]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/cone/cone.py
Add a test for K.is_proper() <==> pi(K).is_proper().
[sage.d.git] / mjo / cone / cone.py
1 from sage.all import *
2
3 def is_lyapunov_like(L,K):
4 r"""
5 Determine whether or not ``L`` is Lyapunov-like on ``K``.
6
7 We say that ``L`` is Lyapunov-like on ``K`` if `\left\langle
8 L\left\lparenx\right\rparen,s\right\rangle = 0` for all pairs
9 `\left\langle x,s \right\rangle` in the complementarity set of
10 ``K``. It is known [Orlitzky]_ that this property need only be
11 checked for generators of ``K`` and its dual.
12
13 INPUT:
14
15 - ``L`` -- A linear transformation or matrix.
16
17 - ``K`` -- A polyhedral closed convex cone.
18
19 OUTPUT:
20
21 ``True`` if it can be proven that ``L`` is Lyapunov-like on ``K``,
22 and ``False`` otherwise.
23
24 .. WARNING::
25
26 If this function returns ``True``, then ``L`` is Lyapunov-like
27 on ``K``. However, if ``False`` is returned, that could mean one
28 of two things. The first is that ``L`` is definitely not
29 Lyapunov-like on ``K``. The second is more of an "I don't know"
30 answer, returned (for example) if we cannot prove that an inner
31 product is zero.
32
33 REFERENCES:
34
35 M. Orlitzky. The Lyapunov rank of an improper cone.
36 http://www.optimization-online.org/DB_HTML/2015/10/5135.html
37
38 EXAMPLES:
39
40 The identity is always Lyapunov-like in a nontrivial space::
41
42 sage: set_random_seed()
43 sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 8)
44 sage: L = identity_matrix(K.lattice_dim())
45 sage: is_lyapunov_like(L,K)
46 True
47
48 As is the "zero" transformation::
49
50 sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 8)
51 sage: R = K.lattice().vector_space().base_ring()
52 sage: L = zero_matrix(R, K.lattice_dim())
53 sage: is_lyapunov_like(L,K)
54 True
55
56 Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like
57 on ``K``::
58
59 sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 6)
60 sage: all([ is_lyapunov_like(L,K) for L in K.lyapunov_like_basis() ])
61 True
62
63 """
64 return all([(L*x).inner_product(s) == 0
65 for (x,s) in K.discrete_complementarity_set()])
66
67
68 def random_element(K):
69 r"""
70 Return a random element of ``K`` from its ambient vector space.
71
72 ALGORITHM:
73
74 The cone ``K`` is specified in terms of its generators, so that
75 ``K`` is equal to the convex conic combination of those generators.
76 To choose a random element of ``K``, we assign random nonnegative
77 coefficients to each generator of ``K`` and construct a new vector
78 from the scaled rays.
79
80 A vector, rather than a ray, is returned so that the element may
81 have non-integer coordinates. Thus the element may have an
82 arbitrarily small norm.
83
84 EXAMPLES:
85
86 A random element of the trivial cone is zero::
87
88 sage: set_random_seed()
89 sage: K = Cone([], ToricLattice(0))
90 sage: random_element(K)
91 ()
92 sage: K = Cone([(0,)])
93 sage: random_element(K)
94 (0)
95 sage: K = Cone([(0,0)])
96 sage: random_element(K)
97 (0, 0)
98 sage: K = Cone([(0,0,0)])
99 sage: random_element(K)
100 (0, 0, 0)
101
102 TESTS:
103
104 Any cone should contain an element of itself::
105
106 sage: set_random_seed()
107 sage: K = random_cone(max_rays = 8)
108 sage: K.contains(random_element(K))
109 True
110
111 """
112 V = K.lattice().vector_space()
113 F = V.base_ring()
114 coefficients = [ F.random_element().abs() for i in range(K.nrays()) ]
115 vector_gens = map(V, K.rays())
116 scaled_gens = [ coefficients[i]*vector_gens[i]
117 for i in range(len(vector_gens)) ]
118
119 # Make sure we return a vector. Without the coercion, we might
120 # return ``0`` when ``K`` has no rays.
121 v = V(sum(scaled_gens))
122 return v
123
124
125 def positive_operator_gens(K):
126 r"""
127 Compute generators of the cone of positive operators on this cone.
128
129 OUTPUT:
130
131 A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
132 Each matrix ``P`` in the list should have the property that ``P*x``
133 is an element of ``K`` whenever ``x`` is an element of
134 ``K``. Moreover, any nonnegative linear combination of these
135 matrices shares the same property.
136
137 EXAMPLES:
138
139 The trivial cone in a trivial space has no positive operators::
140
141 sage: K = Cone([], ToricLattice(0))
142 sage: positive_operator_gens(K)
143 []
144
145 Positive operators on the nonnegative orthant are nonnegative matrices::
146
147 sage: K = Cone([(1,)])
148 sage: positive_operator_gens(K)
149 [[1]]
150
151 sage: K = Cone([(1,0),(0,1)])
152 sage: positive_operator_gens(K)
153 [
154 [1 0] [0 1] [0 0] [0 0]
155 [0 0], [0 0], [1 0], [0 1]
156 ]
157
158 Every operator is positive on the ambient vector space::
159
160 sage: K = Cone([(1,),(-1,)])
161 sage: K.is_full_space()
162 True
163 sage: positive_operator_gens(K)
164 [[1], [-1]]
165
166 sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
167 sage: K.is_full_space()
168 True
169 sage: positive_operator_gens(K)
170 [
171 [1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0]
172 [0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1]
173 ]
174
175 TESTS:
176
177 A positive operator on a cone should send its generators into the cone::
178
179 sage: set_random_seed()
180 sage: K = random_cone(max_ambient_dim=5)
181 sage: pi_of_K = positive_operator_gens(K)
182 sage: all([K.contains(p*x) for p in pi_of_K for x in K.rays()])
183 True
184
185 The dimension of the cone of positive operators is given by the
186 corollary in my paper::
187
188 sage: set_random_seed()
189 sage: K = random_cone(max_ambient_dim = 5)
190 sage: n = K.lattice_dim()
191 sage: m = K.dim()
192 sage: l = K.lineality()
193 sage: pi_of_K = positive_operator_gens(K)
194 sage: L = ToricLattice(n**2)
195 sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim()
196 sage: expected = n**2 - l*(m - l) - (n - m)*m
197 sage: actual == expected
198 True
199
200 The lineality of the cone of positive operators is given by the
201 corollary in my paper::
202
203 sage: set_random_seed()
204 sage: K = random_cone(max_ambient_dim=5)
205 sage: n = K.lattice_dim()
206 sage: pi_of_K = positive_operator_gens(K)
207 sage: L = ToricLattice(n**2)
208 sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality()
209 sage: expected = n**2 - K.dim()*K.dual().dim()
210 sage: actual == expected
211 True
212
213 The cone ``K`` is proper if and only if the cone of positive
214 operators on ``K`` is proper::
215
216 sage: set_random_seed()
217 sage: K = random_cone(max_ambient_dim=5)
218 sage: pi_of_K = positive_operator_gens(K)
219 sage: L = ToricLattice(K.lattice_dim()**2)
220 sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
221 sage: K.is_proper() == pi_cone.is_proper()
222 True
223 """
224 # Matrices are not vectors in Sage, so we have to convert them
225 # to vectors explicitly before we can find a basis. We need these
226 # two values to construct the appropriate "long vector" space.
227 F = K.lattice().base_field()
228 n = K.lattice_dim()
229
230 tensor_products = [ s.tensor_product(x) for x in K for s in K.dual() ]
231
232 # Convert those tensor products to long vectors.
233 W = VectorSpace(F, n**2)
234 vectors = [ W(tp.list()) for tp in tensor_products ]
235
236 # Create the *dual* cone of the positive operators, expressed as
237 # long vectors..
238 pi_dual = Cone(vectors, ToricLattice(W.dimension()))
239
240 # Now compute the desired cone from its dual...
241 pi_cone = pi_dual.dual()
242
243 # And finally convert its rays back to matrix representations.
244 M = MatrixSpace(F, n)
245 return [ M(v.list()) for v in pi_cone.rays() ]
246
247
248 def Z_transformation_gens(K):
249 r"""
250 Compute generators of the cone of Z-transformations on this cone.
251
252 OUTPUT:
253
254 A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
255 Each matrix ``L`` in the list should have the property that
256 ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element the
257 discrete complementarity set of ``K``. Moreover, any nonnegative
258 linear combination of these matrices shares the same property.
259
260 EXAMPLES:
261
262 Z-transformations on the nonnegative orthant are just Z-matrices.
263 That is, matrices whose off-diagonal elements are nonnegative::
264
265 sage: K = Cone([(1,0),(0,1)])
266 sage: Z_transformation_gens(K)
267 [
268 [ 0 -1] [ 0 0] [-1 0] [1 0] [ 0 0] [0 0]
269 [ 0 0], [-1 0], [ 0 0], [0 0], [ 0 -1], [0 1]
270 ]
271 sage: K = Cone([(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)])
272 sage: all([ z[i][j] <= 0 for z in Z_transformation_gens(K)
273 ....: for i in range(z.nrows())
274 ....: for j in range(z.ncols())
275 ....: if i != j ])
276 True
277
278 The trivial cone in a trivial space has no Z-transformations::
279
280 sage: K = Cone([], ToricLattice(0))
281 sage: Z_transformation_gens(K)
282 []
283
284 Z-transformations on a subspace are Lyapunov-like and vice-versa::
285
286 sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
287 sage: K.is_full_space()
288 True
289 sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
290 sage: zs = span([ vector(z.list()) for z in Z_transformation_gens(K) ])
291 sage: zs == lls
292 True
293
294 TESTS:
295
296 The Z-property is possessed by every Z-transformation::
297
298 sage: set_random_seed()
299 sage: K = random_cone(max_ambient_dim = 6)
300 sage: Z_of_K = Z_transformation_gens(K)
301 sage: dcs = K.discrete_complementarity_set()
302 sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
303 ....: for (x,s) in dcs])
304 True
305
306 The lineality space of Z is LL::
307
308 sage: set_random_seed()
309 sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 6)
310 sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
311 sage: z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ])
312 sage: z_cone.linear_subspace() == lls
313 True
314
315 And thus, the lineality of Z is the Lyapunov rank::
316
317 sage: set_random_seed()
318 sage: K = random_cone(min_ambient_dim = 1, max_ambient_dim = 6)
319 sage: z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ])
320 sage: z_cone.lineality() == K.lyapunov_rank()
321 True
322 """
323 # Matrices are not vectors in Sage, so we have to convert them
324 # to vectors explicitly before we can find a basis. We need these
325 # two values to construct the appropriate "long vector" space.
326 F = K.lattice().base_field()
327 n = K.lattice_dim()
328
329 # These tensor products contain generators for the dual cone of
330 # the cross-positive transformations.
331 tensor_products = [ s.tensor_product(x)
332 for (x,s) in K.discrete_complementarity_set() ]
333
334 # Turn our matrices into long vectors...
335 W = VectorSpace(F, n**2)
336 vectors = [ W(m.list()) for m in tensor_products ]
337
338 # Create the *dual* cone of the cross-positive operators,
339 # expressed as long vectors..
340 Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension()))
341
342 # Now compute the desired cone from its dual...
343 Sigma_cone = Sigma_dual.dual()
344
345 # And finally convert its rays back to matrix representations.
346 # But first, make them negative, so we get Z-transformations and
347 # not cross-positive ones.
348 M = MatrixSpace(F, n)
349 return [ -M(v.list()) for v in Sigma_cone.rays() ]
350
351
352 def Z_cone(K):
353 gens = Z_transformation_gens(K)
354 L = None
355 if len(gens) == 0:
356 L = ToricLattice(0)
357 return Cone([ g.list() for g in gens ], lattice=L)
358
359 def pi_cone(K):
360 gens = positive_operator_gens(K)
361 L = None
362 if len(gens) == 0:
363 L = ToricLattice(0)
364 return Cone([ g.list() for g in gens ], lattice=L)