2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
10 sage: from mjo.eja.eja_algebra import random_eja
15 Euclidean Jordan algebra of dimension...
19 from itertools
import repeat
21 from sage
.algebras
.quatalg
.quaternion_algebra
import QuaternionAlgebra
22 from sage
.categories
.magmatic_algebras
import MagmaticAlgebras
23 from sage
.combinat
.free_module
import CombinatorialFreeModule
24 from sage
.matrix
.constructor
import matrix
25 from sage
.matrix
.matrix_space
import MatrixSpace
26 from sage
.misc
.cachefunc
import cached_method
27 from sage
.misc
.table
import table
28 from sage
.modules
.free_module
import FreeModule
, VectorSpace
29 from sage
.rings
.all
import (ZZ
, QQ
, AA
, QQbar
, RR
, RLF
, CLF
,
32 from mjo
.eja
.eja_element
import FiniteDimensionalEuclideanJordanAlgebraElement
33 from mjo
.eja
.eja_operator
import FiniteDimensionalEuclideanJordanAlgebraOperator
34 from mjo
.eja
.eja_utils
import _mat2vec
36 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule
):
38 def _coerce_map_from_base_ring(self
):
40 Disable the map from the base ring into the algebra.
42 Performing a nonsense conversion like this automatically
43 is counterpedagogical. The fallback is to try the usual
44 element constructor, which should also fail.
48 sage: from mjo.eja.eja_algebra import random_eja
52 sage: set_random_seed()
53 sage: J = random_eja()
55 Traceback (most recent call last):
57 ValueError: not an element of this algebra
73 sage: from mjo.eja.eja_algebra import (
74 ....: FiniteDimensionalEuclideanJordanAlgebra,
80 By definition, Jordan multiplication commutes::
82 sage: set_random_seed()
83 sage: J = random_eja()
84 sage: x,y = J.random_elements(2)
90 The ``field`` we're given must be real with ``check_field=True``::
92 sage: JordanSpinEJA(2,QQbar)
93 Traceback (most recent call last):
95 ValueError: scalar field is not real
97 The multiplication table must be square with ``check_axioms=True``::
99 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()))
100 Traceback (most recent call last):
102 ValueError: multiplication table is not square
106 if not field
.is_subring(RR
):
107 # Note: this does return true for the real algebraic
108 # field, the rationals, and any quadratic field where
109 # we've specified a real embedding.
110 raise ValueError("scalar field is not real")
112 # The multiplication table had better be square
115 if not all( len(l
) == n
for l
in mult_table
):
116 raise ValueError("multiplication table is not square")
118 self
._matrix
_basis
= matrix_basis
121 category
= MagmaticAlgebras(field
).FiniteDimensional()
122 category
= category
.WithBasis().Unital()
124 fda
= super(FiniteDimensionalEuclideanJordanAlgebra
, self
)
129 self
.print_options(bracket
='')
131 # The multiplication table we're given is necessarily in terms
132 # of vectors, because we don't have an algebra yet for
133 # anything to be an element of. However, it's faster in the
134 # long run to have the multiplication table be in terms of
135 # algebra elements. We do this after calling the superclass
136 # constructor so that from_vector() knows what to do.
137 self
._multiplication
_table
= [
138 list(map(lambda x
: self
.from_vector(x
), ls
))
143 if not self
._is
_commutative
():
144 raise ValueError("algebra is not commutative")
145 if not self
._is
_jordanian
():
146 raise ValueError("Jordan identity does not hold")
147 if not self
._inner
_product
_is
_associative
():
148 raise ValueError("inner product is not associative")
150 def _element_constructor_(self
, elt
):
152 Construct an element of this algebra from its vector or matrix
155 This gets called only after the parent element _call_ method
156 fails to find a coercion for the argument.
160 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
162 ....: RealSymmetricEJA)
166 The identity in `S^n` is converted to the identity in the EJA::
168 sage: J = RealSymmetricEJA(3)
169 sage: I = matrix.identity(QQ,3)
170 sage: J(I) == J.one()
173 This skew-symmetric matrix can't be represented in the EJA::
175 sage: J = RealSymmetricEJA(3)
176 sage: A = matrix(QQ,3, lambda i,j: i-j)
178 Traceback (most recent call last):
180 ValueError: not an element of this algebra
184 Ensure that we can convert any element of the two non-matrix
185 simple algebras (whose matrix representations are columns)
186 back and forth faithfully::
188 sage: set_random_seed()
189 sage: J = HadamardEJA.random_instance()
190 sage: x = J.random_element()
191 sage: J(x.to_vector().column()) == x
193 sage: J = JordanSpinEJA.random_instance()
194 sage: x = J.random_element()
195 sage: J(x.to_vector().column()) == x
198 msg
= "not an element of this algebra"
200 # The superclass implementation of random_element()
201 # needs to be able to coerce "0" into the algebra.
203 elif elt
in self
.base_ring():
204 # Ensure that no base ring -> algebra coercion is performed
205 # by this method. There's some stupidity in sage that would
206 # otherwise propagate to this method; for example, sage thinks
207 # that the integer 3 belongs to the space of 2-by-2 matrices.
208 raise ValueError(msg
)
210 if elt
not in self
.matrix_space():
211 raise ValueError(msg
)
213 # Thanks for nothing! Matrix spaces aren't vector spaces in
214 # Sage, so we have to figure out its matrix-basis coordinates
215 # ourselves. We use the basis space's ring instead of the
216 # element's ring because the basis space might be an algebraic
217 # closure whereas the base ring of the 3-by-3 identity matrix
218 # could be QQ instead of QQbar.
219 V
= VectorSpace(self
.base_ring(), elt
.nrows()*elt
.ncols())
220 W
= V
.span_of_basis( _mat2vec(s
) for s
in self
.matrix_basis() )
223 coords
= W
.coordinate_vector(_mat2vec(elt
))
224 except ArithmeticError: # vector is not in free module
225 raise ValueError(msg
)
227 return self
.from_vector(coords
)
231 Return a string representation of ``self``.
235 sage: from mjo.eja.eja_algebra import JordanSpinEJA
239 Ensure that it says what we think it says::
241 sage: JordanSpinEJA(2, field=AA)
242 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
243 sage: JordanSpinEJA(3, field=RDF)
244 Euclidean Jordan algebra of dimension 3 over Real Double Field
247 fmt
= "Euclidean Jordan algebra of dimension {} over {}"
248 return fmt
.format(self
.dimension(), self
.base_ring())
250 def product_on_basis(self
, i
, j
):
251 return self
._multiplication
_table
[i
][j
]
253 def _is_commutative(self
):
255 Whether or not this algebra's multiplication table is commutative.
257 This method should of course always return ``True``, unless
258 this algebra was constructed with ``check_axioms=False`` and
259 passed an invalid multiplication table.
261 return all( self
.product_on_basis(i
,j
) == self
.product_on_basis(i
,j
)
262 for i
in range(self
.dimension())
263 for j
in range(self
.dimension()) )
265 def _is_jordanian(self
):
267 Whether or not this algebra's multiplication table respects the
268 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
270 We only check one arrangement of `x` and `y`, so for a
271 ``True`` result to be truly true, you should also check
272 :meth:`_is_commutative`. This method should of course always
273 return ``True``, unless this algebra was constructed with
274 ``check_axioms=False`` and passed an invalid multiplication table.
276 return all( (self
.monomial(i
)**2)*(self
.monomial(i
)*self
.monomial(j
))
278 (self
.monomial(i
))*((self
.monomial(i
)**2)*self
.monomial(j
))
279 for i
in range(self
.dimension())
280 for j
in range(self
.dimension()) )
282 def _inner_product_is_associative(self
):
284 Return whether or not this algebra's inner product `B` is
285 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
287 This method should of course always return ``True``, unless
288 this algebra was constructed with ``check_axioms=False`` and
289 passed an invalid multiplication table.
292 # Used to check whether or not something is zero in an inexact
293 # ring. This number is sufficient to allow the construction of
294 # QuaternionHermitianEJA(2, RDF) with check_axioms=True.
297 for i
in range(self
.dimension()):
298 for j
in range(self
.dimension()):
299 for k
in range(self
.dimension()):
303 diff
= (x
*y
).inner_product(z
) - x
.inner_product(y
*z
)
305 if self
.base_ring().is_exact():
309 if diff
.abs() > epsilon
:
315 def characteristic_polynomial_of(self
):
317 Return the algebra's "characteristic polynomial of" function,
318 which is itself a multivariate polynomial that, when evaluated
319 at the coordinates of some algebra element, returns that
320 element's characteristic polynomial.
322 The resulting polynomial has `n+1` variables, where `n` is the
323 dimension of this algebra. The first `n` variables correspond to
324 the coordinates of an algebra element: when evaluated at the
325 coordinates of an algebra element with respect to a certain
326 basis, the result is a univariate polynomial (in the one
327 remaining variable ``t``), namely the characteristic polynomial
332 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
336 The characteristic polynomial in the spin algebra is given in
337 Alizadeh, Example 11.11::
339 sage: J = JordanSpinEJA(3)
340 sage: p = J.characteristic_polynomial_of(); p
341 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
342 sage: xvec = J.one().to_vector()
346 By definition, the characteristic polynomial is a monic
347 degree-zero polynomial in a rank-zero algebra. Note that
348 Cayley-Hamilton is indeed satisfied since the polynomial
349 ``1`` evaluates to the identity element of the algebra on
352 sage: J = TrivialEJA()
353 sage: J.characteristic_polynomial_of()
360 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
361 a
= self
._charpoly
_coefficients
()
363 # We go to a bit of trouble here to reorder the
364 # indeterminates, so that it's easier to evaluate the
365 # characteristic polynomial at x's coordinates and get back
366 # something in terms of t, which is what we want.
367 S
= PolynomialRing(self
.base_ring(),'t')
371 S
= PolynomialRing(S
, R
.variable_names())
374 return (t
**r
+ sum( a
[k
]*(t
**k
) for k
in range(r
) ))
376 def coordinate_polynomial_ring(self
):
378 The multivariate polynomial ring in which this algebra's
379 :meth:`characteristic_polynomial_of` lives.
383 sage: from mjo.eja.eja_algebra import (HadamardEJA,
384 ....: RealSymmetricEJA)
388 sage: J = HadamardEJA(2)
389 sage: J.coordinate_polynomial_ring()
390 Multivariate Polynomial Ring in X1, X2...
391 sage: J = RealSymmetricEJA(3,QQ)
392 sage: J.coordinate_polynomial_ring()
393 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
396 var_names
= tuple( "X%d" % z
for z
in range(1, self
.dimension()+1) )
397 return PolynomialRing(self
.base_ring(), var_names
)
399 def inner_product(self
, x
, y
):
401 The inner product associated with this Euclidean Jordan algebra.
403 Defaults to the trace inner product, but can be overridden by
404 subclasses if they are sure that the necessary properties are
409 sage: from mjo.eja.eja_algebra import (random_eja,
411 ....: BilinearFormEJA)
415 Our inner product is "associative," which means the following for
416 a symmetric bilinear form::
418 sage: set_random_seed()
419 sage: J = random_eja()
420 sage: x,y,z = J.random_elements(3)
421 sage: (x*y).inner_product(z) == y.inner_product(x*z)
426 Ensure that this is the usual inner product for the algebras
429 sage: set_random_seed()
430 sage: J = HadamardEJA.random_instance()
431 sage: x,y = J.random_elements(2)
432 sage: actual = x.inner_product(y)
433 sage: expected = x.to_vector().inner_product(y.to_vector())
434 sage: actual == expected
437 Ensure that this is one-half of the trace inner-product in a
438 BilinearFormEJA that isn't just the reals (when ``n`` isn't
439 one). This is in Faraut and Koranyi, and also my "On the
442 sage: set_random_seed()
443 sage: J = BilinearFormEJA.random_instance()
444 sage: n = J.dimension()
445 sage: x = J.random_element()
446 sage: y = J.random_element()
447 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
450 B
= self
._inner
_product
_matrix
451 return (B
*x
.to_vector()).inner_product(y
.to_vector())
454 def is_trivial(self
):
456 Return whether or not this algebra is trivial.
458 A trivial algebra contains only the zero element.
462 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
467 sage: J = ComplexHermitianEJA(3)
473 sage: J = TrivialEJA()
478 return self
.dimension() == 0
481 def multiplication_table(self
):
483 Return a visual representation of this algebra's multiplication
484 table (on basis elements).
488 sage: from mjo.eja.eja_algebra import JordanSpinEJA
492 sage: J = JordanSpinEJA(4)
493 sage: J.multiplication_table()
494 +----++----+----+----+----+
495 | * || e0 | e1 | e2 | e3 |
496 +====++====+====+====+====+
497 | e0 || e0 | e1 | e2 | e3 |
498 +----++----+----+----+----+
499 | e1 || e1 | e0 | 0 | 0 |
500 +----++----+----+----+----+
501 | e2 || e2 | 0 | e0 | 0 |
502 +----++----+----+----+----+
503 | e3 || e3 | 0 | 0 | e0 |
504 +----++----+----+----+----+
507 M
= list(self
._multiplication
_table
) # copy
508 for i
in range(len(M
)):
509 # M had better be "square"
510 M
[i
] = [self
.monomial(i
)] + M
[i
]
511 M
= [["*"] + list(self
.gens())] + M
512 return table(M
, header_row
=True, header_column
=True, frame
=True)
515 def matrix_basis(self
):
517 Return an (often more natural) representation of this algebras
518 basis as an ordered tuple of matrices.
520 Every finite-dimensional Euclidean Jordan Algebra is a, up to
521 Jordan isomorphism, a direct sum of five simple
522 algebras---four of which comprise Hermitian matrices. And the
523 last type of algebra can of course be thought of as `n`-by-`1`
524 column matrices (ambiguusly called column vectors) to avoid
525 special cases. As a result, matrices (and column vectors) are
526 a natural representation format for Euclidean Jordan algebra
529 But, when we construct an algebra from a basis of matrices,
530 those matrix representations are lost in favor of coordinate
531 vectors *with respect to* that basis. We could eventually
532 convert back if we tried hard enough, but having the original
533 representations handy is valuable enough that we simply store
534 them and return them from this method.
536 Why implement this for non-matrix algebras? Avoiding special
537 cases for the :class:`BilinearFormEJA` pays with simplicity in
538 its own right. But mainly, we would like to be able to assume
539 that elements of a :class:`DirectSumEJA` can be displayed
540 nicely, without having to have special classes for direct sums
541 one of whose components was a matrix algebra.
545 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
546 ....: RealSymmetricEJA)
550 sage: J = RealSymmetricEJA(2)
552 Finite family {0: e0, 1: e1, 2: e2}
553 sage: J.matrix_basis()
555 [1 0] [ 0 0.7071067811865475?] [0 0]
556 [0 0], [0.7071067811865475? 0], [0 1]
561 sage: J = JordanSpinEJA(2)
563 Finite family {0: e0, 1: e1}
564 sage: J.matrix_basis()
570 if self
._matrix
_basis
is None:
571 M
= self
.matrix_space()
572 return tuple( M(b
.to_vector()) for b
in self
.basis() )
574 return self
._matrix
_basis
577 def matrix_space(self
):
579 Return the matrix space in which this algebra's elements live, if
580 we think of them as matrices (including column vectors of the
583 Generally this will be an `n`-by-`1` column-vector space,
584 except when the algebra is trivial. There it's `n`-by-`n`
585 (where `n` is zero), to ensure that two elements of the matrix
586 space (empty matrices) can be multiplied.
588 Matrix algebras override this with something more useful.
590 if self
.is_trivial():
591 return MatrixSpace(self
.base_ring(), 0)
592 elif self
._matrix
_basis
is None or len(self
._matrix
_basis
) == 0:
593 return MatrixSpace(self
.base_ring(), self
.dimension(), 1)
595 return self
._matrix
_basis
[0].matrix_space()
601 Return the unit element of this algebra.
605 sage: from mjo.eja.eja_algebra import (HadamardEJA,
610 sage: J = HadamardEJA(5)
612 e0 + e1 + e2 + e3 + e4
616 The identity element acts like the identity::
618 sage: set_random_seed()
619 sage: J = random_eja()
620 sage: x = J.random_element()
621 sage: J.one()*x == x and x*J.one() == x
624 The matrix of the unit element's operator is the identity::
626 sage: set_random_seed()
627 sage: J = random_eja()
628 sage: actual = J.one().operator().matrix()
629 sage: expected = matrix.identity(J.base_ring(), J.dimension())
630 sage: actual == expected
633 Ensure that the cached unit element (often precomputed by
634 hand) agrees with the computed one::
636 sage: set_random_seed()
637 sage: J = random_eja()
638 sage: cached = J.one()
639 sage: J.one.clear_cache()
640 sage: J.one() == cached
644 # We can brute-force compute the matrices of the operators
645 # that correspond to the basis elements of this algebra.
646 # If some linear combination of those basis elements is the
647 # algebra identity, then the same linear combination of
648 # their matrices has to be the identity matrix.
650 # Of course, matrices aren't vectors in sage, so we have to
651 # appeal to the "long vectors" isometry.
652 oper_vecs
= [ _mat2vec(g
.operator().matrix()) for g
in self
.gens() ]
654 # Now we use basic linear algebra to find the coefficients,
655 # of the matrices-as-vectors-linear-combination, which should
656 # work for the original algebra basis too.
657 A
= matrix(self
.base_ring(), oper_vecs
)
659 # We used the isometry on the left-hand side already, but we
660 # still need to do it for the right-hand side. Recall that we
661 # wanted something that summed to the identity matrix.
662 b
= _mat2vec( matrix
.identity(self
.base_ring(), self
.dimension()) )
664 # Now if there's an identity element in the algebra, this
665 # should work. We solve on the left to avoid having to
666 # transpose the matrix "A".
667 return self
.from_vector(A
.solve_left(b
))
670 def peirce_decomposition(self
, c
):
672 The Peirce decomposition of this algebra relative to the
675 In the future, this can be extended to a complete system of
676 orthogonal idempotents.
680 - ``c`` -- an idempotent of this algebra.
684 A triple (J0, J5, J1) containing two subalgebras and one subspace
687 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
688 corresponding to the eigenvalue zero.
690 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
691 corresponding to the eigenvalue one-half.
693 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
694 corresponding to the eigenvalue one.
696 These are the only possible eigenspaces for that operator, and this
697 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
698 orthogonal, and are subalgebras of this algebra with the appropriate
703 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
707 The canonical example comes from the symmetric matrices, which
708 decompose into diagonal and off-diagonal parts::
710 sage: J = RealSymmetricEJA(3)
711 sage: C = matrix(QQ, [ [1,0,0],
715 sage: J0,J5,J1 = J.peirce_decomposition(c)
717 Euclidean Jordan algebra of dimension 1...
719 Vector space of degree 6 and dimension 2...
721 Euclidean Jordan algebra of dimension 3...
722 sage: J0.one().to_matrix()
726 sage: orig_df = AA.options.display_format
727 sage: AA.options.display_format = 'radical'
728 sage: J.from_vector(J5.basis()[0]).to_matrix()
732 sage: J.from_vector(J5.basis()[1]).to_matrix()
736 sage: AA.options.display_format = orig_df
737 sage: J1.one().to_matrix()
744 Every algebra decomposes trivially with respect to its identity
747 sage: set_random_seed()
748 sage: J = random_eja()
749 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
750 sage: J0.dimension() == 0 and J5.dimension() == 0
752 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
755 The decomposition is into eigenspaces, and its components are
756 therefore necessarily orthogonal. Moreover, the identity
757 elements in the two subalgebras are the projections onto their
758 respective subspaces of the superalgebra's identity element::
760 sage: set_random_seed()
761 sage: J = random_eja()
762 sage: x = J.random_element()
763 sage: if not J.is_trivial():
764 ....: while x.is_nilpotent():
765 ....: x = J.random_element()
766 sage: c = x.subalgebra_idempotent()
767 sage: J0,J5,J1 = J.peirce_decomposition(c)
769 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
770 ....: w = w.superalgebra_element()
771 ....: y = J.from_vector(y)
772 ....: z = z.superalgebra_element()
773 ....: ipsum += w.inner_product(y).abs()
774 ....: ipsum += w.inner_product(z).abs()
775 ....: ipsum += y.inner_product(z).abs()
778 sage: J1(c) == J1.one()
780 sage: J0(J.one() - c) == J0.one()
784 if not c
.is_idempotent():
785 raise ValueError("element is not idempotent: %s" % c
)
787 from mjo
.eja
.eja_subalgebra
import FiniteDimensionalEuclideanJordanSubalgebra
789 # Default these to what they should be if they turn out to be
790 # trivial, because eigenspaces_left() won't return eigenvalues
791 # corresponding to trivial spaces (e.g. it returns only the
792 # eigenspace corresponding to lambda=1 if you take the
793 # decomposition relative to the identity element).
794 trivial
= FiniteDimensionalEuclideanJordanSubalgebra(self
, ())
795 J0
= trivial
# eigenvalue zero
796 J5
= VectorSpace(self
.base_ring(), 0) # eigenvalue one-half
797 J1
= trivial
# eigenvalue one
799 for (eigval
, eigspace
) in c
.operator().matrix().right_eigenspaces():
800 if eigval
== ~
(self
.base_ring()(2)):
803 gens
= tuple( self
.from_vector(b
) for b
in eigspace
.basis() )
804 subalg
= FiniteDimensionalEuclideanJordanSubalgebra(self
,
812 raise ValueError("unexpected eigenvalue: %s" % eigval
)
817 def random_element(self
, thorough
=False):
819 Return a random element of this algebra.
821 Our algebra superclass method only returns a linear
822 combination of at most two basis elements. We instead
823 want the vector space "random element" method that
824 returns a more diverse selection.
828 - ``thorough`` -- (boolean; default False) whether or not we
829 should generate irrational coefficients for the random
830 element when our base ring is irrational; this slows the
831 algebra operations to a crawl, but any truly random method
835 # For a general base ring... maybe we can trust this to do the
836 # right thing? Unlikely, but.
837 V
= self
.vector_space()
838 v
= V
.random_element()
840 if self
.base_ring() is AA
:
841 # The "random element" method of the algebraic reals is
842 # stupid at the moment, and only returns integers between
843 # -2 and 2, inclusive:
845 # https://trac.sagemath.org/ticket/30875
847 # Instead, we implement our own "random vector" method,
848 # and then coerce that into the algebra. We use the vector
849 # space degree here instead of the dimension because a
850 # subalgebra could (for example) be spanned by only two
851 # vectors, each with five coordinates. We need to
852 # generate all five coordinates.
854 v
*= QQbar
.random_element().real()
856 v
*= QQ
.random_element()
858 return self
.from_vector(V
.coordinate_vector(v
))
860 def random_elements(self
, count
, thorough
=False):
862 Return ``count`` random elements as a tuple.
866 - ``thorough`` -- (boolean; default False) whether or not we
867 should generate irrational coefficients for the random
868 elements when our base ring is irrational; this slows the
869 algebra operations to a crawl, but any truly random method
874 sage: from mjo.eja.eja_algebra import JordanSpinEJA
878 sage: J = JordanSpinEJA(3)
879 sage: x,y,z = J.random_elements(3)
880 sage: all( [ x in J, y in J, z in J ])
882 sage: len( J.random_elements(10) ) == 10
886 return tuple( self
.random_element(thorough
)
887 for idx
in range(count
) )
891 def _charpoly_coefficients(self
):
893 The `r` polynomial coefficients of the "characteristic polynomial
897 R
= self
.coordinate_polynomial_ring()
899 F
= R
.fraction_field()
902 # From a result in my book, these are the entries of the
903 # basis representation of L_x.
904 return sum( vars[k
]*self
.monomial(k
).operator().matrix()[i
,j
]
907 L_x
= matrix(F
, n
, n
, L_x_i_j
)
910 if self
.rank
.is_in_cache():
912 # There's no need to pad the system with redundant
913 # columns if we *know* they'll be redundant.
916 # Compute an extra power in case the rank is equal to
917 # the dimension (otherwise, we would stop at x^(r-1)).
918 x_powers
= [ (L_x
**k
)*self
.one().to_vector()
919 for k
in range(n
+1) ]
920 A
= matrix
.column(F
, x_powers
[:n
])
921 AE
= A
.extended_echelon_form()
928 # The theory says that only the first "r" coefficients are
929 # nonzero, and they actually live in the original polynomial
930 # ring and not the fraction field. We negate them because
931 # in the actual characteristic polynomial, they get moved
932 # to the other side where x^r lives.
933 return -A_rref
.solve_right(E
*b
).change_ring(R
)[:r
]
938 Return the rank of this EJA.
940 This is a cached method because we know the rank a priori for
941 all of the algebras we can construct. Thus we can avoid the
942 expensive ``_charpoly_coefficients()`` call unless we truly
943 need to compute the whole characteristic polynomial.
947 sage: from mjo.eja.eja_algebra import (HadamardEJA,
949 ....: RealSymmetricEJA,
950 ....: ComplexHermitianEJA,
951 ....: QuaternionHermitianEJA,
956 The rank of the Jordan spin algebra is always two::
958 sage: JordanSpinEJA(2).rank()
960 sage: JordanSpinEJA(3).rank()
962 sage: JordanSpinEJA(4).rank()
965 The rank of the `n`-by-`n` Hermitian real, complex, or
966 quaternion matrices is `n`::
968 sage: RealSymmetricEJA(4).rank()
970 sage: ComplexHermitianEJA(3).rank()
972 sage: QuaternionHermitianEJA(2).rank()
977 Ensure that every EJA that we know how to construct has a
978 positive integer rank, unless the algebra is trivial in
979 which case its rank will be zero::
981 sage: set_random_seed()
982 sage: J = random_eja()
986 sage: r > 0 or (r == 0 and J.is_trivial())
989 Ensure that computing the rank actually works, since the ranks
990 of all simple algebras are known and will be cached by default::
992 sage: set_random_seed() # long time
993 sage: J = random_eja() # long time
994 sage: caches = J.rank() # long time
995 sage: J.rank.clear_cache() # long time
996 sage: J.rank() == cached # long time
1000 return len(self
._charpoly
_coefficients
())
1003 def vector_space(self
):
1005 Return the vector space that underlies this algebra.
1009 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1013 sage: J = RealSymmetricEJA(2)
1014 sage: J.vector_space()
1015 Vector space of dimension 3 over...
1018 return self
.zero().to_vector().parent().ambient_vector_space()
1021 Element
= FiniteDimensionalEuclideanJordanAlgebraElement
1024 class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra
):
1026 Algebras whose basis consists of vectors with rational
1027 entries. Equivalently, algebras whose multiplication tables
1028 contain only rational coefficients.
1030 When an EJA has a basis that can be made rational, we can speed up
1031 the computation of its characteristic polynomial by doing it over
1032 ``QQ``. All of the named EJA constructors that we provide fall
1036 def _charpoly_coefficients(self
):
1038 Override the parent method with something that tries to compute
1039 over a faster (non-extension) field.
1043 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1047 The base ring of the resulting polynomial coefficients is what
1048 it should be, and not the rationals (unless the algebra was
1049 already over the rationals)::
1051 sage: J = JordanSpinEJA(3)
1052 sage: J._charpoly_coefficients()
1053 (X1^2 - X2^2 - X3^2, -2*X1)
1054 sage: a0 = J._charpoly_coefficients()[0]
1056 Algebraic Real Field
1057 sage: a0.base_ring()
1058 Algebraic Real Field
1061 if self
.base_ring() is QQ
:
1062 # There's no need to construct *another* algebra over the
1063 # rationals if this one is already over the rationals.
1064 superclass
= super(RationalBasisEuclideanJordanAlgebra
, self
)
1065 return superclass
._charpoly
_coefficients
()
1068 map(lambda x
: x
.to_vector(), ls
)
1069 for ls
in self
._multiplication
_table
1072 # Do the computation over the rationals. The answer will be
1073 # the same, because our basis coordinates are (essentially)
1075 J
= FiniteDimensionalEuclideanJordanAlgebra(QQ
,
1079 a
= J
._charpoly
_coefficients
()
1080 return tuple(map(lambda x
: x
.change_ring(self
.base_ring()), a
))
1083 class ConcreteEuclideanJordanAlgebra
:
1085 A class for the Euclidean Jordan algebras that we know by name.
1087 These are the Jordan algebras whose basis, multiplication table,
1088 rank, and so on are known a priori. More to the point, they are
1089 the Euclidean Jordan algebras for which we are able to conjure up
1090 a "random instance."
1094 sage: from mjo.eja.eja_algebra import ConcreteEuclideanJordanAlgebra
1098 Our basis is normalized with respect to the algebra's inner
1099 product, unless we specify otherwise::
1101 sage: set_random_seed()
1102 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1103 sage: all( b.norm() == 1 for b in J.gens() )
1106 Since our basis is orthonormal with respect to the algebra's inner
1107 product, and since we know that this algebra is an EJA, any
1108 left-multiplication operator's matrix will be symmetric because
1109 natural->EJA basis representation is an isometry and within the
1110 EJA the operator is self-adjoint by the Jordan axiom::
1112 sage: set_random_seed()
1113 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1114 sage: x = J.random_element()
1115 sage: x.operator().is_self_adjoint()
1120 def _max_random_instance_size():
1122 Return an integer "size" that is an upper bound on the size of
1123 this algebra when it is used in a random test
1124 case. Unfortunately, the term "size" is ambiguous -- when
1125 dealing with `R^n` under either the Hadamard or Jordan spin
1126 product, the "size" refers to the dimension `n`. When dealing
1127 with a matrix algebra (real symmetric or complex/quaternion
1128 Hermitian), it refers to the size of the matrix, which is far
1129 less than the dimension of the underlying vector space.
1131 This method must be implemented in each subclass.
1133 raise NotImplementedError
1136 def random_instance(cls
, field
=AA
, **kwargs
):
1138 Return a random instance of this type of algebra.
1140 This method should be implemented in each subclass.
1142 from sage
.misc
.prandom
import choice
1143 eja_class
= choice(cls
.__subclasses
__())
1144 return eja_class
.random_instance(field
)
1147 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra
):
1149 def __init__(self
, field
, basis
, normalize_basis
=True, **kwargs
):
1151 Compared to the superclass constructor, we take a basis instead of
1152 a multiplication table because the latter can be computed in terms
1153 of the former when the product is known (like it is here).
1155 # Used in this class's fast _charpoly_coefficients() override.
1156 self
._basis
_normalizers
= None
1158 # We're going to loop through this a few times, so now's a good
1159 # time to ensure that it isn't a generator expression.
1160 basis
= tuple(basis
)
1162 algebra_dim
= len(basis
)
1163 degree
= 0 # size of the matrices
1165 degree
= basis
[0].nrows()
1167 if algebra_dim
> 1 and normalize_basis
:
1168 # We'll need sqrt(2) to normalize the basis, and this
1169 # winds up in the multiplication table, so the whole
1170 # algebra needs to be over the field extension.
1171 R
= PolynomialRing(field
, 'z')
1174 if p
.is_irreducible():
1175 field
= field
.extension(p
, 'sqrt2', embedding
=RLF(2).sqrt())
1176 basis
= tuple( s
.change_ring(field
) for s
in basis
)
1177 self
._basis
_normalizers
= tuple(
1178 ~
(self
.matrix_inner_product(s
,s
).sqrt()) for s
in basis
)
1179 basis
= tuple(s
*c
for (s
,c
) in zip(basis
,self
._basis
_normalizers
))
1181 # Now compute the multiplication and inner product tables.
1182 # We have to do this *after* normalizing the basis, because
1183 # scaling affects the answers.
1184 V
= VectorSpace(field
, degree
**2)
1185 W
= V
.span_of_basis( _mat2vec(s
) for s
in basis
)
1186 mult_table
= [[W
.zero() for j
in range(algebra_dim
)]
1187 for i
in range(algebra_dim
)]
1188 ip_table
= [[W
.zero() for j
in range(algebra_dim
)]
1189 for i
in range(algebra_dim
)]
1190 for i
in range(algebra_dim
):
1191 for j
in range(algebra_dim
):
1192 mat_entry
= (basis
[i
]*basis
[j
] + basis
[j
]*basis
[i
])/2
1193 mult_table
[i
][j
] = W
.coordinate_vector(_mat2vec(mat_entry
))
1196 # HACK: ignore the error here if we don't need the
1197 # inner product (as is the case when we construct
1198 # a dummy QQ-algebra for fast charpoly coefficients.
1199 ip_table
[i
][j
] = self
.matrix_inner_product(basis
[i
],
1206 self
._inner
_product
_matrix
= matrix(field
,ip_table
)
1210 super(MatrixEuclideanJordanAlgebra
, self
).__init
__(field
,
1215 if algebra_dim
== 0:
1216 self
.one
.set_cache(self
.zero())
1218 n
= basis
[0].nrows()
1219 # The identity wrt (A,B) -> (AB + BA)/2 is independent of the
1220 # details of this algebra.
1221 self
.one
.set_cache(self(matrix
.identity(field
,n
)))
1225 def _charpoly_coefficients(self
):
1227 Override the parent method with something that tries to compute
1228 over a faster (non-extension) field.
1230 if self
._basis
_normalizers
is None or self
.base_ring() is QQ
:
1231 # We didn't normalize, or the basis we started with had
1232 # entries in a nice field already. Just compute the thing.
1233 return super(MatrixEuclideanJordanAlgebra
, self
)._charpoly
_coefficients
()
1235 basis
= ( (b
/n
) for (b
,n
) in zip(self
.matrix_basis(),
1236 self
._basis
_normalizers
) )
1238 # Do this over the rationals and convert back at the end.
1239 # Only works because we know the entries of the basis are
1240 # integers. The argument ``check_axioms=False`` is required
1241 # because the trace inner-product method for this
1242 # class is a stub and can't actually be checked.
1243 J
= MatrixEuclideanJordanAlgebra(QQ
,
1245 normalize_basis
=False,
1248 a
= J
._charpoly
_coefficients
()
1250 # Unfortunately, changing the basis does change the
1251 # coefficients of the characteristic polynomial, but since
1252 # these are really the coefficients of the "characteristic
1253 # polynomial of" function, everything is still nice and
1254 # unevaluated. It's therefore "obvious" how scaling the
1255 # basis affects the coordinate variables X1, X2, et
1256 # cetera. Scaling the first basis vector up by "n" adds a
1257 # factor of 1/n into every "X1" term, for example. So here
1258 # we simply undo the basis_normalizer scaling that we
1259 # performed earlier.
1261 # The a[0] access here is safe because trivial algebras
1262 # won't have any basis normalizers and therefore won't
1263 # make it to this "else" branch.
1264 XS
= a
[0].parent().gens()
1265 subs_dict
= { XS
[i
]: self
._basis
_normalizers
[i
]*XS
[i
]
1266 for i
in range(len(XS
)) }
1267 return tuple( a_i
.subs(subs_dict
) for a_i
in a
)
1273 Embed the matrix ``M`` into a space of real matrices.
1275 The matrix ``M`` can have entries in any field at the moment:
1276 the real numbers, complex numbers, or quaternions. And although
1277 they are not a field, we can probably support octonions at some
1278 point, too. This function returns a real matrix that "acts like"
1279 the original with respect to matrix multiplication; i.e.
1281 real_embed(M*N) = real_embed(M)*real_embed(N)
1284 raise NotImplementedError
1288 def real_unembed(M
):
1290 The inverse of :meth:`real_embed`.
1292 raise NotImplementedError
1295 def matrix_inner_product(cls
,X
,Y
):
1296 Xu
= cls
.real_unembed(X
)
1297 Yu
= cls
.real_unembed(Y
)
1298 tr
= (Xu
*Yu
).trace()
1301 # Works in QQ, AA, RDF, et cetera.
1303 except AttributeError:
1304 # A quaternion doesn't have a real() method, but does
1305 # have coefficient_tuple() method that returns the
1306 # coefficients of 1, i, j, and k -- in that order.
1307 return tr
.coefficient_tuple()[0]
1310 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra
):
1314 The identity function, for embedding real matrices into real
1320 def real_unembed(M
):
1322 The identity function, for unembedding real matrices from real
1328 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra
,
1329 ConcreteEuclideanJordanAlgebra
):
1331 The rank-n simple EJA consisting of real symmetric n-by-n
1332 matrices, the usual symmetric Jordan product, and the trace inner
1333 product. It has dimension `(n^2 + n)/2` over the reals.
1337 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1341 sage: J = RealSymmetricEJA(2)
1342 sage: e0, e1, e2 = J.gens()
1350 In theory, our "field" can be any subfield of the reals::
1352 sage: RealSymmetricEJA(2, RDF)
1353 Euclidean Jordan algebra of dimension 3 over Real Double Field
1354 sage: RealSymmetricEJA(2, RR)
1355 Euclidean Jordan algebra of dimension 3 over Real Field with
1356 53 bits of precision
1360 The dimension of this algebra is `(n^2 + n) / 2`::
1362 sage: set_random_seed()
1363 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1364 sage: n = ZZ.random_element(1, n_max)
1365 sage: J = RealSymmetricEJA(n)
1366 sage: J.dimension() == (n^2 + n)/2
1369 The Jordan multiplication is what we think it is::
1371 sage: set_random_seed()
1372 sage: J = RealSymmetricEJA.random_instance()
1373 sage: x,y = J.random_elements(2)
1374 sage: actual = (x*y).to_matrix()
1375 sage: X = x.to_matrix()
1376 sage: Y = y.to_matrix()
1377 sage: expected = (X*Y + Y*X)/2
1378 sage: actual == expected
1380 sage: J(expected) == x*y
1383 We can change the generator prefix::
1385 sage: RealSymmetricEJA(3, prefix='q').gens()
1386 (q0, q1, q2, q3, q4, q5)
1388 We can construct the (trivial) algebra of rank zero::
1390 sage: RealSymmetricEJA(0)
1391 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1395 def _denormalized_basis(cls
, n
, field
):
1397 Return a basis for the space of real symmetric n-by-n matrices.
1401 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1405 sage: set_random_seed()
1406 sage: n = ZZ.random_element(1,5)
1407 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1408 sage: all( M.is_symmetric() for M in B)
1412 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1416 for j
in range(i
+1):
1417 Eij
= matrix(field
, n
, lambda k
,l
: k
==i
and l
==j
)
1421 Sij
= Eij
+ Eij
.transpose()
1427 def _max_random_instance_size():
1428 return 4 # Dimension 10
1431 def random_instance(cls
, field
=AA
, **kwargs
):
1433 Return a random instance of this type of algebra.
1435 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
1436 return cls(n
, field
, **kwargs
)
1438 def __init__(self
, n
, field
=AA
, **kwargs
):
1439 basis
= self
._denormalized
_basis
(n
, field
)
1440 super(RealSymmetricEJA
, self
).__init
__(field
,
1444 self
.rank
.set_cache(n
)
1447 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra
):
1451 Embed the n-by-n complex matrix ``M`` into the space of real
1452 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1453 bi` to the block matrix ``[[a,b],[-b,a]]``.
1457 sage: from mjo.eja.eja_algebra import \
1458 ....: ComplexMatrixEuclideanJordanAlgebra
1462 sage: F = QuadraticField(-1, 'I')
1463 sage: x1 = F(4 - 2*i)
1464 sage: x2 = F(1 + 2*i)
1467 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1468 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1477 Embedding is a homomorphism (isomorphism, in fact)::
1479 sage: set_random_seed()
1480 sage: n = ZZ.random_element(3)
1481 sage: F = QuadraticField(-1, 'I')
1482 sage: X = random_matrix(F, n)
1483 sage: Y = random_matrix(F, n)
1484 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1485 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1486 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1493 raise ValueError("the matrix 'M' must be square")
1495 # We don't need any adjoined elements...
1496 field
= M
.base_ring().base_ring()
1500 a
= z
.list()[0] # real part, I guess
1501 b
= z
.list()[1] # imag part, I guess
1502 blocks
.append(matrix(field
, 2, [[a
,b
],[-b
,a
]]))
1504 return matrix
.block(field
, n
, blocks
)
1508 def real_unembed(M
):
1510 The inverse of _embed_complex_matrix().
1514 sage: from mjo.eja.eja_algebra import \
1515 ....: ComplexMatrixEuclideanJordanAlgebra
1519 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1520 ....: [-2, 1, -4, 3],
1521 ....: [ 9, 10, 11, 12],
1522 ....: [-10, 9, -12, 11] ])
1523 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1525 [ 10*I + 9 12*I + 11]
1529 Unembedding is the inverse of embedding::
1531 sage: set_random_seed()
1532 sage: F = QuadraticField(-1, 'I')
1533 sage: M = random_matrix(F, 3)
1534 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1535 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1541 raise ValueError("the matrix 'M' must be square")
1542 if not n
.mod(2).is_zero():
1543 raise ValueError("the matrix 'M' must be a complex embedding")
1545 # If "M" was normalized, its base ring might have roots
1546 # adjoined and they can stick around after unembedding.
1547 field
= M
.base_ring()
1548 R
= PolynomialRing(field
, 'z')
1551 # Sage doesn't know how to embed AA into QQbar, i.e. how
1552 # to adjoin sqrt(-1) to AA.
1555 F
= field
.extension(z
**2 + 1, 'I', embedding
=CLF(-1).sqrt())
1558 # Go top-left to bottom-right (reading order), converting every
1559 # 2-by-2 block we see to a single complex element.
1561 for k
in range(n
/2):
1562 for j
in range(n
/2):
1563 submat
= M
[2*k
:2*k
+2,2*j
:2*j
+2]
1564 if submat
[0,0] != submat
[1,1]:
1565 raise ValueError('bad on-diagonal submatrix')
1566 if submat
[0,1] != -submat
[1,0]:
1567 raise ValueError('bad off-diagonal submatrix')
1568 z
= submat
[0,0] + submat
[0,1]*i
1571 return matrix(F
, n
/2, elements
)
1575 def matrix_inner_product(cls
,X
,Y
):
1577 Compute a matrix inner product in this algebra directly from
1582 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1586 This gives the same answer as the slow, default method implemented
1587 in :class:`MatrixEuclideanJordanAlgebra`::
1589 sage: set_random_seed()
1590 sage: J = ComplexHermitianEJA.random_instance()
1591 sage: x,y = J.random_elements(2)
1592 sage: Xe = x.to_matrix()
1593 sage: Ye = y.to_matrix()
1594 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1595 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1596 sage: expected = (X*Y).trace().real()
1597 sage: actual = ComplexHermitianEJA.matrix_inner_product(Xe,Ye)
1598 sage: actual == expected
1602 return RealMatrixEuclideanJordanAlgebra
.matrix_inner_product(X
,Y
)/2
1605 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra
,
1606 ConcreteEuclideanJordanAlgebra
):
1608 The rank-n simple EJA consisting of complex Hermitian n-by-n
1609 matrices over the real numbers, the usual symmetric Jordan product,
1610 and the real-part-of-trace inner product. It has dimension `n^2` over
1615 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1619 In theory, our "field" can be any subfield of the reals::
1621 sage: ComplexHermitianEJA(2, RDF)
1622 Euclidean Jordan algebra of dimension 4 over Real Double Field
1623 sage: ComplexHermitianEJA(2, RR)
1624 Euclidean Jordan algebra of dimension 4 over Real Field with
1625 53 bits of precision
1629 The dimension of this algebra is `n^2`::
1631 sage: set_random_seed()
1632 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
1633 sage: n = ZZ.random_element(1, n_max)
1634 sage: J = ComplexHermitianEJA(n)
1635 sage: J.dimension() == n^2
1638 The Jordan multiplication is what we think it is::
1640 sage: set_random_seed()
1641 sage: J = ComplexHermitianEJA.random_instance()
1642 sage: x,y = J.random_elements(2)
1643 sage: actual = (x*y).to_matrix()
1644 sage: X = x.to_matrix()
1645 sage: Y = y.to_matrix()
1646 sage: expected = (X*Y + Y*X)/2
1647 sage: actual == expected
1649 sage: J(expected) == x*y
1652 We can change the generator prefix::
1654 sage: ComplexHermitianEJA(2, prefix='z').gens()
1657 We can construct the (trivial) algebra of rank zero::
1659 sage: ComplexHermitianEJA(0)
1660 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1665 def _denormalized_basis(cls
, n
, field
):
1667 Returns a basis for the space of complex Hermitian n-by-n matrices.
1669 Why do we embed these? Basically, because all of numerical linear
1670 algebra assumes that you're working with vectors consisting of `n`
1671 entries from a field and scalars from the same field. There's no way
1672 to tell SageMath that (for example) the vectors contain complex
1673 numbers, while the scalar field is real.
1677 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1681 sage: set_random_seed()
1682 sage: n = ZZ.random_element(1,5)
1683 sage: field = QuadraticField(2, 'sqrt2')
1684 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1685 sage: all( M.is_symmetric() for M in B)
1689 R
= PolynomialRing(field
, 'z')
1691 F
= field
.extension(z
**2 + 1, 'I')
1694 # This is like the symmetric case, but we need to be careful:
1696 # * We want conjugate-symmetry, not just symmetry.
1697 # * The diagonal will (as a result) be real.
1701 for j
in range(i
+1):
1702 Eij
= matrix(F
, n
, lambda k
,l
: k
==i
and l
==j
)
1704 Sij
= cls
.real_embed(Eij
)
1707 # The second one has a minus because it's conjugated.
1708 Sij_real
= cls
.real_embed(Eij
+ Eij
.transpose())
1710 Sij_imag
= cls
.real_embed(I
*Eij
- I
*Eij
.transpose())
1713 # Since we embedded these, we can drop back to the "field" that we
1714 # started with instead of the complex extension "F".
1715 return ( s
.change_ring(field
) for s
in S
)
1718 def __init__(self
, n
, field
=AA
, **kwargs
):
1719 basis
= self
._denormalized
_basis
(n
,field
)
1720 super(ComplexHermitianEJA
,self
).__init
__(field
,
1724 self
.rank
.set_cache(n
)
1727 def _max_random_instance_size():
1728 return 3 # Dimension 9
1731 def random_instance(cls
, field
=AA
, **kwargs
):
1733 Return a random instance of this type of algebra.
1735 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
1736 return cls(n
, field
, **kwargs
)
1738 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra
):
1742 Embed the n-by-n quaternion matrix ``M`` into the space of real
1743 matrices of size 4n-by-4n by first sending each quaternion entry `z
1744 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1745 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1750 sage: from mjo.eja.eja_algebra import \
1751 ....: QuaternionMatrixEuclideanJordanAlgebra
1755 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1756 sage: i,j,k = Q.gens()
1757 sage: x = 1 + 2*i + 3*j + 4*k
1758 sage: M = matrix(Q, 1, [[x]])
1759 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1765 Embedding is a homomorphism (isomorphism, in fact)::
1767 sage: set_random_seed()
1768 sage: n = ZZ.random_element(2)
1769 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1770 sage: X = random_matrix(Q, n)
1771 sage: Y = random_matrix(Q, n)
1772 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1773 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1774 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1779 quaternions
= M
.base_ring()
1782 raise ValueError("the matrix 'M' must be square")
1784 F
= QuadraticField(-1, 'I')
1789 t
= z
.coefficient_tuple()
1794 cplxM
= matrix(F
, 2, [[ a
+ b
*i
, c
+ d
*i
],
1795 [-c
+ d
*i
, a
- b
*i
]])
1796 realM
= ComplexMatrixEuclideanJordanAlgebra
.real_embed(cplxM
)
1797 blocks
.append(realM
)
1799 # We should have real entries by now, so use the realest field
1800 # we've got for the return value.
1801 return matrix
.block(quaternions
.base_ring(), n
, blocks
)
1806 def real_unembed(M
):
1808 The inverse of _embed_quaternion_matrix().
1812 sage: from mjo.eja.eja_algebra import \
1813 ....: QuaternionMatrixEuclideanJordanAlgebra
1817 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1818 ....: [-2, 1, -4, 3],
1819 ....: [-3, 4, 1, -2],
1820 ....: [-4, -3, 2, 1]])
1821 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1822 [1 + 2*i + 3*j + 4*k]
1826 Unembedding is the inverse of embedding::
1828 sage: set_random_seed()
1829 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1830 sage: M = random_matrix(Q, 3)
1831 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1832 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1838 raise ValueError("the matrix 'M' must be square")
1839 if not n
.mod(4).is_zero():
1840 raise ValueError("the matrix 'M' must be a quaternion embedding")
1842 # Use the base ring of the matrix to ensure that its entries can be
1843 # multiplied by elements of the quaternion algebra.
1844 field
= M
.base_ring()
1845 Q
= QuaternionAlgebra(field
,-1,-1)
1848 # Go top-left to bottom-right (reading order), converting every
1849 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1852 for l
in range(n
/4):
1853 for m
in range(n
/4):
1854 submat
= ComplexMatrixEuclideanJordanAlgebra
.real_unembed(
1855 M
[4*l
:4*l
+4,4*m
:4*m
+4] )
1856 if submat
[0,0] != submat
[1,1].conjugate():
1857 raise ValueError('bad on-diagonal submatrix')
1858 if submat
[0,1] != -submat
[1,0].conjugate():
1859 raise ValueError('bad off-diagonal submatrix')
1860 z
= submat
[0,0].real()
1861 z
+= submat
[0,0].imag()*i
1862 z
+= submat
[0,1].real()*j
1863 z
+= submat
[0,1].imag()*k
1866 return matrix(Q
, n
/4, elements
)
1870 def matrix_inner_product(cls
,X
,Y
):
1872 Compute a matrix inner product in this algebra directly from
1877 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1881 This gives the same answer as the slow, default method implemented
1882 in :class:`MatrixEuclideanJordanAlgebra`::
1884 sage: set_random_seed()
1885 sage: J = QuaternionHermitianEJA.random_instance()
1886 sage: x,y = J.random_elements(2)
1887 sage: Xe = x.to_matrix()
1888 sage: Ye = y.to_matrix()
1889 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1890 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1891 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1892 sage: actual = QuaternionHermitianEJA.matrix_inner_product(Xe,Ye)
1893 sage: actual == expected
1897 return RealMatrixEuclideanJordanAlgebra
.matrix_inner_product(X
,Y
)/4
1900 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra
,
1901 ConcreteEuclideanJordanAlgebra
):
1903 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1904 matrices, the usual symmetric Jordan product, and the
1905 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1910 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1914 In theory, our "field" can be any subfield of the reals::
1916 sage: QuaternionHermitianEJA(2, RDF)
1917 Euclidean Jordan algebra of dimension 6 over Real Double Field
1918 sage: QuaternionHermitianEJA(2, RR)
1919 Euclidean Jordan algebra of dimension 6 over Real Field with
1920 53 bits of precision
1924 The dimension of this algebra is `2*n^2 - n`::
1926 sage: set_random_seed()
1927 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
1928 sage: n = ZZ.random_element(1, n_max)
1929 sage: J = QuaternionHermitianEJA(n)
1930 sage: J.dimension() == 2*(n^2) - n
1933 The Jordan multiplication is what we think it is::
1935 sage: set_random_seed()
1936 sage: J = QuaternionHermitianEJA.random_instance()
1937 sage: x,y = J.random_elements(2)
1938 sage: actual = (x*y).to_matrix()
1939 sage: X = x.to_matrix()
1940 sage: Y = y.to_matrix()
1941 sage: expected = (X*Y + Y*X)/2
1942 sage: actual == expected
1944 sage: J(expected) == x*y
1947 We can change the generator prefix::
1949 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1950 (a0, a1, a2, a3, a4, a5)
1952 We can construct the (trivial) algebra of rank zero::
1954 sage: QuaternionHermitianEJA(0)
1955 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1959 def _denormalized_basis(cls
, n
, field
):
1961 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1963 Why do we embed these? Basically, because all of numerical
1964 linear algebra assumes that you're working with vectors consisting
1965 of `n` entries from a field and scalars from the same field. There's
1966 no way to tell SageMath that (for example) the vectors contain
1967 complex numbers, while the scalar field is real.
1971 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1975 sage: set_random_seed()
1976 sage: n = ZZ.random_element(1,5)
1977 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1978 sage: all( M.is_symmetric() for M in B )
1982 Q
= QuaternionAlgebra(QQ
,-1,-1)
1985 # This is like the symmetric case, but we need to be careful:
1987 # * We want conjugate-symmetry, not just symmetry.
1988 # * The diagonal will (as a result) be real.
1992 for j
in range(i
+1):
1993 Eij
= matrix(Q
, n
, lambda k
,l
: k
==i
and l
==j
)
1995 Sij
= cls
.real_embed(Eij
)
1998 # The second, third, and fourth ones have a minus
1999 # because they're conjugated.
2000 Sij_real
= cls
.real_embed(Eij
+ Eij
.transpose())
2002 Sij_I
= cls
.real_embed(I
*Eij
- I
*Eij
.transpose())
2004 Sij_J
= cls
.real_embed(J
*Eij
- J
*Eij
.transpose())
2006 Sij_K
= cls
.real_embed(K
*Eij
- K
*Eij
.transpose())
2009 # Since we embedded these, we can drop back to the "field" that we
2010 # started with instead of the quaternion algebra "Q".
2011 return ( s
.change_ring(field
) for s
in S
)
2014 def __init__(self
, n
, field
=AA
, **kwargs
):
2015 basis
= self
._denormalized
_basis
(n
,field
)
2016 super(QuaternionHermitianEJA
,self
).__init
__(field
,
2020 self
.rank
.set_cache(n
)
2023 def _max_random_instance_size():
2025 The maximum rank of a random QuaternionHermitianEJA.
2027 return 2 # Dimension 6
2030 def random_instance(cls
, field
=AA
, **kwargs
):
2032 Return a random instance of this type of algebra.
2034 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
2035 return cls(n
, field
, **kwargs
)
2038 class HadamardEJA(RationalBasisEuclideanJordanAlgebra
,
2039 ConcreteEuclideanJordanAlgebra
):
2041 Return the Euclidean Jordan Algebra corresponding to the set
2042 `R^n` under the Hadamard product.
2044 Note: this is nothing more than the Cartesian product of ``n``
2045 copies of the spin algebra. Once Cartesian product algebras
2046 are implemented, this can go.
2050 sage: from mjo.eja.eja_algebra import HadamardEJA
2054 This multiplication table can be verified by hand::
2056 sage: J = HadamardEJA(3)
2057 sage: e0,e1,e2 = J.gens()
2073 We can change the generator prefix::
2075 sage: HadamardEJA(3, prefix='r').gens()
2079 def __init__(self
, n
, field
=AA
, **kwargs
):
2080 V
= VectorSpace(field
, n
)
2081 mult_table
= [ [ V
.gen(i
)*(i
== j
) for j
in range(n
) ]
2084 # Inner products are real numbers and not algebra
2085 # elements, so once we turn the algebra element
2086 # into a vector in inner_product(), we never go
2087 # back. As a result -- contrary to what we do with
2088 # self._multiplication_table -- we store the inner
2089 # product table as a plain old matrix and not as
2090 # an algebra operator.
2091 ip_table
= matrix
.identity(field
,n
)
2092 self
._inner
_product
_matrix
= ip_table
2094 super(HadamardEJA
, self
).__init
__(field
,
2098 self
.rank
.set_cache(n
)
2101 self
.one
.set_cache( self
.zero() )
2103 self
.one
.set_cache( sum(self
.gens()) )
2106 def _max_random_instance_size():
2108 The maximum dimension of a random HadamardEJA.
2113 def random_instance(cls
, field
=AA
, **kwargs
):
2115 Return a random instance of this type of algebra.
2117 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
2118 return cls(n
, field
, **kwargs
)
2121 class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra
,
2122 ConcreteEuclideanJordanAlgebra
):
2124 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2125 with the half-trace inner product and jordan product ``x*y =
2126 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2127 a symmetric positive-definite "bilinear form" matrix. Its
2128 dimension is the size of `B`, and it has rank two in dimensions
2129 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2130 the identity matrix of order ``n``.
2132 We insist that the one-by-one upper-left identity block of `B` be
2133 passed in as well so that we can be passed a matrix of size zero
2134 to construct a trivial algebra.
2138 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2139 ....: JordanSpinEJA)
2143 When no bilinear form is specified, the identity matrix is used,
2144 and the resulting algebra is the Jordan spin algebra::
2146 sage: B = matrix.identity(AA,3)
2147 sage: J0 = BilinearFormEJA(B)
2148 sage: J1 = JordanSpinEJA(3)
2149 sage: J0.multiplication_table() == J0.multiplication_table()
2152 An error is raised if the matrix `B` does not correspond to a
2153 positive-definite bilinear form::
2155 sage: B = matrix.random(QQ,2,3)
2156 sage: J = BilinearFormEJA(B)
2157 Traceback (most recent call last):
2159 ValueError: bilinear form is not positive-definite
2160 sage: B = matrix.zero(QQ,3)
2161 sage: J = BilinearFormEJA(B)
2162 Traceback (most recent call last):
2164 ValueError: bilinear form is not positive-definite
2168 We can create a zero-dimensional algebra::
2170 sage: B = matrix.identity(AA,0)
2171 sage: J = BilinearFormEJA(B)
2175 We can check the multiplication condition given in the Jordan, von
2176 Neumann, and Wigner paper (and also discussed on my "On the
2177 symmetry..." paper). Note that this relies heavily on the standard
2178 choice of basis, as does anything utilizing the bilinear form matrix::
2180 sage: set_random_seed()
2181 sage: n = ZZ.random_element(5)
2182 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2183 sage: B11 = matrix.identity(QQ,1)
2184 sage: B22 = M.transpose()*M
2185 sage: B = block_matrix(2,2,[ [B11,0 ],
2187 sage: J = BilinearFormEJA(B)
2188 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2189 sage: V = J.vector_space()
2190 sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
2191 ....: for ei in eis ]
2192 sage: actual = [ sis[i]*sis[j]
2193 ....: for i in range(n-1)
2194 ....: for j in range(n-1) ]
2195 sage: expected = [ J.one() if i == j else J.zero()
2196 ....: for i in range(n-1)
2197 ....: for j in range(n-1) ]
2198 sage: actual == expected
2201 def __init__(self
, B
, field
=AA
, **kwargs
):
2204 if not B
.is_positive_definite():
2205 raise ValueError("bilinear form is not positive-definite")
2207 V
= VectorSpace(field
, n
)
2208 mult_table
= [[V
.zero() for j
in range(n
)] for i
in range(n
)]
2217 z0
= (B
*x
).inner_product(y
)
2218 zbar
= y0
*xbar
+ x0
*ybar
2219 z
= V([z0
] + zbar
.list())
2220 mult_table
[i
][j
] = z
2222 # Inner products are real numbers and not algebra
2223 # elements, so once we turn the algebra element
2224 # into a vector in inner_product(), we never go
2225 # back. As a result -- contrary to what we do with
2226 # self._multiplication_table -- we store the inner
2227 # product table as a plain old matrix and not as
2228 # an algebra operator.
2230 self
._inner
_product
_matrix
= ip_table
2232 super(BilinearFormEJA
, self
).__init
__(field
,
2237 # The rank of this algebra is two, unless we're in a
2238 # one-dimensional ambient space (because the rank is bounded
2239 # by the ambient dimension).
2240 self
.rank
.set_cache(min(n
,2))
2243 self
.one
.set_cache( self
.zero() )
2245 self
.one
.set_cache( self
.monomial(0) )
2248 def _max_random_instance_size():
2250 The maximum dimension of a random BilinearFormEJA.
2255 def random_instance(cls
, field
=AA
, **kwargs
):
2257 Return a random instance of this algebra.
2259 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
2261 B
= matrix
.identity(field
, n
)
2262 return cls(B
, field
, **kwargs
)
2264 B11
= matrix
.identity(field
,1)
2265 M
= matrix
.random(field
, n
-1)
2266 I
= matrix
.identity(field
, n
-1)
2267 alpha
= field
.zero()
2268 while alpha
.is_zero():
2269 alpha
= field
.random_element().abs()
2270 B22
= M
.transpose()*M
+ alpha
*I
2272 from sage
.matrix
.special
import block_matrix
2273 B
= block_matrix(2,2, [ [B11
, ZZ(0) ],
2276 return cls(B
, field
, **kwargs
)
2279 class JordanSpinEJA(BilinearFormEJA
):
2281 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2282 with the usual inner product and jordan product ``x*y =
2283 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2288 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2292 This multiplication table can be verified by hand::
2294 sage: J = JordanSpinEJA(4)
2295 sage: e0,e1,e2,e3 = J.gens()
2311 We can change the generator prefix::
2313 sage: JordanSpinEJA(2, prefix='B').gens()
2318 Ensure that we have the usual inner product on `R^n`::
2320 sage: set_random_seed()
2321 sage: J = JordanSpinEJA.random_instance()
2322 sage: x,y = J.random_elements(2)
2323 sage: actual = x.inner_product(y)
2324 sage: expected = x.to_vector().inner_product(y.to_vector())
2325 sage: actual == expected
2329 def __init__(self
, n
, field
=AA
, **kwargs
):
2330 # This is a special case of the BilinearFormEJA with the identity
2331 # matrix as its bilinear form.
2332 B
= matrix
.identity(field
, n
)
2333 super(JordanSpinEJA
, self
).__init
__(B
, field
, **kwargs
)
2336 def _max_random_instance_size():
2338 The maximum dimension of a random JordanSpinEJA.
2343 def random_instance(cls
, field
=AA
, **kwargs
):
2345 Return a random instance of this type of algebra.
2347 Needed here to override the implementation for ``BilinearFormEJA``.
2349 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
2350 return cls(n
, field
, **kwargs
)
2353 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra
,
2354 ConcreteEuclideanJordanAlgebra
):
2356 The trivial Euclidean Jordan algebra consisting of only a zero element.
2360 sage: from mjo.eja.eja_algebra import TrivialEJA
2364 sage: J = TrivialEJA()
2371 sage: 7*J.one()*12*J.one()
2373 sage: J.one().inner_product(J.one())
2375 sage: J.one().norm()
2377 sage: J.one().subalgebra_generated_by()
2378 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2383 def __init__(self
, field
=AA
, **kwargs
):
2385 self
._inner
_product
_matrix
= matrix(field
,0)
2386 super(TrivialEJA
, self
).__init
__(field
,
2390 # The rank is zero using my definition, namely the dimension of the
2391 # largest subalgebra generated by any element.
2392 self
.rank
.set_cache(0)
2393 self
.one
.set_cache( self
.zero() )
2396 def random_instance(cls
, field
=AA
, **kwargs
):
2397 # We don't take a "size" argument so the superclass method is
2398 # inappropriate for us.
2399 return cls(field
, **kwargs
)
2401 class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra
):
2403 The external (orthogonal) direct sum of two other Euclidean Jordan
2404 algebras. Essentially the Cartesian product of its two factors.
2405 Every Euclidean Jordan algebra decomposes into an orthogonal
2406 direct sum of simple Euclidean Jordan algebras, so no generality
2407 is lost by providing only this construction.
2411 sage: from mjo.eja.eja_algebra import (random_eja,
2413 ....: RealSymmetricEJA,
2418 sage: J1 = HadamardEJA(2)
2419 sage: J2 = RealSymmetricEJA(3)
2420 sage: J = DirectSumEJA(J1,J2)
2428 The external direct sum construction is only valid when the two factors
2429 have the same base ring; an error is raised otherwise::
2431 sage: set_random_seed()
2432 sage: J1 = random_eja(AA)
2433 sage: J2 = random_eja(QQ)
2434 sage: J = DirectSumEJA(J1,J2)
2435 Traceback (most recent call last):
2437 ValueError: algebras must share the same base field
2440 def __init__(self
, J1
, J2
, **kwargs
):
2441 if J1
.base_ring() != J2
.base_ring():
2442 raise ValueError("algebras must share the same base field")
2443 field
= J1
.base_ring()
2445 self
._factors
= (J1
, J2
)
2449 V
= VectorSpace(field
, n
)
2450 mult_table
= [ [ V
.zero() for j
in range(n
) ]
2454 p
= (J1
.monomial(i
)*J1
.monomial(j
)).to_vector()
2455 mult_table
[i
][j
] = V(p
.list() + [field
.zero()]*n2
)
2459 p
= (J2
.monomial(i
)*J2
.monomial(j
)).to_vector()
2460 mult_table
[n1
+i
][n1
+j
] = V([field
.zero()]*n1
+ p
.list())
2462 super(DirectSumEJA
, self
).__init
__(field
,
2466 self
.rank
.set_cache(J1
.rank() + J2
.rank())
2471 Return the pair of this algebra's factors.
2475 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2476 ....: JordanSpinEJA,
2481 sage: J1 = HadamardEJA(2,QQ)
2482 sage: J2 = JordanSpinEJA(3,QQ)
2483 sage: J = DirectSumEJA(J1,J2)
2485 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2486 Euclidean Jordan algebra of dimension 3 over Rational Field)
2489 return self
._factors
2491 def projections(self
):
2493 Return a pair of projections onto this algebra's factors.
2497 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
2498 ....: ComplexHermitianEJA,
2503 sage: J1 = JordanSpinEJA(2)
2504 sage: J2 = ComplexHermitianEJA(2)
2505 sage: J = DirectSumEJA(J1,J2)
2506 sage: (pi_left, pi_right) = J.projections()
2507 sage: J.one().to_vector()
2509 sage: pi_left(J.one()).to_vector()
2511 sage: pi_right(J.one()).to_vector()
2515 (J1
,J2
) = self
.factors()
2518 V_basis
= self
.vector_space().basis()
2519 # Need to specify the dimensions explicitly so that we don't
2520 # wind up with a zero-by-zero matrix when we want e.g. a
2521 # zero-by-two matrix (important for composing things).
2522 P1
= matrix(self
.base_ring(), m
, m
+n
, V_basis
[:m
])
2523 P2
= matrix(self
.base_ring(), n
, m
+n
, V_basis
[m
:])
2524 pi_left
= FiniteDimensionalEuclideanJordanAlgebraOperator(self
,J1
,P1
)
2525 pi_right
= FiniteDimensionalEuclideanJordanAlgebraOperator(self
,J2
,P2
)
2526 return (pi_left
, pi_right
)
2528 def inclusions(self
):
2530 Return the pair of inclusion maps from our factors into us.
2534 sage: from mjo.eja.eja_algebra import (random_eja,
2535 ....: JordanSpinEJA,
2536 ....: RealSymmetricEJA,
2541 sage: J1 = JordanSpinEJA(3)
2542 sage: J2 = RealSymmetricEJA(2)
2543 sage: J = DirectSumEJA(J1,J2)
2544 sage: (iota_left, iota_right) = J.inclusions()
2545 sage: iota_left(J1.zero()) == J.zero()
2547 sage: iota_right(J2.zero()) == J.zero()
2549 sage: J1.one().to_vector()
2551 sage: iota_left(J1.one()).to_vector()
2553 sage: J2.one().to_vector()
2555 sage: iota_right(J2.one()).to_vector()
2557 sage: J.one().to_vector()
2562 Composing a projection with the corresponding inclusion should
2563 produce the identity map, and mismatching them should produce
2566 sage: set_random_seed()
2567 sage: J1 = random_eja()
2568 sage: J2 = random_eja()
2569 sage: J = DirectSumEJA(J1,J2)
2570 sage: (iota_left, iota_right) = J.inclusions()
2571 sage: (pi_left, pi_right) = J.projections()
2572 sage: pi_left*iota_left == J1.one().operator()
2574 sage: pi_right*iota_right == J2.one().operator()
2576 sage: (pi_left*iota_right).is_zero()
2578 sage: (pi_right*iota_left).is_zero()
2582 (J1
,J2
) = self
.factors()
2585 V_basis
= self
.vector_space().basis()
2586 # Need to specify the dimensions explicitly so that we don't
2587 # wind up with a zero-by-zero matrix when we want e.g. a
2588 # two-by-zero matrix (important for composing things).
2589 I1
= matrix
.column(self
.base_ring(), m
, m
+n
, V_basis
[:m
])
2590 I2
= matrix
.column(self
.base_ring(), n
, m
+n
, V_basis
[m
:])
2591 iota_left
= FiniteDimensionalEuclideanJordanAlgebraOperator(J1
,self
,I1
)
2592 iota_right
= FiniteDimensionalEuclideanJordanAlgebraOperator(J2
,self
,I2
)
2593 return (iota_left
, iota_right
)
2595 def inner_product(self
, x
, y
):
2597 The standard Cartesian inner-product.
2599 We project ``x`` and ``y`` onto our factors, and add up the
2600 inner-products from the subalgebras.
2605 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2606 ....: QuaternionHermitianEJA,
2611 sage: J1 = HadamardEJA(3,QQ)
2612 sage: J2 = QuaternionHermitianEJA(2,QQ,normalize_basis=False)
2613 sage: J = DirectSumEJA(J1,J2)
2618 sage: x1.inner_product(x2)
2620 sage: y1.inner_product(y2)
2622 sage: J.one().inner_product(J.one())
2626 (pi_left
, pi_right
) = self
.projections()
2632 return (x1
.inner_product(y1
) + x2
.inner_product(y2
))
2636 random_eja
= ConcreteEuclideanJordanAlgebra
.random_instance