795
796 sage: J = ComplexHermitianEJA(2)
797 sage: J.rank.clear_cache()
798 sage: J.rank()
799 2
800
801 ::
802
803 sage: J = QuaternionHermitianEJA(2)
804 sage: J.rank.clear_cache()
805 sage: J.rank()
806 2
807 """
808 return len(self._charpoly_coefficients())
809
810
811 def vector_space(self):
812 """
813 Return the vector space that underlies this algebra.
814
815 SETUP::
816
817 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
818
819 EXAMPLES::
820
821 sage: J = RealSymmetricEJA(2)
822 sage: J.vector_space()
823 Vector space of dimension 3 over...
824
825 """
826 return self.zero().to_vector().parent().ambient_vector_space()
827
828
829 Element = FiniteDimensionalEuclideanJordanAlgebraElement
830
831
832 class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
833 """
834 Return the Euclidean Jordan Algebra corresponding to the set
835 `R^n` under the Hadamard product.
836
837 Note: this is nothing more than the Cartesian product of ``n``
838 copies of the spin algebra. Once Cartesian product algebras
839 are implemented, this can go.
840
841 SETUP::
842
843 sage: from mjo.eja.eja_algebra import HadamardEJA
844
845 EXAMPLES:
846
847 This multiplication table can be verified by hand::
848
849 sage: J = HadamardEJA(3)
850 sage: e0,e1,e2 = J.gens()
851 sage: e0*e0
852 e0
853 sage: e0*e1
854 0
855 sage: e0*e2
856 0
857 sage: e1*e1
858 e1
859 sage: e1*e2
860 0
861 sage: e2*e2
862 e2
863
864 TESTS:
865
866 We can change the generator prefix::
867
868 sage: HadamardEJA(3, prefix='r').gens()
869 (r0, r1, r2)
870
871 """
872 def __init__(self, n, field=AA, **kwargs):
873 V = VectorSpace(field, n)
874 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
875 for i in range(n) ]
876
877 fdeja = super(HadamardEJA, self)
878 fdeja.__init__(field, mult_table, **kwargs)
879 self.rank.set_cache(n)
880
881 def inner_product(self, x, y):
882 """
883 Faster to reimplement than to use natural representations.
884
885 SETUP::
886
887 sage: from mjo.eja.eja_algebra import HadamardEJA
888
889 TESTS:
890
891 Ensure that this is the usual inner product for the algebras
892 over `R^n`::
893
894 sage: set_random_seed()
895 sage: J = HadamardEJA.random_instance()
896 sage: x,y = J.random_elements(2)
897 sage: X = x.natural_representation()
898 sage: Y = y.natural_representation()
899 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
900 True
901
902 """
903 return x.to_vector().inner_product(y.to_vector())
904
905
906 def random_eja(field=AA, nontrivial=False):
907 """
908 Return a "random" finite-dimensional Euclidean Jordan Algebra.
909
910 SETUP::
911
912 sage: from mjo.eja.eja_algebra import random_eja
913
914 TESTS::
915
916 sage: random_eja()
917 Euclidean Jordan algebra of dimension...
918
919 """
920 eja_classes = [HadamardEJA,
921 JordanSpinEJA,
922 RealSymmetricEJA,
923 ComplexHermitianEJA,
924 QuaternionHermitianEJA]
925 if not nontrivial:
926 eja_classes.append(TrivialEJA)
927 classname = choice(eja_classes)
928 return classname.random_instance(field=field)
929
930
931
932
933
934
935 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
936 @staticmethod
937 def _max_test_case_size():
938 # Play it safe, since this will be squared and the underlying
939 # field can have dimension 4 (quaternions) too.
940 return 2
941
942 def __init__(self, field, basis, normalize_basis=True, **kwargs):
943 """
944 Compared to the superclass constructor, we take a basis instead of
945 a multiplication table because the latter can be computed in terms
946 of the former when the product is known (like it is here).
947 """
948 # Used in this class's fast _charpoly_coefficients() override.
949 self._basis_normalizers = None
950
951 # We're going to loop through this a few times, so now's a good
952 # time to ensure that it isn't a generator expression.
953 basis = tuple(basis)
954
955 if len(basis) > 1 and normalize_basis:
956 # We'll need sqrt(2) to normalize the basis, and this
957 # winds up in the multiplication table, so the whole
958 # algebra needs to be over the field extension.
959 R = PolynomialRing(field, 'z')
960 z = R.gen()
961 p = z**2 - 2
962 if p.is_irreducible():
963 field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
964 basis = tuple( s.change_ring(field) for s in basis )
965 self._basis_normalizers = tuple(
966 ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
967 basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
968
969 Qs = self.multiplication_table_from_matrix_basis(basis)
970
971 fdeja = super(MatrixEuclideanJordanAlgebra, self)
972 fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
973 return
974
975
976 @cached_method
977 def _charpoly_coefficients(self):
978 r"""
979 Override the parent method with something that tries to compute
980 over a faster (non-extension) field.
981 """
982 if self._basis_normalizers is None:
983 # We didn't normalize, so assume that the basis we started
984 # with had entries in a nice field.
985 return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coefficients()
986 else:
987 basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
988 self._basis_normalizers) )
989
990 # Do this over the rationals and convert back at the end.
991 # Only works because we know the entries of the basis are
992 # integers.
993 J = MatrixEuclideanJordanAlgebra(QQ,
994 basis,
995 normalize_basis=False)
996 a = J._charpoly_coefficients()
997
998 # Unfortunately, changing the basis does change the
999 # coefficients of the characteristic polynomial, but since
1000 # these are really the coefficients of the "characteristic
1001 # polynomial of" function, everything is still nice and
1002 # unevaluated. It's therefore "obvious" how scaling the
1003 # basis affects the coordinate variables X1, X2, et
1004 # cetera. Scaling the first basis vector up by "n" adds a
1005 # factor of 1/n into every "X1" term, for example. So here
1006 # we simply undo the basis_normalizer scaling that we
1007 # performed earlier.
1008 #
1009 # TODO: make this access safe.
1010 XS = a[0].variables()
1011 subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i]
1012 for i in range(len(XS)) }
1013 return tuple( a_i.subs(subs_dict) for a_i in a )
1014
1015
1016 @staticmethod
1017 def multiplication_table_from_matrix_basis(basis):
1018 """
1019 At least three of the five simple Euclidean Jordan algebras have the
1020 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1021 multiplication on the right is matrix multiplication. Given a basis
1022 for the underlying matrix space, this function returns a
1023 multiplication table (obtained by looping through the basis
1024 elements) for an algebra of those matrices.
1025 """
1026 # In S^2, for example, we nominally have four coordinates even
1027 # though the space is of dimension three only. The vector space V
1028 # is supposed to hold the entire long vector, and the subspace W
1029 # of V will be spanned by the vectors that arise from symmetric
1030 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1031 field = basis[0].base_ring()
1032 dimension = basis[0].nrows()
1033
1034 V = VectorSpace(field, dimension**2)
1035 W = V.span_of_basis( _mat2vec(s) for s in basis )
1036 n = len(basis)
1037 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
1038 for i in range(n):
1039 for j in range(n):
1040 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
1041 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
1042
1043 return mult_table
1044
1045
1046 @staticmethod
1047 def real_embed(M):
1048 """
1049 Embed the matrix ``M`` into a space of real matrices.
1050
1051 The matrix ``M`` can have entries in any field at the moment:
1052 the real numbers, complex numbers, or quaternions. And although
1053 they are not a field, we can probably support octonions at some
1054 point, too. This function returns a real matrix that "acts like"
1055 the original with respect to matrix multiplication; i.e.
1056
1057 real_embed(M*N) = real_embed(M)*real_embed(N)
1058
1059 """
1060 raise NotImplementedError
1061
1062
1063 @staticmethod
1064 def real_unembed(M):
1065 """
1066 The inverse of :meth:`real_embed`.
1067 """
1068 raise NotImplementedError
1069
1070
1071 @classmethod
1072 def natural_inner_product(cls,X,Y):
1073 Xu = cls.real_unembed(X)
1074 Yu = cls.real_unembed(Y)
1075 tr = (Xu*Yu).trace()
1076
1077 if tr in RLF:
1078 # It's real already.
1079 return tr
1080
1081 # Otherwise, try the thing that works for complex numbers; and
1082 # if that doesn't work, the thing that works for quaternions.
1083 try:
1084 return tr.vector()[0] # real part, imag part is index 1
1085 except AttributeError:
1086 # A quaternions doesn't have a vector() method, but does
1087 # have coefficient_tuple() method that returns the
1088 # coefficients of 1, i, j, and k -- in that order.
1089 return tr.coefficient_tuple()[0]
1090
1091
1092 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1093 @staticmethod
1094 def real_embed(M):
1095 """
1096 The identity function, for embedding real matrices into real
1097 matrices.
1098 """
1099 return M
1100
1101 @staticmethod
1102 def real_unembed(M):
1103 """
1104 The identity function, for unembedding real matrices from real
1105 matrices.
1106 """
1107 return M
1108
1109
1110 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
1111 """
1112 The rank-n simple EJA consisting of real symmetric n-by-n
1113 matrices, the usual symmetric Jordan product, and the trace inner
1114 product. It has dimension `(n^2 + n)/2` over the reals.
1115
1116 SETUP::
1117
1118 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1119
1120 EXAMPLES::
1121
1122 sage: J = RealSymmetricEJA(2)
1123 sage: e0, e1, e2 = J.gens()
1124 sage: e0*e0
1125 e0
1126 sage: e1*e1
1127 1/2*e0 + 1/2*e2
1128 sage: e2*e2
1129 e2
1130
1131 In theory, our "field" can be any subfield of the reals::
1132
1133 sage: RealSymmetricEJA(2, RDF)
1134 Euclidean Jordan algebra of dimension 3 over Real Double Field
1135 sage: RealSymmetricEJA(2, RR)
1136 Euclidean Jordan algebra of dimension 3 over Real Field with
1137 53 bits of precision
1138
1139 TESTS:
1140
1141 The dimension of this algebra is `(n^2 + n) / 2`::
1142
1143 sage: set_random_seed()
1144 sage: n_max = RealSymmetricEJA._max_test_case_size()
1145 sage: n = ZZ.random_element(1, n_max)
1146 sage: J = RealSymmetricEJA(n)
1147 sage: J.dimension() == (n^2 + n)/2
1148 True
1149
1150 The Jordan multiplication is what we think it is::
1151
1152 sage: set_random_seed()
1153 sage: J = RealSymmetricEJA.random_instance()
1154 sage: x,y = J.random_elements(2)
1155 sage: actual = (x*y).natural_representation()
1156 sage: X = x.natural_representation()
1157 sage: Y = y.natural_representation()
1158 sage: expected = (X*Y + Y*X)/2
1159 sage: actual == expected
1160 True
1161 sage: J(expected) == x*y
1162 True
1163
1164 We can change the generator prefix::
1165
1166 sage: RealSymmetricEJA(3, prefix='q').gens()
1167 (q0, q1, q2, q3, q4, q5)
1168
1169 Our natural basis is normalized with respect to the natural inner
1170 product unless we specify otherwise::
1171
1172 sage: set_random_seed()
1173 sage: J = RealSymmetricEJA.random_instance()
1174 sage: all( b.norm() == 1 for b in J.gens() )
1175 True
1176
1177 Since our natural basis is normalized with respect to the natural
1178 inner product, and since we know that this algebra is an EJA, any
1179 left-multiplication operator's matrix will be symmetric because
1180 natural->EJA basis representation is an isometry and within the EJA
1181 the operator is self-adjoint by the Jordan axiom::
1182
1183 sage: set_random_seed()
1184 sage: x = RealSymmetricEJA.random_instance().random_element()
1185 sage: x.operator().matrix().is_symmetric()
1186 True
1187
1188 """
1189 @classmethod
1190 def _denormalized_basis(cls, n, field):
1191 """
1192 Return a basis for the space of real symmetric n-by-n matrices.
1193
1194 SETUP::
1195
1196 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1197
1198 TESTS::
1199
1200 sage: set_random_seed()
1201 sage: n = ZZ.random_element(1,5)
1202 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1203 sage: all( M.is_symmetric() for M in B)
1204 True
1205
1206 """
1207 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1208 # coordinates.
1209 S = []
1210 for i in range(n):
1211 for j in range(i+1):
1212 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1213 if i == j:
1214 Sij = Eij
1215 else:
1216 Sij = Eij + Eij.transpose()
1217 S.append(Sij)
1218 return S
1219
1220
1221 @staticmethod
1222 def _max_test_case_size():
1223 return 4 # Dimension 10
1224
1225
1226 def __init__(self, n, field=AA, **kwargs):
1227 basis = self._denormalized_basis(n, field)
1228 super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
1229 self.rank.set_cache(n)
1230
1231
1232 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1233 @staticmethod
1234 def real_embed(M):
1235 """
1236 Embed the n-by-n complex matrix ``M`` into the space of real
1237 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1238 bi` to the block matrix ``[[a,b],[-b,a]]``.
1239
1240 SETUP::
1241
1242 sage: from mjo.eja.eja_algebra import \
1243 ....: ComplexMatrixEuclideanJordanAlgebra
1244
1245 EXAMPLES::
1246
1247 sage: F = QuadraticField(-1, 'I')
1248 sage: x1 = F(4 - 2*i)
1249 sage: x2 = F(1 + 2*i)
1250 sage: x3 = F(-i)
1251 sage: x4 = F(6)
1252 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1253 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1254 [ 4 -2| 1 2]
1255 [ 2 4|-2 1]
1256 [-----+-----]
1257 [ 0 -1| 6 0]
1258 [ 1 0| 0 6]
1259
1260 TESTS:
1261
1262 Embedding is a homomorphism (isomorphism, in fact)::
1263
1264 sage: set_random_seed()
1265 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1266 sage: n = ZZ.random_element(n_max)
1267 sage: F = QuadraticField(-1, 'I')
1268 sage: X = random_matrix(F, n)
1269 sage: Y = random_matrix(F, n)
1270 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1271 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1272 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1273 sage: Xe*Ye == XYe
1274 True
1275
1276 """
1277 n = M.nrows()
1278 if M.ncols() != n:
1279 raise ValueError("the matrix 'M' must be square")
1280
1281 # We don't need any adjoined elements...
1282 field = M.base_ring().base_ring()
1283
1284 blocks = []
1285 for z in M.list():
1286 a = z.list()[0] # real part, I guess
1287 b = z.list()[1] # imag part, I guess
1288 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1289
1290 return matrix.block(field, n, blocks)
1291
1292
1293 @staticmethod
1294 def real_unembed(M):
1295 """
1296 The inverse of _embed_complex_matrix().
1297
1298 SETUP::
1299
1300 sage: from mjo.eja.eja_algebra import \
1301 ....: ComplexMatrixEuclideanJordanAlgebra
1302
1303 EXAMPLES::
1304
1305 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1306 ....: [-2, 1, -4, 3],
1307 ....: [ 9, 10, 11, 12],
1308 ....: [-10, 9, -12, 11] ])
1309 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1310 [ 2*I + 1 4*I + 3]
1311 [ 10*I + 9 12*I + 11]
1312
1313 TESTS:
1314
1315 Unembedding is the inverse of embedding::
1316
1317 sage: set_random_seed()
1318 sage: F = QuadraticField(-1, 'I')
1319 sage: M = random_matrix(F, 3)
1320 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1321 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1322 True
1323
1324 """
1325 n = ZZ(M.nrows())
1326 if M.ncols() != n:
1327 raise ValueError("the matrix 'M' must be square")
1328 if not n.mod(2).is_zero():
1329 raise ValueError("the matrix 'M' must be a complex embedding")
1330
1331 # If "M" was normalized, its base ring might have roots
1332 # adjoined and they can stick around after unembedding.
1333 field = M.base_ring()
1334 R = PolynomialRing(field, 'z')
1335 z = R.gen()
1336 if field is AA:
1337 # Sage doesn't know how to embed AA into QQbar, i.e. how
1338 # to adjoin sqrt(-1) to AA.
1339 F = QQbar
1340 else:
1341 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1342 i = F.gen()
1343
1344 # Go top-left to bottom-right (reading order), converting every
1345 # 2-by-2 block we see to a single complex element.
1346 elements = []
1347 for k in range(n/2):
1348 for j in range(n/2):
1349 submat = M[2*k:2*k+2,2*j:2*j+2]
1350 if submat[0,0] != submat[1,1]:
1351 raise ValueError('bad on-diagonal submatrix')
1352 if submat[0,1] != -submat[1,0]:
1353 raise ValueError('bad off-diagonal submatrix')
1354 z = submat[0,0] + submat[0,1]*i
1355 elements.append(z)
1356
1357 return matrix(F, n/2, elements)
1358
1359
1360 @classmethod
1361 def natural_inner_product(cls,X,Y):
1362 """
1363 Compute a natural inner product in this algebra directly from
1364 its real embedding.
1365
1366 SETUP::
1367
1368 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1369
1370 TESTS:
1371
1372 This gives the same answer as the slow, default method implemented
1373 in :class:`MatrixEuclideanJordanAlgebra`::
1374
1375 sage: set_random_seed()
1376 sage: J = ComplexHermitianEJA.random_instance()
1377 sage: x,y = J.random_elements(2)
1378 sage: Xe = x.natural_representation()
1379 sage: Ye = y.natural_representation()
1380 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1381 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1382 sage: expected = (X*Y).trace().real()
1383 sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
1384 sage: actual == expected
1385 True
1386
1387 """
1388 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
1389
1390
1391 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
1392 """
1393 The rank-n simple EJA consisting of complex Hermitian n-by-n
1394 matrices over the real numbers, the usual symmetric Jordan product,
1395 and the real-part-of-trace inner product. It has dimension `n^2` over
1396 the reals.
1397
1398 SETUP::
1399
1400 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1401
1402 EXAMPLES:
1403
1404 In theory, our "field" can be any subfield of the reals::
1405
1406 sage: ComplexHermitianEJA(2, RDF)
1407 Euclidean Jordan algebra of dimension 4 over Real Double Field
1408 sage: ComplexHermitianEJA(2, RR)
1409 Euclidean Jordan algebra of dimension 4 over Real Field with
1410 53 bits of precision
1411
1412 TESTS:
1413
1414 The dimension of this algebra is `n^2`::
1415
1416 sage: set_random_seed()
1417 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1418 sage: n = ZZ.random_element(1, n_max)
1419 sage: J = ComplexHermitianEJA(n)
1420 sage: J.dimension() == n^2
1421 True
1422
1423 The Jordan multiplication is what we think it is::
1424
1425 sage: set_random_seed()
1426 sage: J = ComplexHermitianEJA.random_instance()
1427 sage: x,y = J.random_elements(2)
1428 sage: actual = (x*y).natural_representation()
1429 sage: X = x.natural_representation()
1430 sage: Y = y.natural_representation()
1431 sage: expected = (X*Y + Y*X)/2
1432 sage: actual == expected
1433 True
1434 sage: J(expected) == x*y
1435 True
1436
1437 We can change the generator prefix::
1438
1439 sage: ComplexHermitianEJA(2, prefix='z').gens()
1440 (z0, z1, z2, z3)
1441
1442 Our natural basis is normalized with respect to the natural inner
1443 product unless we specify otherwise::
1444
1445 sage: set_random_seed()
1446 sage: J = ComplexHermitianEJA.random_instance()
1447 sage: all( b.norm() == 1 for b in J.gens() )
1448 True
1449
1450 Since our natural basis is normalized with respect to the natural
1451 inner product, and since we know that this algebra is an EJA, any
1452 left-multiplication operator's matrix will be symmetric because
1453 natural->EJA basis representation is an isometry and within the EJA
1454 the operator is self-adjoint by the Jordan axiom::
1455
1456 sage: set_random_seed()
1457 sage: x = ComplexHermitianEJA.random_instance().random_element()
1458 sage: x.operator().matrix().is_symmetric()
1459 True
1460
1461 """
1462
1463 @classmethod
1464 def _denormalized_basis(cls, n, field):
1465 """
1466 Returns a basis for the space of complex Hermitian n-by-n matrices.
1467
1468 Why do we embed these? Basically, because all of numerical linear
1469 algebra assumes that you're working with vectors consisting of `n`
1470 entries from a field and scalars from the same field. There's no way
1471 to tell SageMath that (for example) the vectors contain complex
1472 numbers, while the scalar field is real.
1473
1474 SETUP::
1475
1476 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1477
1478 TESTS::
1479
1480 sage: set_random_seed()
1481 sage: n = ZZ.random_element(1,5)
1482 sage: field = QuadraticField(2, 'sqrt2')
1483 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1484 sage: all( M.is_symmetric() for M in B)
1485 True
1486
1487 """
1488 R = PolynomialRing(field, 'z')
1489 z = R.gen()
1490 F = field.extension(z**2 + 1, 'I')
1491 I = F.gen()
1492
1493 # This is like the symmetric case, but we need to be careful:
1494 #
1495 # * We want conjugate-symmetry, not just symmetry.
1496 # * The diagonal will (as a result) be real.
1497 #
1498 S = []
1499 for i in range(n):
1500 for j in range(i+1):
1501 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1502 if i == j:
1503 Sij = cls.real_embed(Eij)
1504 S.append(Sij)
1505 else:
1506 # The second one has a minus because it's conjugated.
1507 Sij_real = cls.real_embed(Eij + Eij.transpose())
1508 S.append(Sij_real)
1509 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1510 S.append(Sij_imag)
1511
1512 # Since we embedded these, we can drop back to the "field" that we
1513 # started with instead of the complex extension "F".
1514 return ( s.change_ring(field) for s in S )
1515
1516
1517 def __init__(self, n, field=AA, **kwargs):
1518 basis = self._denormalized_basis(n,field)
1519 super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
1520 self.rank.set_cache(n)
1521
1522
1523 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1524 @staticmethod
1525 def real_embed(M):
1526 """
1527 Embed the n-by-n quaternion matrix ``M`` into the space of real
1528 matrices of size 4n-by-4n by first sending each quaternion entry `z
1529 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1530 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1531 matrix.
1532
1533 SETUP::
1534
1535 sage: from mjo.eja.eja_algebra import \
1536 ....: QuaternionMatrixEuclideanJordanAlgebra
1537
1538 EXAMPLES::
1539
1540 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1541 sage: i,j,k = Q.gens()
1542 sage: x = 1 + 2*i + 3*j + 4*k
1543 sage: M = matrix(Q, 1, [[x]])
1544 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1545 [ 1 2 3 4]
1546 [-2 1 -4 3]
1547 [-3 4 1 -2]
1548 [-4 -3 2 1]
1549
1550 Embedding is a homomorphism (isomorphism, in fact)::
1551
1552 sage: set_random_seed()
1553 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1554 sage: n = ZZ.random_element(n_max)
1555 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1556 sage: X = random_matrix(Q, n)
1557 sage: Y = random_matrix(Q, n)
1558 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1559 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1560 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1561 sage: Xe*Ye == XYe
1562 True
1563
1564 """
1565 quaternions = M.base_ring()
1566 n = M.nrows()
1567 if M.ncols() != n:
1568 raise ValueError("the matrix 'M' must be square")
1569
1570 F = QuadraticField(-1, 'I')
1571 i = F.gen()
1572
1573 blocks = []
1574 for z in M.list():
1575 t = z.coefficient_tuple()
1576 a = t[0]
1577 b = t[1]
1578 c = t[2]
1579 d = t[3]
1580 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1581 [-c + d*i, a - b*i]])
1582 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1583 blocks.append(realM)
1584
1585 # We should have real entries by now, so use the realest field
1586 # we've got for the return value.
1587 return matrix.block(quaternions.base_ring(), n, blocks)
1588
1589
1590
1591 @staticmethod
1592 def real_unembed(M):
1593 """
1594 The inverse of _embed_quaternion_matrix().
1595
1596 SETUP::
1597
1598 sage: from mjo.eja.eja_algebra import \
1599 ....: QuaternionMatrixEuclideanJordanAlgebra
1600
1601 EXAMPLES::
1602
1603 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1604 ....: [-2, 1, -4, 3],
1605 ....: [-3, 4, 1, -2],
1606 ....: [-4, -3, 2, 1]])
1607 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1608 [1 + 2*i + 3*j + 4*k]
1609
1610 TESTS:
1611
1612 Unembedding is the inverse of embedding::
1613
1614 sage: set_random_seed()
1615 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1616 sage: M = random_matrix(Q, 3)
1617 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1618 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1619 True
1620
1621 """
1622 n = ZZ(M.nrows())
1623 if M.ncols() != n:
1624 raise ValueError("the matrix 'M' must be square")
1625 if not n.mod(4).is_zero():
1626 raise ValueError("the matrix 'M' must be a quaternion embedding")
1627
1628 # Use the base ring of the matrix to ensure that its entries can be
1629 # multiplied by elements of the quaternion algebra.
1630 field = M.base_ring()
1631 Q = QuaternionAlgebra(field,-1,-1)
1632 i,j,k = Q.gens()
1633
1634 # Go top-left to bottom-right (reading order), converting every
1635 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1636 # quaternion block.
1637 elements = []
1638 for l in range(n/4):
1639 for m in range(n/4):
1640 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1641 M[4*l:4*l+4,4*m:4*m+4] )
1642 if submat[0,0] != submat[1,1].conjugate():
1643 raise ValueError('bad on-diagonal submatrix')
1644 if submat[0,1] != -submat[1,0].conjugate():
1645 raise ValueError('bad off-diagonal submatrix')
1646 z = submat[0,0].real()
1647 z += submat[0,0].imag()*i
1648 z += submat[0,1].real()*j
1649 z += submat[0,1].imag()*k
1650 elements.append(z)
1651
1652 return matrix(Q, n/4, elements)
1653
1654
1655 @classmethod
1656 def natural_inner_product(cls,X,Y):
1657 """
1658 Compute a natural inner product in this algebra directly from
1659 its real embedding.
1660
1661 SETUP::
1662
1663 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1664
1665 TESTS:
1666
1667 This gives the same answer as the slow, default method implemented
1668 in :class:`MatrixEuclideanJordanAlgebra`::
1669
1670 sage: set_random_seed()
1671 sage: J = QuaternionHermitianEJA.random_instance()
1672 sage: x,y = J.random_elements(2)
1673 sage: Xe = x.natural_representation()
1674 sage: Ye = y.natural_representation()
1675 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1676 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1677 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1678 sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
1679 sage: actual == expected
1680 True
1681
1682 """
1683 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
1684
1685
1686 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
1687 """
1688 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1689 matrices, the usual symmetric Jordan product, and the
1690 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1691 the reals.
1692
1693 SETUP::
1694
1695 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1696
1697 EXAMPLES:
1698
1699 In theory, our "field" can be any subfield of the reals::
1700
1701 sage: QuaternionHermitianEJA(2, RDF)
1702 Euclidean Jordan algebra of dimension 6 over Real Double Field
1703 sage: QuaternionHermitianEJA(2, RR)
1704 Euclidean Jordan algebra of dimension 6 over Real Field with
1705 53 bits of precision
1706
1707 TESTS:
1708
1709 The dimension of this algebra is `2*n^2 - n`::
1710
1711 sage: set_random_seed()
1712 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1713 sage: n = ZZ.random_element(1, n_max)
1714 sage: J = QuaternionHermitianEJA(n)
1715 sage: J.dimension() == 2*(n^2) - n
1716 True
1717
1718 The Jordan multiplication is what we think it is::
1719
1720 sage: set_random_seed()
1721 sage: J = QuaternionHermitianEJA.random_instance()
1722 sage: x,y = J.random_elements(2)
1723 sage: actual = (x*y).natural_representation()
1724 sage: X = x.natural_representation()
1725 sage: Y = y.natural_representation()
1726 sage: expected = (X*Y + Y*X)/2
1727 sage: actual == expected
1728 True
1729 sage: J(expected) == x*y
1730 True
1731
1732 We can change the generator prefix::
1733
1734 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1735 (a0, a1, a2, a3, a4, a5)
1736
1737 Our natural basis is normalized with respect to the natural inner
1738 product unless we specify otherwise::
1739
1740 sage: set_random_seed()
1741 sage: J = QuaternionHermitianEJA.random_instance()
1742 sage: all( b.norm() == 1 for b in J.gens() )
1743 True
1744
1745 Since our natural basis is normalized with respect to the natural
1746 inner product, and since we know that this algebra is an EJA, any
1747 left-multiplication operator's matrix will be symmetric because
1748 natural->EJA basis representation is an isometry and within the EJA
1749 the operator is self-adjoint by the Jordan axiom::
1750
1751 sage: set_random_seed()
1752 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1753 sage: x.operator().matrix().is_symmetric()
1754 True
1755
1756 """
1757 @classmethod
1758 def _denormalized_basis(cls, n, field):
1759 """
1760 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1761
1762 Why do we embed these? Basically, because all of numerical
1763 linear algebra assumes that you're working with vectors consisting
1764 of `n` entries from a field and scalars from the same field. There's
1765 no way to tell SageMath that (for example) the vectors contain
1766 complex numbers, while the scalar field is real.
1767
1768 SETUP::
1769
1770 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1771
1772 TESTS::
1773
1774 sage: set_random_seed()
1775 sage: n = ZZ.random_element(1,5)
1776 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1777 sage: all( M.is_symmetric() for M in B )
1778 True
1779
1780 """
1781 Q = QuaternionAlgebra(QQ,-1,-1)
1782 I,J,K = Q.gens()
1783
1784 # This is like the symmetric case, but we need to be careful:
1785 #
1786 # * We want conjugate-symmetry, not just symmetry.
1787 # * The diagonal will (as a result) be real.
1788 #
1789 S = []
1790 for i in range(n):
1791 for j in range(i+1):
1792 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1793 if i == j:
1794 Sij = cls.real_embed(Eij)
1795 S.append(Sij)
1796 else:
1797 # The second, third, and fourth ones have a minus
1798 # because they're conjugated.
1799 Sij_real = cls.real_embed(Eij + Eij.transpose())
1800 S.append(Sij_real)
1801 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1802 S.append(Sij_I)
1803 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1804 S.append(Sij_J)
1805 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
1806 S.append(Sij_K)
1807
1808 # Since we embedded these, we can drop back to the "field" that we
1809 # started with instead of the quaternion algebra "Q".
1810 return ( s.change_ring(field) for s in S )
1811
1812
1813 def __init__(self, n, field=AA, **kwargs):
1814 basis = self._denormalized_basis(n,field)
1815 super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
1816 self.rank.set_cache(n)
1817
1818
1819 class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
1820 r"""
1821 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1822 with the half-trace inner product and jordan product ``x*y =
1823 (x0*y0 + <B*x_bar,y_bar>, x0*y_bar + y0*x_bar)`` where ``B`` is a
1824 symmetric positive-definite "bilinear form" matrix. It has
1825 dimension `n` over the reals, and reduces to the ``JordanSpinEJA``
1826 when ``B`` is the identity matrix of order ``n-1``.
1827
1828 SETUP::
1829
1830 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1831 ....: JordanSpinEJA)
1832
1833 EXAMPLES:
1834
1835 When no bilinear form is specified, the identity matrix is used,
1836 and the resulting algebra is the Jordan spin algebra::
1837
1838 sage: J0 = BilinearFormEJA(3)
1839 sage: J1 = JordanSpinEJA(3)
1840 sage: J0.multiplication_table() == J0.multiplication_table()
1841 True
1842
1843 TESTS:
1844
1845 We can create a zero-dimensional algebra::
1846
1847 sage: J = BilinearFormEJA(0)
1848 sage: J.basis()
1849 Finite family {}
1850
1851 We can check the multiplication condition given in the Jordan, von
1852 Neumann, and Wigner paper (and also discussed on my "On the
1853 symmetry..." paper). Note that this relies heavily on the standard
1854 choice of basis, as does anything utilizing the bilinear form matrix::
1855
1856 sage: set_random_seed()
1857 sage: n = ZZ.random_element(5)
1858 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
1859 sage: B = M.transpose()*M
1860 sage: J = BilinearFormEJA(n, B=B)
1861 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
1862 sage: V = J.vector_space()
1863 sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
1864 ....: for ei in eis ]
1865 sage: actual = [ sis[i]*sis[j]
1866 ....: for i in range(n-1)
1867 ....: for j in range(n-1) ]
1868 sage: expected = [ J.one() if i == j else J.zero()
1869 ....: for i in range(n-1)
1870 ....: for j in range(n-1) ]
1871 sage: actual == expected
1872 True
1873 """
1874 def __init__(self, n, field=AA, B=None, **kwargs):
1875 if B is None:
1876 self._B = matrix.identity(field, max(0,n-1))
1877 else:
1878 self._B = B
1879
1880 V = VectorSpace(field, n)
1881 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
1882 for i in range(n):
1883 for j in range(n):
1884 x = V.gen(i)
1885 y = V.gen(j)
1886 x0 = x[0]
1887 xbar = x[1:]
1888 y0 = y[0]
1889 ybar = y[1:]
1890 z0 = x0*y0 + (self._B*xbar).inner_product(ybar)
1891 zbar = y0*xbar + x0*ybar
1892 z = V([z0] + zbar.list())
1893 mult_table[i][j] = z
1894
1895 # The rank of this algebra is two, unless we're in a
1896 # one-dimensional ambient space (because the rank is bounded
1897 # by the ambient dimension).
1898 fdeja = super(BilinearFormEJA, self)
1899 fdeja.__init__(field, mult_table, **kwargs)
1900 self.rank.set_cache(min(n,2))
1901
1902 def inner_product(self, x, y):
1903 r"""
1904 Half of the trace inner product.
1905
1906 This is defined so that the special case of the Jordan spin
1907 algebra gets the usual inner product.
1908
1909 SETUP::
1910
1911 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1912
1913 TESTS:
1914
1915 Ensure that this is one-half of the trace inner-product when
1916 the algebra isn't just the reals (when ``n`` isn't one). This
1917 is in Faraut and Koranyi, and also my "On the symmetry..."
1918 paper::
1919
1920 sage: set_random_seed()
1921 sage: n = ZZ.random_element(2,5)
1922 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
1923 sage: B = M.transpose()*M
1924 sage: J = BilinearFormEJA(n, B=B)
1925 sage: x = J.random_element()
1926 sage: y = J.random_element()
1927 sage: x.inner_product(y) == (x*y).trace()/2
1928 True
1929
1930 """
1931 xvec = x.to_vector()
1932 xbar = xvec[1:]
1933 yvec = y.to_vector()
1934 ybar = yvec[1:]
1935 return x[0]*y[0] + (self._B*xbar).inner_product(ybar)
1936
1937
1938 class JordanSpinEJA(BilinearFormEJA):
1939 """
1940 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1941 with the usual inner product and jordan product ``x*y =
1942 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1943 the reals.
1944
1945 SETUP::
1946
1947 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1948
1949 EXAMPLES:
1950
1951 This multiplication table can be verified by hand::
1952
1953 sage: J = JordanSpinEJA(4)
1954 sage: e0,e1,e2,e3 = J.gens()
1955 sage: e0*e0
1956 e0
1957 sage: e0*e1
1958 e1
1959 sage: e0*e2
1960 e2
1961 sage: e0*e3
1962 e3
1963 sage: e1*e2
1964 0
1965 sage: e1*e3
1966 0
1967 sage: e2*e3
1968 0
1969
1970 We can change the generator prefix::
1971
1972 sage: JordanSpinEJA(2, prefix='B').gens()
1973 (B0, B1)
1974
1975 TESTS:
1976
1977 Ensure that we have the usual inner product on `R^n`::
1978
1979 sage: set_random_seed()
1980 sage: J = JordanSpinEJA.random_instance()
1981 sage: x,y = J.random_elements(2)
1982 sage: X = x.natural_representation()
1983 sage: Y = y.natural_representation()
1984 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
1985 True
1986
1987 """
1988 def __init__(self, n, field=AA, **kwargs):
1989 # This is a special case of the BilinearFormEJA with the identity
1990 # matrix as its bilinear form.
1991 return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
1992
1993
1994 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
1995 """
1996 The trivial Euclidean Jordan algebra consisting of only a zero element.
1997
1998 SETUP::
1999
2000 sage: from mjo.eja.eja_algebra import TrivialEJA
2001
2002 EXAMPLES::
2003
2004 sage: J = TrivialEJA()
2005 sage: J.dimension()
2006 0
2007 sage: J.zero()
2008 0
2009 sage: J.one()
2010 0
2011 sage: 7*J.one()*12*J.one()
2012 0
2013 sage: J.one().inner_product(J.one())
2014 0
2015 sage: J.one().norm()
2016 0
2017 sage: J.one().subalgebra_generated_by()
2018 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2019 sage: J.rank()
2020 0
2021
2022 """
2023 def __init__(self, field=AA, **kwargs):
2024 mult_table = []
2025 fdeja = super(TrivialEJA, self)
2026 # The rank is zero using my definition, namely the dimension of the
2027 # largest subalgebra generated by any element.
2028 fdeja.__init__(field, mult_table, **kwargs)
2029 self.rank.set_cache(0)