]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: make random_element() more random.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from itertools import repeat
9
10 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
11 from sage.categories.magmatic_algebras import MagmaticAlgebras
12 from sage.combinat.free_module import CombinatorialFreeModule
13 from sage.matrix.constructor import matrix
14 from sage.matrix.matrix_space import MatrixSpace
15 from sage.misc.cachefunc import cached_method
16 from sage.misc.lazy_import import lazy_import
17 from sage.misc.prandom import choice
18 from sage.misc.table import table
19 from sage.modules.free_module import FreeModule, VectorSpace
20 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
21 PolynomialRing,
22 QuadraticField)
23 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
24 lazy_import('mjo.eja.eja_subalgebra',
25 'FiniteDimensionalEuclideanJordanSubalgebra')
26 from mjo.eja.eja_utils import _mat2vec
27
28 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
29
30 def _coerce_map_from_base_ring(self):
31 """
32 Disable the map from the base ring into the algebra.
33
34 Performing a nonsense conversion like this automatically
35 is counterpedagogical. The fallback is to try the usual
36 element constructor, which should also fail.
37
38 SETUP::
39
40 sage: from mjo.eja.eja_algebra import random_eja
41
42 TESTS::
43
44 sage: set_random_seed()
45 sage: J = random_eja()
46 sage: J(1)
47 Traceback (most recent call last):
48 ...
49 ValueError: not a naturally-represented algebra element
50
51 """
52 return None
53
54 def __init__(self,
55 field,
56 mult_table,
57 prefix='e',
58 category=None,
59 natural_basis=None,
60 check=True):
61 """
62 SETUP::
63
64 sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja)
65
66 EXAMPLES:
67
68 By definition, Jordan multiplication commutes::
69
70 sage: set_random_seed()
71 sage: J = random_eja()
72 sage: x,y = J.random_elements(2)
73 sage: x*y == y*x
74 True
75
76 TESTS:
77
78 The ``field`` we're given must be real::
79
80 sage: JordanSpinEJA(2,QQbar)
81 Traceback (most recent call last):
82 ...
83 ValueError: field is not real
84
85 """
86 if check:
87 if not field.is_subring(RR):
88 # Note: this does return true for the real algebraic
89 # field, and any quadratic field where we've specified
90 # a real embedding.
91 raise ValueError('field is not real')
92
93 self._natural_basis = natural_basis
94
95 if category is None:
96 category = MagmaticAlgebras(field).FiniteDimensional()
97 category = category.WithBasis().Unital()
98
99 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
100 fda.__init__(field,
101 range(len(mult_table)),
102 prefix=prefix,
103 category=category)
104 self.print_options(bracket='')
105
106 # The multiplication table we're given is necessarily in terms
107 # of vectors, because we don't have an algebra yet for
108 # anything to be an element of. However, it's faster in the
109 # long run to have the multiplication table be in terms of
110 # algebra elements. We do this after calling the superclass
111 # constructor so that from_vector() knows what to do.
112 self._multiplication_table = [
113 list(map(lambda x: self.from_vector(x), ls))
114 for ls in mult_table
115 ]
116
117
118 def _element_constructor_(self, elt):
119 """
120 Construct an element of this algebra from its natural
121 representation.
122
123 This gets called only after the parent element _call_ method
124 fails to find a coercion for the argument.
125
126 SETUP::
127
128 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
129 ....: HadamardEJA,
130 ....: RealSymmetricEJA)
131
132 EXAMPLES:
133
134 The identity in `S^n` is converted to the identity in the EJA::
135
136 sage: J = RealSymmetricEJA(3)
137 sage: I = matrix.identity(QQ,3)
138 sage: J(I) == J.one()
139 True
140
141 This skew-symmetric matrix can't be represented in the EJA::
142
143 sage: J = RealSymmetricEJA(3)
144 sage: A = matrix(QQ,3, lambda i,j: i-j)
145 sage: J(A)
146 Traceback (most recent call last):
147 ...
148 ArithmeticError: vector is not in free module
149
150 TESTS:
151
152 Ensure that we can convert any element of the two non-matrix
153 simple algebras (whose natural representations are their usual
154 vector representations) back and forth faithfully::
155
156 sage: set_random_seed()
157 sage: J = HadamardEJA.random_instance()
158 sage: x = J.random_element()
159 sage: J(x.to_vector().column()) == x
160 True
161 sage: J = JordanSpinEJA.random_instance()
162 sage: x = J.random_element()
163 sage: J(x.to_vector().column()) == x
164 True
165
166 """
167 msg = "not a naturally-represented algebra element"
168 if elt == 0:
169 # The superclass implementation of random_element()
170 # needs to be able to coerce "0" into the algebra.
171 return self.zero()
172 elif elt in self.base_ring():
173 # Ensure that no base ring -> algebra coercion is performed
174 # by this method. There's some stupidity in sage that would
175 # otherwise propagate to this method; for example, sage thinks
176 # that the integer 3 belongs to the space of 2-by-2 matrices.
177 raise ValueError(msg)
178
179 natural_basis = self.natural_basis()
180 basis_space = natural_basis[0].matrix_space()
181 if elt not in basis_space:
182 raise ValueError(msg)
183
184 # Thanks for nothing! Matrix spaces aren't vector spaces in
185 # Sage, so we have to figure out its natural-basis coordinates
186 # ourselves. We use the basis space's ring instead of the
187 # element's ring because the basis space might be an algebraic
188 # closure whereas the base ring of the 3-by-3 identity matrix
189 # could be QQ instead of QQbar.
190 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
191 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
192 coords = W.coordinate_vector(_mat2vec(elt))
193 return self.from_vector(coords)
194
195 @staticmethod
196 def _max_test_case_size():
197 """
198 Return an integer "size" that is an upper bound on the size of
199 this algebra when it is used in a random test
200 case. Unfortunately, the term "size" is quite vague -- when
201 dealing with `R^n` under either the Hadamard or Jordan spin
202 product, the "size" refers to the dimension `n`. When dealing
203 with a matrix algebra (real symmetric or complex/quaternion
204 Hermitian), it refers to the size of the matrix, which is
205 far less than the dimension of the underlying vector space.
206
207 We default to five in this class, which is safe in `R^n`. The
208 matrix algebra subclasses (or any class where the "size" is
209 interpreted to be far less than the dimension) should override
210 with a smaller number.
211 """
212 return 5
213
214 def _repr_(self):
215 """
216 Return a string representation of ``self``.
217
218 SETUP::
219
220 sage: from mjo.eja.eja_algebra import JordanSpinEJA
221
222 TESTS:
223
224 Ensure that it says what we think it says::
225
226 sage: JordanSpinEJA(2, field=AA)
227 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
228 sage: JordanSpinEJA(3, field=RDF)
229 Euclidean Jordan algebra of dimension 3 over Real Double Field
230
231 """
232 fmt = "Euclidean Jordan algebra of dimension {} over {}"
233 return fmt.format(self.dimension(), self.base_ring())
234
235 def product_on_basis(self, i, j):
236 return self._multiplication_table[i][j]
237
238 @cached_method
239 def characteristic_polynomial_of(self):
240 """
241 Return the algebra's "characteristic polynomial of" function,
242 which is itself a multivariate polynomial that, when evaluated
243 at the coordinates of some algebra element, returns that
244 element's characteristic polynomial.
245
246 The resulting polynomial has `n+1` variables, where `n` is the
247 dimension of this algebra. The first `n` variables correspond to
248 the coordinates of an algebra element: when evaluated at the
249 coordinates of an algebra element with respect to a certain
250 basis, the result is a univariate polynomial (in the one
251 remaining variable ``t``), namely the characteristic polynomial
252 of that element.
253
254 SETUP::
255
256 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
257
258 EXAMPLES:
259
260 The characteristic polynomial in the spin algebra is given in
261 Alizadeh, Example 11.11::
262
263 sage: J = JordanSpinEJA(3)
264 sage: p = J.characteristic_polynomial_of(); p
265 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
266 sage: xvec = J.one().to_vector()
267 sage: p(*xvec)
268 t^2 - 2*t + 1
269
270 By definition, the characteristic polynomial is a monic
271 degree-zero polynomial in a rank-zero algebra. Note that
272 Cayley-Hamilton is indeed satisfied since the polynomial
273 ``1`` evaluates to the identity element of the algebra on
274 any argument::
275
276 sage: J = TrivialEJA()
277 sage: J.characteristic_polynomial_of()
278 1
279
280 """
281 r = self.rank()
282 n = self.dimension()
283
284 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
285 a = self._charpoly_coefficients()
286
287 # We go to a bit of trouble here to reorder the
288 # indeterminates, so that it's easier to evaluate the
289 # characteristic polynomial at x's coordinates and get back
290 # something in terms of t, which is what we want.
291 S = PolynomialRing(self.base_ring(),'t')
292 t = S.gen(0)
293 if r > 0:
294 R = a[0].parent()
295 S = PolynomialRing(S, R.variable_names())
296 t = S(t)
297
298 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
299
300
301 def inner_product(self, x, y):
302 """
303 The inner product associated with this Euclidean Jordan algebra.
304
305 Defaults to the trace inner product, but can be overridden by
306 subclasses if they are sure that the necessary properties are
307 satisfied.
308
309 SETUP::
310
311 sage: from mjo.eja.eja_algebra import random_eja
312
313 EXAMPLES:
314
315 Our inner product is "associative," which means the following for
316 a symmetric bilinear form::
317
318 sage: set_random_seed()
319 sage: J = random_eja()
320 sage: x,y,z = J.random_elements(3)
321 sage: (x*y).inner_product(z) == y.inner_product(x*z)
322 True
323
324 """
325 X = x.natural_representation()
326 Y = y.natural_representation()
327 return self.natural_inner_product(X,Y)
328
329
330 def is_trivial(self):
331 """
332 Return whether or not this algebra is trivial.
333
334 A trivial algebra contains only the zero element.
335
336 SETUP::
337
338 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
339 ....: TrivialEJA)
340
341 EXAMPLES::
342
343 sage: J = ComplexHermitianEJA(3)
344 sage: J.is_trivial()
345 False
346
347 ::
348
349 sage: J = TrivialEJA()
350 sage: J.is_trivial()
351 True
352
353 """
354 return self.dimension() == 0
355
356
357 def multiplication_table(self):
358 """
359 Return a visual representation of this algebra's multiplication
360 table (on basis elements).
361
362 SETUP::
363
364 sage: from mjo.eja.eja_algebra import JordanSpinEJA
365
366 EXAMPLES::
367
368 sage: J = JordanSpinEJA(4)
369 sage: J.multiplication_table()
370 +----++----+----+----+----+
371 | * || e0 | e1 | e2 | e3 |
372 +====++====+====+====+====+
373 | e0 || e0 | e1 | e2 | e3 |
374 +----++----+----+----+----+
375 | e1 || e1 | e0 | 0 | 0 |
376 +----++----+----+----+----+
377 | e2 || e2 | 0 | e0 | 0 |
378 +----++----+----+----+----+
379 | e3 || e3 | 0 | 0 | e0 |
380 +----++----+----+----+----+
381
382 """
383 M = list(self._multiplication_table) # copy
384 for i in range(len(M)):
385 # M had better be "square"
386 M[i] = [self.monomial(i)] + M[i]
387 M = [["*"] + list(self.gens())] + M
388 return table(M, header_row=True, header_column=True, frame=True)
389
390
391 def natural_basis(self):
392 """
393 Return a more-natural representation of this algebra's basis.
394
395 Every finite-dimensional Euclidean Jordan Algebra is a direct
396 sum of five simple algebras, four of which comprise Hermitian
397 matrices. This method returns the original "natural" basis
398 for our underlying vector space. (Typically, the natural basis
399 is used to construct the multiplication table in the first place.)
400
401 Note that this will always return a matrix. The standard basis
402 in `R^n` will be returned as `n`-by-`1` column matrices.
403
404 SETUP::
405
406 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
407 ....: RealSymmetricEJA)
408
409 EXAMPLES::
410
411 sage: J = RealSymmetricEJA(2)
412 sage: J.basis()
413 Finite family {0: e0, 1: e1, 2: e2}
414 sage: J.natural_basis()
415 (
416 [1 0] [ 0 0.7071067811865475?] [0 0]
417 [0 0], [0.7071067811865475? 0], [0 1]
418 )
419
420 ::
421
422 sage: J = JordanSpinEJA(2)
423 sage: J.basis()
424 Finite family {0: e0, 1: e1}
425 sage: J.natural_basis()
426 (
427 [1] [0]
428 [0], [1]
429 )
430
431 """
432 if self._natural_basis is None:
433 M = self.natural_basis_space()
434 return tuple( M(b.to_vector()) for b in self.basis() )
435 else:
436 return self._natural_basis
437
438
439 def natural_basis_space(self):
440 """
441 Return the matrix space in which this algebra's natural basis
442 elements live.
443
444 Generally this will be an `n`-by-`1` column-vector space,
445 except when the algebra is trivial. There it's `n`-by-`n`
446 (where `n` is zero), to ensure that two elements of the
447 natural basis space (empty matrices) can be multiplied.
448 """
449 if self.is_trivial():
450 return MatrixSpace(self.base_ring(), 0)
451 elif self._natural_basis is None or len(self._natural_basis) == 0:
452 return MatrixSpace(self.base_ring(), self.dimension(), 1)
453 else:
454 return self._natural_basis[0].matrix_space()
455
456
457 @staticmethod
458 def natural_inner_product(X,Y):
459 """
460 Compute the inner product of two naturally-represented elements.
461
462 For example in the real symmetric matrix EJA, this will compute
463 the trace inner-product of two n-by-n symmetric matrices. The
464 default should work for the real cartesian product EJA, the
465 Jordan spin EJA, and the real symmetric matrices. The others
466 will have to be overridden.
467 """
468 return (X.conjugate_transpose()*Y).trace()
469
470
471 @cached_method
472 def one(self):
473 """
474 Return the unit element of this algebra.
475
476 SETUP::
477
478 sage: from mjo.eja.eja_algebra import (HadamardEJA,
479 ....: random_eja)
480
481 EXAMPLES::
482
483 sage: J = HadamardEJA(5)
484 sage: J.one()
485 e0 + e1 + e2 + e3 + e4
486
487 TESTS:
488
489 The identity element acts like the identity::
490
491 sage: set_random_seed()
492 sage: J = random_eja()
493 sage: x = J.random_element()
494 sage: J.one()*x == x and x*J.one() == x
495 True
496
497 The matrix of the unit element's operator is the identity::
498
499 sage: set_random_seed()
500 sage: J = random_eja()
501 sage: actual = J.one().operator().matrix()
502 sage: expected = matrix.identity(J.base_ring(), J.dimension())
503 sage: actual == expected
504 True
505
506 """
507 # We can brute-force compute the matrices of the operators
508 # that correspond to the basis elements of this algebra.
509 # If some linear combination of those basis elements is the
510 # algebra identity, then the same linear combination of
511 # their matrices has to be the identity matrix.
512 #
513 # Of course, matrices aren't vectors in sage, so we have to
514 # appeal to the "long vectors" isometry.
515 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
516
517 # Now we use basis linear algebra to find the coefficients,
518 # of the matrices-as-vectors-linear-combination, which should
519 # work for the original algebra basis too.
520 A = matrix.column(self.base_ring(), oper_vecs)
521
522 # We used the isometry on the left-hand side already, but we
523 # still need to do it for the right-hand side. Recall that we
524 # wanted something that summed to the identity matrix.
525 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
526
527 # Now if there's an identity element in the algebra, this should work.
528 coeffs = A.solve_right(b)
529 return self.linear_combination(zip(self.gens(), coeffs))
530
531
532 def peirce_decomposition(self, c):
533 """
534 The Peirce decomposition of this algebra relative to the
535 idempotent ``c``.
536
537 In the future, this can be extended to a complete system of
538 orthogonal idempotents.
539
540 INPUT:
541
542 - ``c`` -- an idempotent of this algebra.
543
544 OUTPUT:
545
546 A triple (J0, J5, J1) containing two subalgebras and one subspace
547 of this algebra,
548
549 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
550 corresponding to the eigenvalue zero.
551
552 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
553 corresponding to the eigenvalue one-half.
554
555 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
556 corresponding to the eigenvalue one.
557
558 These are the only possible eigenspaces for that operator, and this
559 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
560 orthogonal, and are subalgebras of this algebra with the appropriate
561 restrictions.
562
563 SETUP::
564
565 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
566
567 EXAMPLES:
568
569 The canonical example comes from the symmetric matrices, which
570 decompose into diagonal and off-diagonal parts::
571
572 sage: J = RealSymmetricEJA(3)
573 sage: C = matrix(QQ, [ [1,0,0],
574 ....: [0,1,0],
575 ....: [0,0,0] ])
576 sage: c = J(C)
577 sage: J0,J5,J1 = J.peirce_decomposition(c)
578 sage: J0
579 Euclidean Jordan algebra of dimension 1...
580 sage: J5
581 Vector space of degree 6 and dimension 2...
582 sage: J1
583 Euclidean Jordan algebra of dimension 3...
584 sage: J0.one().natural_representation()
585 [0 0 0]
586 [0 0 0]
587 [0 0 1]
588 sage: orig_df = AA.options.display_format
589 sage: AA.options.display_format = 'radical'
590 sage: J.from_vector(J5.basis()[0]).natural_representation()
591 [ 0 0 1/2*sqrt(2)]
592 [ 0 0 0]
593 [1/2*sqrt(2) 0 0]
594 sage: J.from_vector(J5.basis()[1]).natural_representation()
595 [ 0 0 0]
596 [ 0 0 1/2*sqrt(2)]
597 [ 0 1/2*sqrt(2) 0]
598 sage: AA.options.display_format = orig_df
599 sage: J1.one().natural_representation()
600 [1 0 0]
601 [0 1 0]
602 [0 0 0]
603
604 TESTS:
605
606 Every algebra decomposes trivially with respect to its identity
607 element::
608
609 sage: set_random_seed()
610 sage: J = random_eja()
611 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
612 sage: J0.dimension() == 0 and J5.dimension() == 0
613 True
614 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
615 True
616
617 The decomposition is into eigenspaces, and its components are
618 therefore necessarily orthogonal. Moreover, the identity
619 elements in the two subalgebras are the projections onto their
620 respective subspaces of the superalgebra's identity element::
621
622 sage: set_random_seed()
623 sage: J = random_eja()
624 sage: x = J.random_element()
625 sage: if not J.is_trivial():
626 ....: while x.is_nilpotent():
627 ....: x = J.random_element()
628 sage: c = x.subalgebra_idempotent()
629 sage: J0,J5,J1 = J.peirce_decomposition(c)
630 sage: ipsum = 0
631 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
632 ....: w = w.superalgebra_element()
633 ....: y = J.from_vector(y)
634 ....: z = z.superalgebra_element()
635 ....: ipsum += w.inner_product(y).abs()
636 ....: ipsum += w.inner_product(z).abs()
637 ....: ipsum += y.inner_product(z).abs()
638 sage: ipsum
639 0
640 sage: J1(c) == J1.one()
641 True
642 sage: J0(J.one() - c) == J0.one()
643 True
644
645 """
646 if not c.is_idempotent():
647 raise ValueError("element is not idempotent: %s" % c)
648
649 # Default these to what they should be if they turn out to be
650 # trivial, because eigenspaces_left() won't return eigenvalues
651 # corresponding to trivial spaces (e.g. it returns only the
652 # eigenspace corresponding to lambda=1 if you take the
653 # decomposition relative to the identity element).
654 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
655 J0 = trivial # eigenvalue zero
656 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
657 J1 = trivial # eigenvalue one
658
659 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
660 if eigval == ~(self.base_ring()(2)):
661 J5 = eigspace
662 else:
663 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
664 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens)
665 if eigval == 0:
666 J0 = subalg
667 elif eigval == 1:
668 J1 = subalg
669 else:
670 raise ValueError("unexpected eigenvalue: %s" % eigval)
671
672 return (J0, J5, J1)
673
674
675 def random_element(self, thorough=False):
676 r"""
677 Return a random element of this algebra.
678
679 Our algebra superclass method only returns a linear
680 combination of at most two basis elements. We instead
681 want the vector space "random element" method that
682 returns a more diverse selection.
683
684 INPUT:
685
686 - ``thorough`` -- (boolean; default False) whether or not we
687 should generate irrational coefficients for the random
688 element when our base ring is irrational; this slows the
689 algebra operations to a crawl, but any truly random method
690 should include them
691
692 """
693 # For a general base ring... maybe we can trust this to do the
694 # right thing? Unlikely, but.
695 V = self.vector_space()
696 v = V.random_element()
697
698 if self.base_ring() is AA:
699 # The "random element" method of the algebraic reals is
700 # stupid at the moment, and only returns integers between
701 # -2 and 2, inclusive. Instead, we implement our own
702 # "random vector" method, and then coerce that into the
703 # algebra. We use the vector space degree here instead of
704 # the dimension because a subalgebra could (for example) be
705 # spanned by only two vectors, each with five coordinates.
706 # We need to generate all five coordinates.
707 if thorough:
708 v *= QQbar.random_element().real()
709 else:
710 v *= QQ.random_element()
711
712 return self.from_vector(V.coordinate_vector(v))
713
714 def random_elements(self, count, thorough=False):
715 """
716 Return ``count`` random elements as a tuple.
717
718 INPUT:
719
720 - ``thorough`` -- (boolean; default False) whether or not we
721 should generate irrational coefficients for the random
722 elements when our base ring is irrational; this slows the
723 algebra operations to a crawl, but any truly random method
724 should include them
725
726 SETUP::
727
728 sage: from mjo.eja.eja_algebra import JordanSpinEJA
729
730 EXAMPLES::
731
732 sage: J = JordanSpinEJA(3)
733 sage: x,y,z = J.random_elements(3)
734 sage: all( [ x in J, y in J, z in J ])
735 True
736 sage: len( J.random_elements(10) ) == 10
737 True
738
739 """
740 return tuple( self.random_element(thorough)
741 for idx in range(count) )
742
743 @classmethod
744 def random_instance(cls, field=AA, **kwargs):
745 """
746 Return a random instance of this type of algebra.
747
748 Beware, this will crash for "most instances" because the
749 constructor below looks wrong.
750 """
751 if cls is TrivialEJA:
752 # The TrivialEJA class doesn't take an "n" argument because
753 # there's only one.
754 return cls(field)
755
756 n = ZZ.random_element(cls._max_test_case_size() + 1)
757 return cls(n, field, **kwargs)
758
759 @cached_method
760 def _charpoly_coefficients(self):
761 r"""
762 The `r` polynomial coefficients of the "characteristic polynomial
763 of" function.
764 """
765 n = self.dimension()
766 var_names = [ "X" + str(z) for z in range(1,n+1) ]
767 R = PolynomialRing(self.base_ring(), var_names)
768 vars = R.gens()
769 F = R.fraction_field()
770
771 def L_x_i_j(i,j):
772 # From a result in my book, these are the entries of the
773 # basis representation of L_x.
774 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
775 for k in range(n) )
776
777 L_x = matrix(F, n, n, L_x_i_j)
778
779 r = None
780 if self.rank.is_in_cache():
781 r = self.rank()
782 # There's no need to pad the system with redundant
783 # columns if we *know* they'll be redundant.
784 n = r
785
786 # Compute an extra power in case the rank is equal to
787 # the dimension (otherwise, we would stop at x^(r-1)).
788 x_powers = [ (L_x**k)*self.one().to_vector()
789 for k in range(n+1) ]
790 A = matrix.column(F, x_powers[:n])
791 AE = A.extended_echelon_form()
792 E = AE[:,n:]
793 A_rref = AE[:,:n]
794 if r is None:
795 r = A_rref.rank()
796 b = x_powers[r]
797
798 # The theory says that only the first "r" coefficients are
799 # nonzero, and they actually live in the original polynomial
800 # ring and not the fraction field. We negate them because
801 # in the actual characteristic polynomial, they get moved
802 # to the other side where x^r lives.
803 return -A_rref.solve_right(E*b).change_ring(R)[:r]
804
805 @cached_method
806 def rank(self):
807 r"""
808 Return the rank of this EJA.
809
810 This is a cached method because we know the rank a priori for
811 all of the algebras we can construct. Thus we can avoid the
812 expensive ``_charpoly_coefficients()`` call unless we truly
813 need to compute the whole characteristic polynomial.
814
815 SETUP::
816
817 sage: from mjo.eja.eja_algebra import (HadamardEJA,
818 ....: JordanSpinEJA,
819 ....: RealSymmetricEJA,
820 ....: ComplexHermitianEJA,
821 ....: QuaternionHermitianEJA,
822 ....: random_eja)
823
824 EXAMPLES:
825
826 The rank of the Jordan spin algebra is always two::
827
828 sage: JordanSpinEJA(2).rank()
829 2
830 sage: JordanSpinEJA(3).rank()
831 2
832 sage: JordanSpinEJA(4).rank()
833 2
834
835 The rank of the `n`-by-`n` Hermitian real, complex, or
836 quaternion matrices is `n`::
837
838 sage: RealSymmetricEJA(4).rank()
839 4
840 sage: ComplexHermitianEJA(3).rank()
841 3
842 sage: QuaternionHermitianEJA(2).rank()
843 2
844
845 TESTS:
846
847 Ensure that every EJA that we know how to construct has a
848 positive integer rank, unless the algebra is trivial in
849 which case its rank will be zero::
850
851 sage: set_random_seed()
852 sage: J = random_eja()
853 sage: r = J.rank()
854 sage: r in ZZ
855 True
856 sage: r > 0 or (r == 0 and J.is_trivial())
857 True
858
859 Ensure that computing the rank actually works, since the ranks
860 of all simple algebras are known and will be cached by default::
861
862 sage: J = HadamardEJA(4)
863 sage: J.rank.clear_cache()
864 sage: J.rank()
865 4
866
867 ::
868
869 sage: J = JordanSpinEJA(4)
870 sage: J.rank.clear_cache()
871 sage: J.rank()
872 2
873
874 ::
875
876 sage: J = RealSymmetricEJA(3)
877 sage: J.rank.clear_cache()
878 sage: J.rank()
879 3
880
881 ::
882
883 sage: J = ComplexHermitianEJA(2)
884 sage: J.rank.clear_cache()
885 sage: J.rank()
886 2
887
888 ::
889
890 sage: J = QuaternionHermitianEJA(2)
891 sage: J.rank.clear_cache()
892 sage: J.rank()
893 2
894 """
895 return len(self._charpoly_coefficients())
896
897
898 def vector_space(self):
899 """
900 Return the vector space that underlies this algebra.
901
902 SETUP::
903
904 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
905
906 EXAMPLES::
907
908 sage: J = RealSymmetricEJA(2)
909 sage: J.vector_space()
910 Vector space of dimension 3 over...
911
912 """
913 return self.zero().to_vector().parent().ambient_vector_space()
914
915
916 Element = FiniteDimensionalEuclideanJordanAlgebraElement
917
918
919 class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
920 """
921 Return the Euclidean Jordan Algebra corresponding to the set
922 `R^n` under the Hadamard product.
923
924 Note: this is nothing more than the Cartesian product of ``n``
925 copies of the spin algebra. Once Cartesian product algebras
926 are implemented, this can go.
927
928 SETUP::
929
930 sage: from mjo.eja.eja_algebra import HadamardEJA
931
932 EXAMPLES:
933
934 This multiplication table can be verified by hand::
935
936 sage: J = HadamardEJA(3)
937 sage: e0,e1,e2 = J.gens()
938 sage: e0*e0
939 e0
940 sage: e0*e1
941 0
942 sage: e0*e2
943 0
944 sage: e1*e1
945 e1
946 sage: e1*e2
947 0
948 sage: e2*e2
949 e2
950
951 TESTS:
952
953 We can change the generator prefix::
954
955 sage: HadamardEJA(3, prefix='r').gens()
956 (r0, r1, r2)
957
958 """
959 def __init__(self, n, field=AA, **kwargs):
960 V = VectorSpace(field, n)
961 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
962 for i in range(n) ]
963
964 fdeja = super(HadamardEJA, self)
965 fdeja.__init__(field, mult_table, **kwargs)
966 self.rank.set_cache(n)
967
968 def inner_product(self, x, y):
969 """
970 Faster to reimplement than to use natural representations.
971
972 SETUP::
973
974 sage: from mjo.eja.eja_algebra import HadamardEJA
975
976 TESTS:
977
978 Ensure that this is the usual inner product for the algebras
979 over `R^n`::
980
981 sage: set_random_seed()
982 sage: J = HadamardEJA.random_instance()
983 sage: x,y = J.random_elements(2)
984 sage: X = x.natural_representation()
985 sage: Y = y.natural_representation()
986 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
987 True
988
989 """
990 return x.to_vector().inner_product(y.to_vector())
991
992
993 def random_eja(field=AA):
994 """
995 Return a "random" finite-dimensional Euclidean Jordan Algebra.
996
997 SETUP::
998
999 sage: from mjo.eja.eja_algebra import random_eja
1000
1001 TESTS::
1002
1003 sage: random_eja()
1004 Euclidean Jordan algebra of dimension...
1005
1006 """
1007 classname = choice([TrivialEJA,
1008 HadamardEJA,
1009 JordanSpinEJA,
1010 RealSymmetricEJA,
1011 ComplexHermitianEJA,
1012 QuaternionHermitianEJA])
1013 return classname.random_instance(field=field)
1014
1015
1016
1017
1018 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
1019 @staticmethod
1020 def _max_test_case_size():
1021 # Play it safe, since this will be squared and the underlying
1022 # field can have dimension 4 (quaternions) too.
1023 return 2
1024
1025 def __init__(self, field, basis, normalize_basis=True, **kwargs):
1026 """
1027 Compared to the superclass constructor, we take a basis instead of
1028 a multiplication table because the latter can be computed in terms
1029 of the former when the product is known (like it is here).
1030 """
1031 # Used in this class's fast _charpoly_coefficients() override.
1032 self._basis_normalizers = None
1033
1034 # We're going to loop through this a few times, so now's a good
1035 # time to ensure that it isn't a generator expression.
1036 basis = tuple(basis)
1037
1038 if len(basis) > 1 and normalize_basis:
1039 # We'll need sqrt(2) to normalize the basis, and this
1040 # winds up in the multiplication table, so the whole
1041 # algebra needs to be over the field extension.
1042 R = PolynomialRing(field, 'z')
1043 z = R.gen()
1044 p = z**2 - 2
1045 if p.is_irreducible():
1046 field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
1047 basis = tuple( s.change_ring(field) for s in basis )
1048 self._basis_normalizers = tuple(
1049 ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
1050 basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
1051
1052 Qs = self.multiplication_table_from_matrix_basis(basis)
1053
1054 fdeja = super(MatrixEuclideanJordanAlgebra, self)
1055 fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
1056 return
1057
1058
1059 @cached_method
1060 def _charpoly_coefficients(self):
1061 r"""
1062 Override the parent method with something that tries to compute
1063 over a faster (non-extension) field.
1064 """
1065 if self._basis_normalizers is None:
1066 # We didn't normalize, so assume that the basis we started
1067 # with had entries in a nice field.
1068 return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coefficients()
1069 else:
1070 basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
1071 self._basis_normalizers) )
1072
1073 # Do this over the rationals and convert back at the end.
1074 # Only works because we know the entries of the basis are
1075 # integers.
1076 J = MatrixEuclideanJordanAlgebra(QQ,
1077 basis,
1078 normalize_basis=False)
1079 a = J._charpoly_coefficients()
1080
1081 # Unfortunately, changing the basis does change the
1082 # coefficients of the characteristic polynomial, but since
1083 # these are really the coefficients of the "characteristic
1084 # polynomial of" function, everything is still nice and
1085 # unevaluated. It's therefore "obvious" how scaling the
1086 # basis affects the coordinate variables X1, X2, et
1087 # cetera. Scaling the first basis vector up by "n" adds a
1088 # factor of 1/n into every "X1" term, for example. So here
1089 # we simply undo the basis_normalizer scaling that we
1090 # performed earlier.
1091 #
1092 # The a[0] access here is safe because trivial algebras
1093 # won't have any basis normalizers and therefore won't
1094 # make it to this "else" branch.
1095 XS = a[0].parent().gens()
1096 subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i]
1097 for i in range(len(XS)) }
1098 return tuple( a_i.subs(subs_dict) for a_i in a )
1099
1100
1101 @staticmethod
1102 def multiplication_table_from_matrix_basis(basis):
1103 """
1104 At least three of the five simple Euclidean Jordan algebras have the
1105 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1106 multiplication on the right is matrix multiplication. Given a basis
1107 for the underlying matrix space, this function returns a
1108 multiplication table (obtained by looping through the basis
1109 elements) for an algebra of those matrices.
1110 """
1111 # In S^2, for example, we nominally have four coordinates even
1112 # though the space is of dimension three only. The vector space V
1113 # is supposed to hold the entire long vector, and the subspace W
1114 # of V will be spanned by the vectors that arise from symmetric
1115 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1116 if len(basis) == 0:
1117 return []
1118
1119 field = basis[0].base_ring()
1120 dimension = basis[0].nrows()
1121
1122 V = VectorSpace(field, dimension**2)
1123 W = V.span_of_basis( _mat2vec(s) for s in basis )
1124 n = len(basis)
1125 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
1126 for i in range(n):
1127 for j in range(n):
1128 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
1129 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
1130
1131 return mult_table
1132
1133
1134 @staticmethod
1135 def real_embed(M):
1136 """
1137 Embed the matrix ``M`` into a space of real matrices.
1138
1139 The matrix ``M`` can have entries in any field at the moment:
1140 the real numbers, complex numbers, or quaternions. And although
1141 they are not a field, we can probably support octonions at some
1142 point, too. This function returns a real matrix that "acts like"
1143 the original with respect to matrix multiplication; i.e.
1144
1145 real_embed(M*N) = real_embed(M)*real_embed(N)
1146
1147 """
1148 raise NotImplementedError
1149
1150
1151 @staticmethod
1152 def real_unembed(M):
1153 """
1154 The inverse of :meth:`real_embed`.
1155 """
1156 raise NotImplementedError
1157
1158
1159 @classmethod
1160 def natural_inner_product(cls,X,Y):
1161 Xu = cls.real_unembed(X)
1162 Yu = cls.real_unembed(Y)
1163 tr = (Xu*Yu).trace()
1164
1165 if tr in RLF:
1166 # It's real already.
1167 return tr
1168
1169 # Otherwise, try the thing that works for complex numbers; and
1170 # if that doesn't work, the thing that works for quaternions.
1171 try:
1172 return tr.vector()[0] # real part, imag part is index 1
1173 except AttributeError:
1174 # A quaternions doesn't have a vector() method, but does
1175 # have coefficient_tuple() method that returns the
1176 # coefficients of 1, i, j, and k -- in that order.
1177 return tr.coefficient_tuple()[0]
1178
1179
1180 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1181 @staticmethod
1182 def real_embed(M):
1183 """
1184 The identity function, for embedding real matrices into real
1185 matrices.
1186 """
1187 return M
1188
1189 @staticmethod
1190 def real_unembed(M):
1191 """
1192 The identity function, for unembedding real matrices from real
1193 matrices.
1194 """
1195 return M
1196
1197
1198 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
1199 """
1200 The rank-n simple EJA consisting of real symmetric n-by-n
1201 matrices, the usual symmetric Jordan product, and the trace inner
1202 product. It has dimension `(n^2 + n)/2` over the reals.
1203
1204 SETUP::
1205
1206 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1207
1208 EXAMPLES::
1209
1210 sage: J = RealSymmetricEJA(2)
1211 sage: e0, e1, e2 = J.gens()
1212 sage: e0*e0
1213 e0
1214 sage: e1*e1
1215 1/2*e0 + 1/2*e2
1216 sage: e2*e2
1217 e2
1218
1219 In theory, our "field" can be any subfield of the reals::
1220
1221 sage: RealSymmetricEJA(2, RDF)
1222 Euclidean Jordan algebra of dimension 3 over Real Double Field
1223 sage: RealSymmetricEJA(2, RR)
1224 Euclidean Jordan algebra of dimension 3 over Real Field with
1225 53 bits of precision
1226
1227 TESTS:
1228
1229 The dimension of this algebra is `(n^2 + n) / 2`::
1230
1231 sage: set_random_seed()
1232 sage: n_max = RealSymmetricEJA._max_test_case_size()
1233 sage: n = ZZ.random_element(1, n_max)
1234 sage: J = RealSymmetricEJA(n)
1235 sage: J.dimension() == (n^2 + n)/2
1236 True
1237
1238 The Jordan multiplication is what we think it is::
1239
1240 sage: set_random_seed()
1241 sage: J = RealSymmetricEJA.random_instance()
1242 sage: x,y = J.random_elements(2)
1243 sage: actual = (x*y).natural_representation()
1244 sage: X = x.natural_representation()
1245 sage: Y = y.natural_representation()
1246 sage: expected = (X*Y + Y*X)/2
1247 sage: actual == expected
1248 True
1249 sage: J(expected) == x*y
1250 True
1251
1252 We can change the generator prefix::
1253
1254 sage: RealSymmetricEJA(3, prefix='q').gens()
1255 (q0, q1, q2, q3, q4, q5)
1256
1257 Our natural basis is normalized with respect to the natural inner
1258 product unless we specify otherwise::
1259
1260 sage: set_random_seed()
1261 sage: J = RealSymmetricEJA.random_instance()
1262 sage: all( b.norm() == 1 for b in J.gens() )
1263 True
1264
1265 Since our natural basis is normalized with respect to the natural
1266 inner product, and since we know that this algebra is an EJA, any
1267 left-multiplication operator's matrix will be symmetric because
1268 natural->EJA basis representation is an isometry and within the EJA
1269 the operator is self-adjoint by the Jordan axiom::
1270
1271 sage: set_random_seed()
1272 sage: x = RealSymmetricEJA.random_instance().random_element()
1273 sage: x.operator().matrix().is_symmetric()
1274 True
1275
1276 We can construct the (trivial) algebra of rank zero::
1277
1278 sage: RealSymmetricEJA(0)
1279 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1280
1281 """
1282 @classmethod
1283 def _denormalized_basis(cls, n, field):
1284 """
1285 Return a basis for the space of real symmetric n-by-n matrices.
1286
1287 SETUP::
1288
1289 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1290
1291 TESTS::
1292
1293 sage: set_random_seed()
1294 sage: n = ZZ.random_element(1,5)
1295 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1296 sage: all( M.is_symmetric() for M in B)
1297 True
1298
1299 """
1300 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1301 # coordinates.
1302 S = []
1303 for i in range(n):
1304 for j in range(i+1):
1305 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1306 if i == j:
1307 Sij = Eij
1308 else:
1309 Sij = Eij + Eij.transpose()
1310 S.append(Sij)
1311 return S
1312
1313
1314 @staticmethod
1315 def _max_test_case_size():
1316 return 4 # Dimension 10
1317
1318
1319 def __init__(self, n, field=AA, **kwargs):
1320 basis = self._denormalized_basis(n, field)
1321 super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
1322 self.rank.set_cache(n)
1323
1324
1325 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1326 @staticmethod
1327 def real_embed(M):
1328 """
1329 Embed the n-by-n complex matrix ``M`` into the space of real
1330 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1331 bi` to the block matrix ``[[a,b],[-b,a]]``.
1332
1333 SETUP::
1334
1335 sage: from mjo.eja.eja_algebra import \
1336 ....: ComplexMatrixEuclideanJordanAlgebra
1337
1338 EXAMPLES::
1339
1340 sage: F = QuadraticField(-1, 'I')
1341 sage: x1 = F(4 - 2*i)
1342 sage: x2 = F(1 + 2*i)
1343 sage: x3 = F(-i)
1344 sage: x4 = F(6)
1345 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1346 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1347 [ 4 -2| 1 2]
1348 [ 2 4|-2 1]
1349 [-----+-----]
1350 [ 0 -1| 6 0]
1351 [ 1 0| 0 6]
1352
1353 TESTS:
1354
1355 Embedding is a homomorphism (isomorphism, in fact)::
1356
1357 sage: set_random_seed()
1358 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1359 sage: n = ZZ.random_element(n_max)
1360 sage: F = QuadraticField(-1, 'I')
1361 sage: X = random_matrix(F, n)
1362 sage: Y = random_matrix(F, n)
1363 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1364 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1365 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1366 sage: Xe*Ye == XYe
1367 True
1368
1369 """
1370 n = M.nrows()
1371 if M.ncols() != n:
1372 raise ValueError("the matrix 'M' must be square")
1373
1374 # We don't need any adjoined elements...
1375 field = M.base_ring().base_ring()
1376
1377 blocks = []
1378 for z in M.list():
1379 a = z.list()[0] # real part, I guess
1380 b = z.list()[1] # imag part, I guess
1381 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1382
1383 return matrix.block(field, n, blocks)
1384
1385
1386 @staticmethod
1387 def real_unembed(M):
1388 """
1389 The inverse of _embed_complex_matrix().
1390
1391 SETUP::
1392
1393 sage: from mjo.eja.eja_algebra import \
1394 ....: ComplexMatrixEuclideanJordanAlgebra
1395
1396 EXAMPLES::
1397
1398 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1399 ....: [-2, 1, -4, 3],
1400 ....: [ 9, 10, 11, 12],
1401 ....: [-10, 9, -12, 11] ])
1402 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1403 [ 2*I + 1 4*I + 3]
1404 [ 10*I + 9 12*I + 11]
1405
1406 TESTS:
1407
1408 Unembedding is the inverse of embedding::
1409
1410 sage: set_random_seed()
1411 sage: F = QuadraticField(-1, 'I')
1412 sage: M = random_matrix(F, 3)
1413 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1414 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1415 True
1416
1417 """
1418 n = ZZ(M.nrows())
1419 if M.ncols() != n:
1420 raise ValueError("the matrix 'M' must be square")
1421 if not n.mod(2).is_zero():
1422 raise ValueError("the matrix 'M' must be a complex embedding")
1423
1424 # If "M" was normalized, its base ring might have roots
1425 # adjoined and they can stick around after unembedding.
1426 field = M.base_ring()
1427 R = PolynomialRing(field, 'z')
1428 z = R.gen()
1429 if field is AA:
1430 # Sage doesn't know how to embed AA into QQbar, i.e. how
1431 # to adjoin sqrt(-1) to AA.
1432 F = QQbar
1433 else:
1434 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1435 i = F.gen()
1436
1437 # Go top-left to bottom-right (reading order), converting every
1438 # 2-by-2 block we see to a single complex element.
1439 elements = []
1440 for k in range(n/2):
1441 for j in range(n/2):
1442 submat = M[2*k:2*k+2,2*j:2*j+2]
1443 if submat[0,0] != submat[1,1]:
1444 raise ValueError('bad on-diagonal submatrix')
1445 if submat[0,1] != -submat[1,0]:
1446 raise ValueError('bad off-diagonal submatrix')
1447 z = submat[0,0] + submat[0,1]*i
1448 elements.append(z)
1449
1450 return matrix(F, n/2, elements)
1451
1452
1453 @classmethod
1454 def natural_inner_product(cls,X,Y):
1455 """
1456 Compute a natural inner product in this algebra directly from
1457 its real embedding.
1458
1459 SETUP::
1460
1461 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1462
1463 TESTS:
1464
1465 This gives the same answer as the slow, default method implemented
1466 in :class:`MatrixEuclideanJordanAlgebra`::
1467
1468 sage: set_random_seed()
1469 sage: J = ComplexHermitianEJA.random_instance()
1470 sage: x,y = J.random_elements(2)
1471 sage: Xe = x.natural_representation()
1472 sage: Ye = y.natural_representation()
1473 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1474 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1475 sage: expected = (X*Y).trace().real()
1476 sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
1477 sage: actual == expected
1478 True
1479
1480 """
1481 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
1482
1483
1484 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
1485 """
1486 The rank-n simple EJA consisting of complex Hermitian n-by-n
1487 matrices over the real numbers, the usual symmetric Jordan product,
1488 and the real-part-of-trace inner product. It has dimension `n^2` over
1489 the reals.
1490
1491 SETUP::
1492
1493 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1494
1495 EXAMPLES:
1496
1497 In theory, our "field" can be any subfield of the reals::
1498
1499 sage: ComplexHermitianEJA(2, RDF)
1500 Euclidean Jordan algebra of dimension 4 over Real Double Field
1501 sage: ComplexHermitianEJA(2, RR)
1502 Euclidean Jordan algebra of dimension 4 over Real Field with
1503 53 bits of precision
1504
1505 TESTS:
1506
1507 The dimension of this algebra is `n^2`::
1508
1509 sage: set_random_seed()
1510 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1511 sage: n = ZZ.random_element(1, n_max)
1512 sage: J = ComplexHermitianEJA(n)
1513 sage: J.dimension() == n^2
1514 True
1515
1516 The Jordan multiplication is what we think it is::
1517
1518 sage: set_random_seed()
1519 sage: J = ComplexHermitianEJA.random_instance()
1520 sage: x,y = J.random_elements(2)
1521 sage: actual = (x*y).natural_representation()
1522 sage: X = x.natural_representation()
1523 sage: Y = y.natural_representation()
1524 sage: expected = (X*Y + Y*X)/2
1525 sage: actual == expected
1526 True
1527 sage: J(expected) == x*y
1528 True
1529
1530 We can change the generator prefix::
1531
1532 sage: ComplexHermitianEJA(2, prefix='z').gens()
1533 (z0, z1, z2, z3)
1534
1535 Our natural basis is normalized with respect to the natural inner
1536 product unless we specify otherwise::
1537
1538 sage: set_random_seed()
1539 sage: J = ComplexHermitianEJA.random_instance()
1540 sage: all( b.norm() == 1 for b in J.gens() )
1541 True
1542
1543 Since our natural basis is normalized with respect to the natural
1544 inner product, and since we know that this algebra is an EJA, any
1545 left-multiplication operator's matrix will be symmetric because
1546 natural->EJA basis representation is an isometry and within the EJA
1547 the operator is self-adjoint by the Jordan axiom::
1548
1549 sage: set_random_seed()
1550 sage: x = ComplexHermitianEJA.random_instance().random_element()
1551 sage: x.operator().matrix().is_symmetric()
1552 True
1553
1554 We can construct the (trivial) algebra of rank zero::
1555
1556 sage: ComplexHermitianEJA(0)
1557 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1558
1559 """
1560
1561 @classmethod
1562 def _denormalized_basis(cls, n, field):
1563 """
1564 Returns a basis for the space of complex Hermitian n-by-n matrices.
1565
1566 Why do we embed these? Basically, because all of numerical linear
1567 algebra assumes that you're working with vectors consisting of `n`
1568 entries from a field and scalars from the same field. There's no way
1569 to tell SageMath that (for example) the vectors contain complex
1570 numbers, while the scalar field is real.
1571
1572 SETUP::
1573
1574 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1575
1576 TESTS::
1577
1578 sage: set_random_seed()
1579 sage: n = ZZ.random_element(1,5)
1580 sage: field = QuadraticField(2, 'sqrt2')
1581 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1582 sage: all( M.is_symmetric() for M in B)
1583 True
1584
1585 """
1586 R = PolynomialRing(field, 'z')
1587 z = R.gen()
1588 F = field.extension(z**2 + 1, 'I')
1589 I = F.gen()
1590
1591 # This is like the symmetric case, but we need to be careful:
1592 #
1593 # * We want conjugate-symmetry, not just symmetry.
1594 # * The diagonal will (as a result) be real.
1595 #
1596 S = []
1597 for i in range(n):
1598 for j in range(i+1):
1599 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1600 if i == j:
1601 Sij = cls.real_embed(Eij)
1602 S.append(Sij)
1603 else:
1604 # The second one has a minus because it's conjugated.
1605 Sij_real = cls.real_embed(Eij + Eij.transpose())
1606 S.append(Sij_real)
1607 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1608 S.append(Sij_imag)
1609
1610 # Since we embedded these, we can drop back to the "field" that we
1611 # started with instead of the complex extension "F".
1612 return ( s.change_ring(field) for s in S )
1613
1614
1615 def __init__(self, n, field=AA, **kwargs):
1616 basis = self._denormalized_basis(n,field)
1617 super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
1618 self.rank.set_cache(n)
1619
1620
1621 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1622 @staticmethod
1623 def real_embed(M):
1624 """
1625 Embed the n-by-n quaternion matrix ``M`` into the space of real
1626 matrices of size 4n-by-4n by first sending each quaternion entry `z
1627 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1628 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1629 matrix.
1630
1631 SETUP::
1632
1633 sage: from mjo.eja.eja_algebra import \
1634 ....: QuaternionMatrixEuclideanJordanAlgebra
1635
1636 EXAMPLES::
1637
1638 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1639 sage: i,j,k = Q.gens()
1640 sage: x = 1 + 2*i + 3*j + 4*k
1641 sage: M = matrix(Q, 1, [[x]])
1642 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1643 [ 1 2 3 4]
1644 [-2 1 -4 3]
1645 [-3 4 1 -2]
1646 [-4 -3 2 1]
1647
1648 Embedding is a homomorphism (isomorphism, in fact)::
1649
1650 sage: set_random_seed()
1651 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1652 sage: n = ZZ.random_element(n_max)
1653 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1654 sage: X = random_matrix(Q, n)
1655 sage: Y = random_matrix(Q, n)
1656 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1657 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1658 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1659 sage: Xe*Ye == XYe
1660 True
1661
1662 """
1663 quaternions = M.base_ring()
1664 n = M.nrows()
1665 if M.ncols() != n:
1666 raise ValueError("the matrix 'M' must be square")
1667
1668 F = QuadraticField(-1, 'I')
1669 i = F.gen()
1670
1671 blocks = []
1672 for z in M.list():
1673 t = z.coefficient_tuple()
1674 a = t[0]
1675 b = t[1]
1676 c = t[2]
1677 d = t[3]
1678 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1679 [-c + d*i, a - b*i]])
1680 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1681 blocks.append(realM)
1682
1683 # We should have real entries by now, so use the realest field
1684 # we've got for the return value.
1685 return matrix.block(quaternions.base_ring(), n, blocks)
1686
1687
1688
1689 @staticmethod
1690 def real_unembed(M):
1691 """
1692 The inverse of _embed_quaternion_matrix().
1693
1694 SETUP::
1695
1696 sage: from mjo.eja.eja_algebra import \
1697 ....: QuaternionMatrixEuclideanJordanAlgebra
1698
1699 EXAMPLES::
1700
1701 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1702 ....: [-2, 1, -4, 3],
1703 ....: [-3, 4, 1, -2],
1704 ....: [-4, -3, 2, 1]])
1705 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1706 [1 + 2*i + 3*j + 4*k]
1707
1708 TESTS:
1709
1710 Unembedding is the inverse of embedding::
1711
1712 sage: set_random_seed()
1713 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1714 sage: M = random_matrix(Q, 3)
1715 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1716 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1717 True
1718
1719 """
1720 n = ZZ(M.nrows())
1721 if M.ncols() != n:
1722 raise ValueError("the matrix 'M' must be square")
1723 if not n.mod(4).is_zero():
1724 raise ValueError("the matrix 'M' must be a quaternion embedding")
1725
1726 # Use the base ring of the matrix to ensure that its entries can be
1727 # multiplied by elements of the quaternion algebra.
1728 field = M.base_ring()
1729 Q = QuaternionAlgebra(field,-1,-1)
1730 i,j,k = Q.gens()
1731
1732 # Go top-left to bottom-right (reading order), converting every
1733 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1734 # quaternion block.
1735 elements = []
1736 for l in range(n/4):
1737 for m in range(n/4):
1738 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1739 M[4*l:4*l+4,4*m:4*m+4] )
1740 if submat[0,0] != submat[1,1].conjugate():
1741 raise ValueError('bad on-diagonal submatrix')
1742 if submat[0,1] != -submat[1,0].conjugate():
1743 raise ValueError('bad off-diagonal submatrix')
1744 z = submat[0,0].real()
1745 z += submat[0,0].imag()*i
1746 z += submat[0,1].real()*j
1747 z += submat[0,1].imag()*k
1748 elements.append(z)
1749
1750 return matrix(Q, n/4, elements)
1751
1752
1753 @classmethod
1754 def natural_inner_product(cls,X,Y):
1755 """
1756 Compute a natural inner product in this algebra directly from
1757 its real embedding.
1758
1759 SETUP::
1760
1761 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1762
1763 TESTS:
1764
1765 This gives the same answer as the slow, default method implemented
1766 in :class:`MatrixEuclideanJordanAlgebra`::
1767
1768 sage: set_random_seed()
1769 sage: J = QuaternionHermitianEJA.random_instance()
1770 sage: x,y = J.random_elements(2)
1771 sage: Xe = x.natural_representation()
1772 sage: Ye = y.natural_representation()
1773 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1774 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1775 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1776 sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
1777 sage: actual == expected
1778 True
1779
1780 """
1781 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
1782
1783
1784 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
1785 """
1786 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1787 matrices, the usual symmetric Jordan product, and the
1788 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1789 the reals.
1790
1791 SETUP::
1792
1793 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1794
1795 EXAMPLES:
1796
1797 In theory, our "field" can be any subfield of the reals::
1798
1799 sage: QuaternionHermitianEJA(2, RDF)
1800 Euclidean Jordan algebra of dimension 6 over Real Double Field
1801 sage: QuaternionHermitianEJA(2, RR)
1802 Euclidean Jordan algebra of dimension 6 over Real Field with
1803 53 bits of precision
1804
1805 TESTS:
1806
1807 The dimension of this algebra is `2*n^2 - n`::
1808
1809 sage: set_random_seed()
1810 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1811 sage: n = ZZ.random_element(1, n_max)
1812 sage: J = QuaternionHermitianEJA(n)
1813 sage: J.dimension() == 2*(n^2) - n
1814 True
1815
1816 The Jordan multiplication is what we think it is::
1817
1818 sage: set_random_seed()
1819 sage: J = QuaternionHermitianEJA.random_instance()
1820 sage: x,y = J.random_elements(2)
1821 sage: actual = (x*y).natural_representation()
1822 sage: X = x.natural_representation()
1823 sage: Y = y.natural_representation()
1824 sage: expected = (X*Y + Y*X)/2
1825 sage: actual == expected
1826 True
1827 sage: J(expected) == x*y
1828 True
1829
1830 We can change the generator prefix::
1831
1832 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1833 (a0, a1, a2, a3, a4, a5)
1834
1835 Our natural basis is normalized with respect to the natural inner
1836 product unless we specify otherwise::
1837
1838 sage: set_random_seed()
1839 sage: J = QuaternionHermitianEJA.random_instance()
1840 sage: all( b.norm() == 1 for b in J.gens() )
1841 True
1842
1843 Since our natural basis is normalized with respect to the natural
1844 inner product, and since we know that this algebra is an EJA, any
1845 left-multiplication operator's matrix will be symmetric because
1846 natural->EJA basis representation is an isometry and within the EJA
1847 the operator is self-adjoint by the Jordan axiom::
1848
1849 sage: set_random_seed()
1850 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1851 sage: x.operator().matrix().is_symmetric()
1852 True
1853
1854 We can construct the (trivial) algebra of rank zero::
1855
1856 sage: QuaternionHermitianEJA(0)
1857 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1858
1859 """
1860 @classmethod
1861 def _denormalized_basis(cls, n, field):
1862 """
1863 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1864
1865 Why do we embed these? Basically, because all of numerical
1866 linear algebra assumes that you're working with vectors consisting
1867 of `n` entries from a field and scalars from the same field. There's
1868 no way to tell SageMath that (for example) the vectors contain
1869 complex numbers, while the scalar field is real.
1870
1871 SETUP::
1872
1873 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1874
1875 TESTS::
1876
1877 sage: set_random_seed()
1878 sage: n = ZZ.random_element(1,5)
1879 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1880 sage: all( M.is_symmetric() for M in B )
1881 True
1882
1883 """
1884 Q = QuaternionAlgebra(QQ,-1,-1)
1885 I,J,K = Q.gens()
1886
1887 # This is like the symmetric case, but we need to be careful:
1888 #
1889 # * We want conjugate-symmetry, not just symmetry.
1890 # * The diagonal will (as a result) be real.
1891 #
1892 S = []
1893 for i in range(n):
1894 for j in range(i+1):
1895 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1896 if i == j:
1897 Sij = cls.real_embed(Eij)
1898 S.append(Sij)
1899 else:
1900 # The second, third, and fourth ones have a minus
1901 # because they're conjugated.
1902 Sij_real = cls.real_embed(Eij + Eij.transpose())
1903 S.append(Sij_real)
1904 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1905 S.append(Sij_I)
1906 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1907 S.append(Sij_J)
1908 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
1909 S.append(Sij_K)
1910
1911 # Since we embedded these, we can drop back to the "field" that we
1912 # started with instead of the quaternion algebra "Q".
1913 return ( s.change_ring(field) for s in S )
1914
1915
1916 def __init__(self, n, field=AA, **kwargs):
1917 basis = self._denormalized_basis(n,field)
1918 super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
1919 self.rank.set_cache(n)
1920
1921
1922 class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
1923 r"""
1924 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1925 with the half-trace inner product and jordan product ``x*y =
1926 (x0*y0 + <B*x_bar,y_bar>, x0*y_bar + y0*x_bar)`` where ``B`` is a
1927 symmetric positive-definite "bilinear form" matrix. It has
1928 dimension `n` over the reals, and reduces to the ``JordanSpinEJA``
1929 when ``B`` is the identity matrix of order ``n-1``.
1930
1931 SETUP::
1932
1933 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1934 ....: JordanSpinEJA)
1935
1936 EXAMPLES:
1937
1938 When no bilinear form is specified, the identity matrix is used,
1939 and the resulting algebra is the Jordan spin algebra::
1940
1941 sage: J0 = BilinearFormEJA(3)
1942 sage: J1 = JordanSpinEJA(3)
1943 sage: J0.multiplication_table() == J0.multiplication_table()
1944 True
1945
1946 TESTS:
1947
1948 We can create a zero-dimensional algebra::
1949
1950 sage: J = BilinearFormEJA(0)
1951 sage: J.basis()
1952 Finite family {}
1953
1954 We can check the multiplication condition given in the Jordan, von
1955 Neumann, and Wigner paper (and also discussed on my "On the
1956 symmetry..." paper). Note that this relies heavily on the standard
1957 choice of basis, as does anything utilizing the bilinear form matrix::
1958
1959 sage: set_random_seed()
1960 sage: n = ZZ.random_element(5)
1961 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
1962 sage: B = M.transpose()*M
1963 sage: J = BilinearFormEJA(n, B=B)
1964 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
1965 sage: V = J.vector_space()
1966 sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
1967 ....: for ei in eis ]
1968 sage: actual = [ sis[i]*sis[j]
1969 ....: for i in range(n-1)
1970 ....: for j in range(n-1) ]
1971 sage: expected = [ J.one() if i == j else J.zero()
1972 ....: for i in range(n-1)
1973 ....: for j in range(n-1) ]
1974 sage: actual == expected
1975 True
1976 """
1977 def __init__(self, n, field=AA, B=None, **kwargs):
1978 if B is None:
1979 self._B = matrix.identity(field, max(0,n-1))
1980 else:
1981 self._B = B
1982
1983 V = VectorSpace(field, n)
1984 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
1985 for i in range(n):
1986 for j in range(n):
1987 x = V.gen(i)
1988 y = V.gen(j)
1989 x0 = x[0]
1990 xbar = x[1:]
1991 y0 = y[0]
1992 ybar = y[1:]
1993 z0 = x0*y0 + (self._B*xbar).inner_product(ybar)
1994 zbar = y0*xbar + x0*ybar
1995 z = V([z0] + zbar.list())
1996 mult_table[i][j] = z
1997
1998 # The rank of this algebra is two, unless we're in a
1999 # one-dimensional ambient space (because the rank is bounded
2000 # by the ambient dimension).
2001 fdeja = super(BilinearFormEJA, self)
2002 fdeja.__init__(field, mult_table, **kwargs)
2003 self.rank.set_cache(min(n,2))
2004
2005 def inner_product(self, x, y):
2006 r"""
2007 Half of the trace inner product.
2008
2009 This is defined so that the special case of the Jordan spin
2010 algebra gets the usual inner product.
2011
2012 SETUP::
2013
2014 sage: from mjo.eja.eja_algebra import BilinearFormEJA
2015
2016 TESTS:
2017
2018 Ensure that this is one-half of the trace inner-product when
2019 the algebra isn't just the reals (when ``n`` isn't one). This
2020 is in Faraut and Koranyi, and also my "On the symmetry..."
2021 paper::
2022
2023 sage: set_random_seed()
2024 sage: n = ZZ.random_element(2,5)
2025 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2026 sage: B = M.transpose()*M
2027 sage: J = BilinearFormEJA(n, B=B)
2028 sage: x = J.random_element()
2029 sage: y = J.random_element()
2030 sage: x.inner_product(y) == (x*y).trace()/2
2031 True
2032
2033 """
2034 xvec = x.to_vector()
2035 xbar = xvec[1:]
2036 yvec = y.to_vector()
2037 ybar = yvec[1:]
2038 return x[0]*y[0] + (self._B*xbar).inner_product(ybar)
2039
2040
2041 class JordanSpinEJA(BilinearFormEJA):
2042 """
2043 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2044 with the usual inner product and jordan product ``x*y =
2045 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2046 the reals.
2047
2048 SETUP::
2049
2050 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2051
2052 EXAMPLES:
2053
2054 This multiplication table can be verified by hand::
2055
2056 sage: J = JordanSpinEJA(4)
2057 sage: e0,e1,e2,e3 = J.gens()
2058 sage: e0*e0
2059 e0
2060 sage: e0*e1
2061 e1
2062 sage: e0*e2
2063 e2
2064 sage: e0*e3
2065 e3
2066 sage: e1*e2
2067 0
2068 sage: e1*e3
2069 0
2070 sage: e2*e3
2071 0
2072
2073 We can change the generator prefix::
2074
2075 sage: JordanSpinEJA(2, prefix='B').gens()
2076 (B0, B1)
2077
2078 TESTS:
2079
2080 Ensure that we have the usual inner product on `R^n`::
2081
2082 sage: set_random_seed()
2083 sage: J = JordanSpinEJA.random_instance()
2084 sage: x,y = J.random_elements(2)
2085 sage: X = x.natural_representation()
2086 sage: Y = y.natural_representation()
2087 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
2088 True
2089
2090 """
2091 def __init__(self, n, field=AA, **kwargs):
2092 # This is a special case of the BilinearFormEJA with the identity
2093 # matrix as its bilinear form.
2094 return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
2095
2096
2097 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
2098 """
2099 The trivial Euclidean Jordan algebra consisting of only a zero element.
2100
2101 SETUP::
2102
2103 sage: from mjo.eja.eja_algebra import TrivialEJA
2104
2105 EXAMPLES::
2106
2107 sage: J = TrivialEJA()
2108 sage: J.dimension()
2109 0
2110 sage: J.zero()
2111 0
2112 sage: J.one()
2113 0
2114 sage: 7*J.one()*12*J.one()
2115 0
2116 sage: J.one().inner_product(J.one())
2117 0
2118 sage: J.one().norm()
2119 0
2120 sage: J.one().subalgebra_generated_by()
2121 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2122 sage: J.rank()
2123 0
2124
2125 """
2126 def __init__(self, field=AA, **kwargs):
2127 mult_table = []
2128 fdeja = super(TrivialEJA, self)
2129 # The rank is zero using my definition, namely the dimension of the
2130 # largest subalgebra generated by any element.
2131 fdeja.__init__(field, mult_table, **kwargs)
2132 self.rank.set_cache(0)