]>
gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/cone/doubly_nonnegative.py
2 The doubly-nonnegative cone in `S^{n}` is the set of all such matrices
5 a) are positive semidefinite
7 b) have only nonnegative entries
9 It is represented typically by either `\mathcal{D}^{n}` or
14 from sage
.all
import *
16 from mjo
.cone
.symmetric_psd
import (factor_psd
,
19 from mjo
.basis_repr
import basis_repr
22 def is_doubly_nonnegative(A
):
24 Determine whether or not the matrix ``A`` is doubly-nonnegative.
28 - ``A`` - The matrix in question
32 Either ``True`` if ``A`` is doubly-nonnegative, or ``False``
37 sage: from mjo.cone.doubly_nonnegative import is_doubly_nonnegative
41 Every completely positive matrix is doubly-nonnegative::
43 sage: v = vector(map(abs, random_vector(ZZ, 10)))
44 sage: A = v.column() * v.row()
45 sage: is_doubly_nonnegative(A)
48 The following matrix is nonnegative but non positive semidefinite::
50 sage: A = matrix(ZZ, [[1, 2], [2, 1]])
51 sage: is_doubly_nonnegative(A)
56 if A
.base_ring() == SR
:
57 msg
= 'The matrix ``A`` cannot be the symbolic.'
58 raise ValueError.new(msg
)
60 # Check that all of the entries of ``A`` are nonnegative.
61 if not all( a
>= 0 for a
in A
.list() ):
64 # It's nonnegative, so all we need to do is check that it's
65 # symmetric positive-semidefinite.
66 return is_symmetric_psd(A
)
70 def is_admissible_extreme_rank(r
, n
):
72 The extreme matrices of the doubly-nonnegative cone have some
73 restrictions on their ranks. This function checks to see whether the
74 rank ``r`` would be an admissible rank for an ``n``-by-``n`` matrix.
78 - ``r`` - The rank of the matrix.
80 - ``n`` - The dimension of the vector space on which the matrix acts.
84 Either ``True`` if a rank ``r`` matrix could be an extreme vector of
85 the doubly-nonnegative cone in `$\mathbb{R}^{n}$`, or ``False``
90 sage: from mjo.cone.doubly_nonnegative import is_admissible_extreme_rank
94 For dimension 5, only ranks zero, one, and three are admissible::
96 sage: is_admissible_extreme_rank(0,5)
98 sage: is_admissible_extreme_rank(1,5)
100 sage: is_admissible_extreme_rank(2,5)
102 sage: is_admissible_extreme_rank(3,5)
104 sage: is_admissible_extreme_rank(4,5)
106 sage: is_admissible_extreme_rank(5,5)
109 When given an impossible rank, we just return false::
111 sage: is_admissible_extreme_rank(100,5)
116 # Zero is in the doubly-nonnegative cone.
120 # Impossible, just return False
123 # See Theorem 3.1 in the cited reference.
129 return r
<= max(1, n
-3)
132 return r
<= max(1, n
-2)
135 def has_admissible_extreme_rank(A
):
137 The extreme matrices of the doubly-nonnegative cone have some
138 restrictions on their ranks. This function checks to see whether or
139 not ``A`` could be extreme based on its rank.
143 - ``A`` - The matrix in question
147 ``False`` if the rank of ``A`` precludes it from being an extreme
148 matrix of the doubly-nonnegative cone, ``True`` otherwise.
152 Hamilton-Jester, Crista Lee; Li, Chi-Kwong. Extreme Vectors of
153 Doubly Nonnegative Matrices. Rocky Mountain Journal of Mathematics
154 26 (1996), no. 4, 1371--1383. doi:10.1216/rmjm/1181071993.
155 http://projecteuclid.org/euclid.rmjm/1181071993.
159 sage: from mjo.cone.doubly_nonnegative import has_admissible_extreme_rank
163 The zero matrix has rank zero, which is admissible::
165 sage: A = zero_matrix(QQ, 5, 5)
166 sage: has_admissible_extreme_rank(A)
169 Likewise, rank one is admissible for dimension 5::
171 sage: v = vector(QQ, [1,2,3,4,5])
172 sage: A = v.column()*v.row()
173 sage: has_admissible_extreme_rank(A)
176 But rank 2 is never admissible::
178 sage: v1 = vector(QQ, [1,0,0,0,0])
179 sage: v2 = vector(QQ, [0,1,0,0,0])
180 sage: A = v1.column()*v1.row() + v2.column()*v2.row()
181 sage: has_admissible_extreme_rank(A)
184 In dimension 5, three is the only other admissible rank::
186 sage: v1 = vector(QQ, [1,0,0,0,0])
187 sage: v2 = vector(QQ, [0,1,0,0,0])
188 sage: v3 = vector(QQ, [0,0,1,0,0])
189 sage: A = v1.column()*v1.row()
190 sage: A += v2.column()*v2.row()
191 sage: A += v3.column()*v3.row()
192 sage: has_admissible_extreme_rank(A)
196 if not A
.is_symmetric():
197 # This function is more or less internal, so blow up if passed
198 # something unexpected.
199 raise ValueError('The matrix ``A`` must be symmetric.')
202 n
= ZZ(A
.nrows()) # Columns would work, too, since ``A`` is symmetric.
204 return is_admissible_extreme_rank(r
,n
)
207 def stdE(matrix_space
, i
,j
):
209 Return the ``i``,``j``th element of the standard basis in
214 - ``matrix_space`` - The underlying matrix space of whose basis
215 the returned matrix is an element
217 - ``i`` - The row index of the single nonzero entry
219 - ``j`` - The column index of the single nonzero entry
223 A basis element of ``matrix_space``. It has a single \"1\" in the
224 ``i``,``j`` row,column and zeros elsewhere.
228 sage: from mjo.cone.doubly_nonnegative import stdE
232 sage: M = MatrixSpace(ZZ, 2, 2)
246 Traceback (most recent call last):
248 IndexError: Index `i` is out of bounds.
250 Traceback (most recent call last):
252 IndexError: Index `j` is out of bounds.
255 # We need to check these ourselves, see below.
256 if i
>= matrix_space
.nrows():
257 raise IndexError('Index `i` is out of bounds.')
258 if j
>= matrix_space
.ncols():
259 raise IndexError('Index `j` is out of bounds.')
261 # The basis here is returned as a one-dimensional list, so we need
262 # to compute the offset into it based on ``i`` and ``j``. Since we
263 # compute the index ourselves, we need to do bounds-checking
264 # manually. Otherwise for e.g. a 2x2 matrix space, the index (0,2)
265 # would be computed as offset 3 into a four-element list and we
266 # would succeed incorrectly.
267 idx
= matrix_space
.ncols()*i
+ j
268 return list(matrix_space
.basis())[idx
]
272 def is_extreme_doubly_nonnegative(A
):
274 Returns ``True`` if the given matrix is an extreme matrix of the
275 doubly-nonnegative cone, and ``False`` otherwise.
279 1. Hamilton-Jester, Crista Lee; Li, Chi-Kwong. Extreme Vectors of
280 Doubly Nonnegative Matrices. Rocky Mountain Journal of Mathematics
281 26 (1996), no. 4, 1371--1383. doi:10.1216/rmjm/1181071993.
282 http://projecteuclid.org/euclid.rmjm/1181071993.
284 2. Berman, Abraham and Shaked-Monderer, Naomi. Completely Positive
285 Matrices. World Scientific, 2003.
289 sage: from mjo.cone.doubly_nonnegative import is_extreme_doubly_nonnegative
293 The zero matrix is an extreme matrix::
295 sage: A = zero_matrix(QQ, 5, 5)
296 sage: is_extreme_doubly_nonnegative(A)
299 Any extreme vector of the completely positive cone is an extreme
300 vector of the doubly-nonnegative cone::
302 sage: v = vector([1,2,3,4,5,6])
303 sage: A = v.column() * v.row()
304 sage: A = A.change_ring(QQ)
305 sage: is_extreme_doubly_nonnegative(A)
308 We should be able to generate the extreme completely positive
311 sage: v = vector(map(abs, random_vector(ZZ, 4)))
312 sage: A = v.column() * v.row()
313 sage: A = A.change_ring(QQ)
314 sage: is_extreme_doubly_nonnegative(A)
316 sage: v = vector(map(abs, random_vector(ZZ, 10)))
317 sage: A = v.column() * v.row()
318 sage: A = A.change_ring(QQ)
319 sage: is_extreme_doubly_nonnegative(A)
322 The following matrix is completely positive but has rank 3, so by a
323 remark in reference #1 it is not extreme::
325 sage: A = matrix(QQ, [[1,2,1],[2,6,3],[1,3,5]])
326 sage: is_extreme_doubly_nonnegative(A)
329 The following matrix is completely positive (diagonal) with rank 2,
330 so it is also not extreme::
332 sage: A = matrix(QQ, [[1,0,0],[2,0,0],[0,0,0]])
333 sage: is_extreme_doubly_nonnegative(A)
338 if not A
.base_ring().is_exact() and not A
.base_ring() is SR
:
339 msg
= 'The base ring of ``A`` must be either exact or symbolic.'
340 raise ValueError(msg
)
342 if not A
.base_ring().is_field():
343 raise ValueError('The base ring of ``A`` must be a field.')
345 if not A
.base_ring() is SR
:
346 # Change the base field of ``A`` so that we are sure we can take
347 # roots. The symbolic ring has no algebraic_closure method.
348 A
= A
.change_ring(A
.base_ring().algebraic_closure())
350 # Step 1 (see reference #1)
354 # Short circuit, we know the zero matrix is extreme.
357 if not is_symmetric_psd(A
):
360 # Step 1.5, appeal to Theorem 3.1 in reference #1 to short
362 if not has_admissible_extreme_rank(A
):
370 # Begin with an empty spanning set, and add a new matrix to it
371 # whenever we come across an index pair `$(i,j)$` with
374 for j
in range(A
.ncols()):
378 S
= X
.transpose() * (stdE(M
,i
,j
) + stdE(M
,j
,i
)) * X
379 spanning_set
.append(S
)
381 # The spanning set that we have at this point is of matrices. We
382 # only care about the dimension of the spanned space, and Sage
383 # can't compute the dimension of a set of matrices anyway, so we
384 # convert them all to vectors and just ask for the dimension of the
385 # resulting vector space.
386 (phi
, phi_inverse
) = basis_repr(A
.matrix_space())
387 vectors
= map(phi
,spanning_set
)
389 V
= span(vectors
, A
.base_ring())
392 # Needed to safely divide by two here (we don't want integer
393 # division). We ensured that the base ring of ``A`` is a field
395 two
= A
.base_ring()(2)
396 return d
== (k
*(k
+ 1)/two
- 1)
399 def random_doubly_nonnegative(V
, accept_zero
=True, rank
=None):
401 Generate a random doubly nonnegative matrix over the vector
402 space ``V``. That is, the returned matrix will be a linear
403 transformation on ``V``, with the same base ring as ``V``.
405 We take a very loose interpretation of "random," here. Otherwise we
406 would never (for example) choose a matrix on the boundary of the
411 - ``V`` - The vector space on which the returned matrix will act.
413 - ``accept_zero`` - Do you want to accept the zero matrix (which
414 is doubly nonnegative)? Default to ``True``.
416 - ``rank`` - Require the returned matrix to have the given rank
421 A random doubly nonnegative matrix, i.e. a linear transformation
422 from ``V`` to itself.
426 sage: from mjo.cone.doubly_nonnegative import (is_doubly_nonnegative,
427 ....: random_doubly_nonnegative)
431 Well, it doesn't crash at least::
433 sage: V = VectorSpace(QQ, 2)
434 sage: A = random_doubly_nonnegative(V)
435 sage: A.matrix_space()
436 Full MatrixSpace of 2 by 2 dense matrices over Rational Field
437 sage: is_doubly_nonnegative(A)
440 A matrix with the desired rank is returned::
442 sage: V = VectorSpace(QQ, 5)
443 sage: A = random_doubly_nonnegative(V,False,1)
446 sage: A = random_doubly_nonnegative(V,False,2)
449 sage: A = random_doubly_nonnegative(V,False,3)
452 sage: A = random_doubly_nonnegative(V,False,4)
455 sage: A = random_doubly_nonnegative(V,False,5)
461 # Generate random symmetric positive-semidefinite matrices until
462 # one of them is nonnegative, then return that.
463 A
= random_symmetric_psd(V
, accept_zero
, rank
)
465 while not all( x
>= 0 for x
in A
.list() ):
466 A
= random_symmetric_psd(V
, accept_zero
, rank
)
472 def random_extreme_doubly_nonnegative(V
, accept_zero
=True, rank
=None):
474 Generate a random extreme doubly nonnegative matrix over the
475 vector space ``V``. That is, the returned matrix will be a linear
476 transformation on ``V``, with the same base ring as ``V``.
478 We take a very loose interpretation of "random," here. Otherwise we
479 would never (for example) choose a matrix on the boundary of the
484 - ``V`` - The vector space on which the returned matrix will act.
486 - ``accept_zero`` - Do you want to accept the zero matrix
487 (which is extreme)? Defaults to ``True``.
489 - ``rank`` - Require the returned matrix to have the given rank
490 (optional). WARNING: certain ranks are not possible
491 in any given dimension! If an impossible rank is
492 requested, a ValueError will be raised.
496 A random extreme doubly nonnegative matrix, i.e. a linear
497 transformation from ``V`` to itself.
501 sage: from mjo.cone.doubly_nonnegative import (is_extreme_doubly_nonnegative,
502 ....: random_extreme_doubly_nonnegative)
506 Well, it doesn't crash at least::
508 sage: V = VectorSpace(QQ, 2)
509 sage: A = random_extreme_doubly_nonnegative(V)
510 sage: A.matrix_space()
511 Full MatrixSpace of 2 by 2 dense matrices over Rational Field
512 sage: is_extreme_doubly_nonnegative(A)
515 Rank 2 is never allowed, so we expect an error::
517 sage: V = VectorSpace(QQ, 5)
518 sage: A = random_extreme_doubly_nonnegative(V, False, 2)
519 Traceback (most recent call last):
521 ValueError: Rank 2 not possible in dimension 5.
523 Rank 4 is not allowed in dimension 5::
525 sage: V = VectorSpace(QQ, 5)
526 sage: A = random_extreme_doubly_nonnegative(V, False, 4)
527 Traceback (most recent call last):
529 ValueError: Rank 4 not possible in dimension 5.
533 if rank
is not None and not is_admissible_extreme_rank(rank
, V
.dimension()):
534 msg
= 'Rank %d not possible in dimension %d.'
535 raise ValueError(msg
% (rank
, V
.dimension()))
537 # Generate random doubly-nonnegative matrices until
538 # one of them is extreme, then return that.
539 A
= random_doubly_nonnegative(V
, accept_zero
, rank
)
541 while not is_extreme_doubly_nonnegative(A
):
542 A
= random_doubly_nonnegative(V
, accept_zero
, rank
)